

Introducing High-Performance FM RDS Data Receiver ICs

March 2008

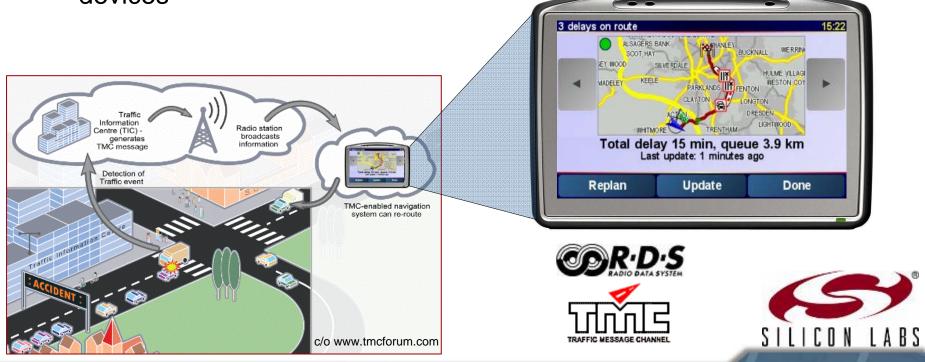
Silicon Labs Broadcast Audio Division

- Highly successful product family
 >100MU units shipped
- Broad portfolio of pending and granted patents
- International presence and local support in all major markets
- Rapidly expanding portfolio of solutions targeting digital and analog audio broadcast markets

Broadcast Product Family

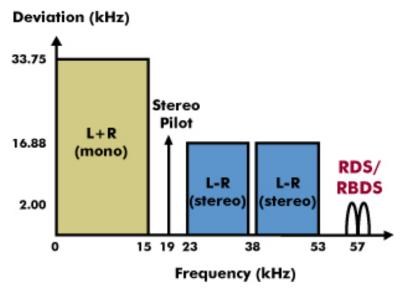
Industry leading performance and feature sets for broadcast solutions based on unique RF capability

- Broadcast Audio Receivers and Transmitters
- Satellite Radio Tuner
- Satellite STB Receivers



Common Applications: Cellular Handsets Portable Media Players and accessories Navigation Devices Set-Top Boxes XM Satellite Radios

SILICON LABS


RDS-TMC Navigation Proliferation

- Traffic Message Channel (TMC) system provides real-time traffic information over FM RDS
- RDS-TMC is being bundled with GPS to provide real-time traffic information to consumers
 - Explosive growth in US and Europe in automotive telematics, portable navigation devices (PNDs) and mobile GPS-enabled devices

Introducing Si4706/49 RDS Data Receivers

- High-performance RDS receivers provide industry-leading sensitivity and reliability
 - Results in higher confidence in the traffic data received
- Advanced RDS processing and decode techniques raise the performance bar
 - Digital low-IF architecture provides unmatched flexibility

- Smallest, most highly integrated solutions for portable and automotive markets
 - Integrate the entire receiver from antenna input to RDS output

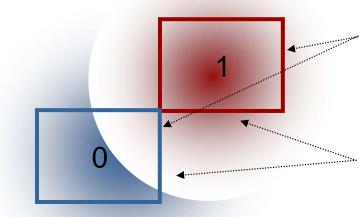
Addressing Both Automotive and Portable Markets

Si4749

- Automotive companion tuner
- AEC-Q100 qualified
- Rapid AF tuning and qualification
- Unmatched RDS performance
- 4 x 4 x 0.85 mm 24 pin QFN

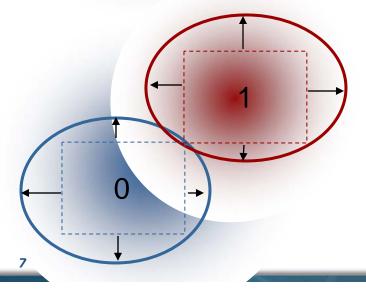
Si4706

- PND, mobile device RDS tuner
- Unmatched RDS performance
- Supports antenna-free enclosures
- Stereo digital/analog audio out
- 3 x 3 x 0.55 mm 20 pin QFN



** Devices shown are illustrative of target market and do not imply design wins

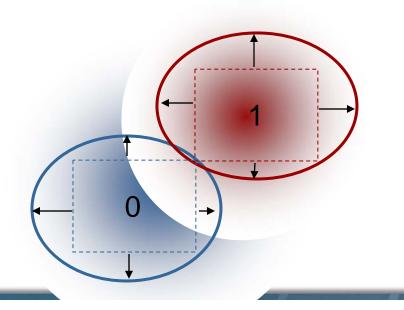
Higher Quality Data Received


Traditional RDS decoder

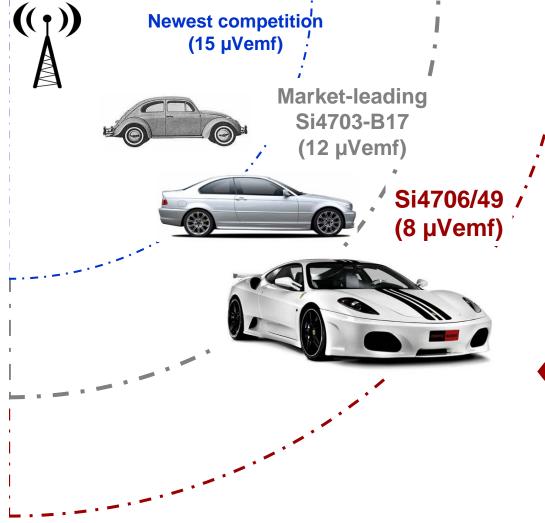
Traditional RDS decoder pre-defined acceptance region

Greater amount of data rejected → Higher block error rate

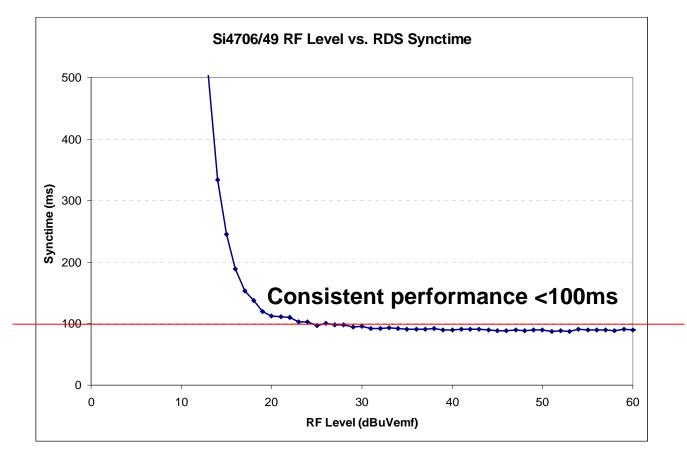
Si4706/49 RDS Decoder


Si4706/49 RDS decoder extends acceptance region using advanced on-chip processing

Data is correctly interpreted \rightarrow Lower block error rate


High Performance Benefits End Users

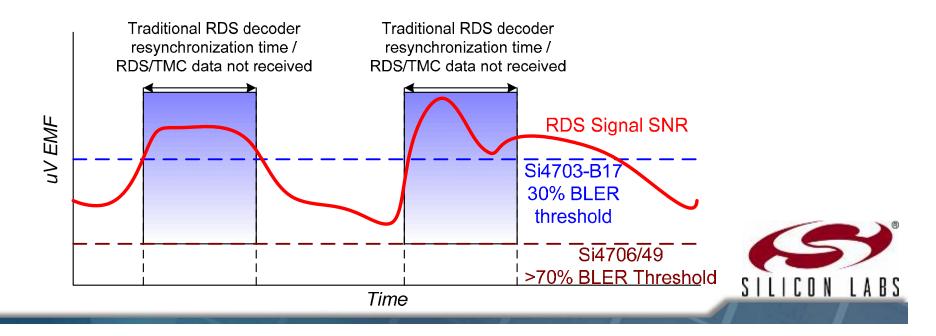
Feature	Benefit
 Increased sensitivity in low signal environments 	 Receives better data, farther from RDS transmitter during users' commute
 More persistent RDS synchronization 	 Fewer dropped connections requiring re-synchronization and data recovery
 Reduced RDS synchronization times 	 Faster synchronization if lost in variable signal environment
 Better data decode reliability 	 More reliable data received


Industry-Leading Sensitivity

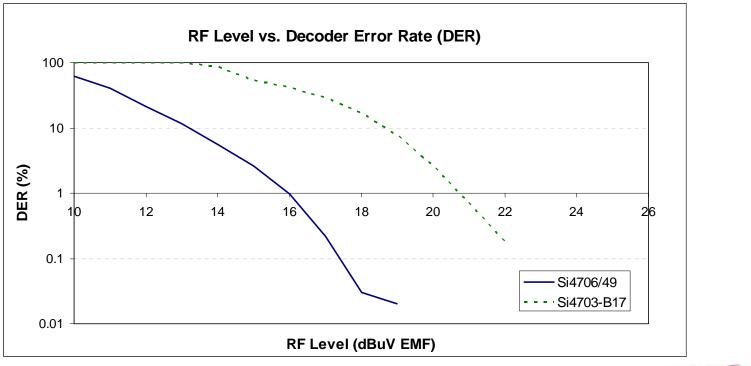
- The industry's best RDS sensitivity
 - Si4706 and Si4749
 receive data farther
 from transmitter
- Si4706/49 sensitivity is 8 µVemf at 5% BLER
 - Nearly 2x better than competition

Fastest RDS Synchronization Time

RDS deviation = 2kHz


• Rapid synchronization in weak and varying signal level environments

Quicker synchronization with transmitter if signal is lost


Superior RDS Synch Persistence

- Si4706/49 RDS synchronization persistence is 2x improvement over market-leader
 - > Si4706/49 maintain synch to 4uV EMF @ 70% BLER
 - Si4703-B17 maintains synch to 8uV EMF @ 30% BLER
- Si4706/49 does not lose synchronization in illustration
 > RDS data is immediately received upon improved SNR conditions

Excellent Decoder Reliability

- Decoder reduces incorrect/undecipherable RDS data
 > Improves TMC and RDS song meta data integrity
 - More accurate information leads to better user experience

Si4706/49 Unmatched Programmability

Feature	Benefit
 Interrupts on change in block A and / or block B 	 RDS block A almost never changes and block B changes with programming content. Interrupts likely indicate change or similarity in broadcaster or content
 Full granularity with all	 Allows host processor to post-process if user desires User can also select interrupts by BLER level,
blocks and BLER	conserving host processor cycles
 Interrupts by block-	 Allows error-thresholds, content-specific or
specific BLER	application-specific interrupts to save host power
 On-chip buffer up to 25	 Reduces interrupts and therefore power consumption
RDS groups with	load of host processor Especially useful in decoding ODA information with
associated BLER by	large groups of data Greater than 50 times more data than competition
block (100 blocks)	provides

Summary

- Advanced RDS decode engine offers industry-leading performance, directly benefiting end-users
- Digital low-IF architecture proven industry-wide as mature, reliable, proven
- High integration and simple programming make adding companion / data receiver easy and cost-effective

www.silabs.com/broadcast

