
 

October 2005
ipug05_03.0

 

Reed-Solomon Encoder

 

User’s Guide

ispLever
CORECORE

TM



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

2

 

Introduction

 

Lattice’s Reed-Solomon Encoder core provides an ideal solution that meets the needs of today’s Reed-Solomon
applications. The Reed-Solomon Encoder core provides a customizable solution allowing forward error correction
in many design applications. This core allows designers to focus on the application rather than the Reed-Solomon
Encoder, resulting in faster time to market. 

Reed-Solomon codes are widely used in various applications for forward error correction and detection. Lattice’s
Reed-Solomon Encoder core is a fully synchronous core developed in conjunction with Lattice’s Reed-Solomon
Decoder core to provide a complimentary pair. For more information on Lattice products, refer to the Lattice web
site at www.latticesemi.com.

This user’s guide illustrates the functionality and implementation of the Reed-Solomon Encoder to provide encod-
ing on any data transmission. It also describes a method for achieving the maximum level of performance. 

 

The Reed-Solomon Encoder Core

 

This section describes the functionality of the Reed-Solomon Encoder core. It includes information on how to cus-
tomize the Reed-Solomon Encoder core as well as the details necessary to design an application that will interface
with the Reed-Solomon Encoder core. Figure 1 illustrates the functional modules and internal bus structure used in
the Reed-Solomon Encoder core.

 

Figure 1. Reed-Solomon Encoder Core Block Diagram

 

Multiplier Array

 

The Multiplier Array does the Galois field multiplication between the generator coefficients and the addition of input
data and feedback (modulo 2). This multiplication is an optimized multiplication between the generator coefficients,
which are constants, and the input of the Multiplier Array. This optimization is done when processing the core.

 

Adder Array

 

The Adder Array performs addition (modulo 2) on the data from the previous element of the Remainder Array and
the result of the corresponding Galois field multiplication from the Multiplier Array. The outputs from the Adder Array
are latched into the Remainder Array on each clock cycle.

Adder Array

Multiplier Array

Remainder Array

Control

d_in

d_out

dvalid
status

rstn
enable

byp
start

clk rdy

C
o

n
tr

o
l B

u
s



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

3

 

Remainder Array

 

The Remainder Array is a shift register array. It stores the remainder polynomial after the polynomial division. The
remainder polynomial becomes the check symbols once all information symbols have been processed. The
Remainder Array shifts in the data from the Adder Array until no information symbols remain. When all the informa-
tion symbols have been received, the polynomial multiplication stops and the contents of the Remainder Array are
output to 

 

d_out

 

.

 

Control Block

 

The control block generates all control signals and determines the state of the Reed-Solomon Encoder. The inputs
control the state of the encoder. The control signals from the control block are sent through the control bus to deter-
mine when data should be transmitted to the encoder. 

 

Timing Diagrams

 

The illustrated timing examples utilize a non-continuous RS (7,3) code. The timing remains the same whether the
core is continuous or non-continuous. However, when the core is continuous, the 

 

rdy

 

 and 

 

dvalid

 

 signals are not
used.

Figure 2 illustrates the timing of an RS (7,3) single pipelined encoder during normal operation. The handshake sig-
nals 

 

status

 

, 

 

rdy

 

, and 

 

dvalid

 

 display how the encoder communicates with the source and destination devices.

 

Figure 2. Timing of an RS (7,3) Single Pipelined Encoder

X3

clk

rstn

start

enable

byp

X2 X1 X0d_in D6 D5 D4 DN5 DN4DN6

d_out D6 D5 D4 C2 C1 C0 DN6C3

status

rdy

dvalid



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

4

Figure 3 shows the timing of an RS (7,3) single pipelined encoder with 

 

byp

 

 asserted during the operation of the
encoder. The handshaking signals are identical to normal operation, but the output is shifted due to the extra
bypass data, which does not require check symbols.

 

Figure 3. Timing of an RS (7,3) Single Pipelined Encoder with 

 

byp

 

 Asserted

 

Figure 4 explains the timing of an RS (7,3) single pipelined encoder with enable de-asserted during the operation
of the encoder. The handshaking signal, 

 

dvalid

 

, indicates the data on 

 

d_out

 

 is invalid while the encoder main-
tains its state during the time enable is low. 

 

Figure 4. Timing of an RS (7,3) Single Pipelined Encoder with 

 

enable

 

 De-asserted

clk

rstn

start

enable

byp

d_in

d_out

status

rdy

dvalid

D6 D5 D4

D6 D5 D4 C3 C2 C1 C0

DN6 DN5DBP

DBP

XX X3 X2 X1 X0d_in D6 D5 D4 DN5DN6

clk

rstn

start

enable

byp

d_out

status

rdy

dvalid

D6 D5 D4 C3 C2 C1 C0D4



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

5

Figure 5 explains the timing of an RS (7,3) single pipelined encoder with start re-asserted during the operation of
the encoder. The handshaking signal, 

 

rdy

 

, indicates the encoder is ready to receive a new set of data when start is
re-asserted during encoding. 

 

Figure 5. Timing of an RS (7,3) Single Pipelined Encoder with 

 

start

 

 Re-asserted

 

Figure 6 illustrates the timing of an RS (7,3) double-pipelined encoder during normal operation. The handshake
signals, 

 

status

 

, 

 

rdy

 

, and 

 

dvalid

 

, display how the encoder communicates with the source and destination
devices.

 

Figure 6. Timing of an RS (7,3) Double Pipelined Encoder

X3 X2 X1X3

clk

rstn

start

enable

byp

d_in D6 D5 D4

d_out D6 D5 D4 D6 D5 D4 C3C3

status

rdy

dvalid

D6 D5 D4

X3

clk

rstn

start

enable

byp

X2 X1 X0d_in D6 D5 D4 DN5 DN4DN6

d_out D6 D5 D4 C2 C1 C0C3

status

rdy

dvalid



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

6

Figure 7 shows the timing of an RS (7,3) double-pipelined encoder with 

 

byp

 

 asserted during the operation of the
encoder. The handshaking signals are identical to normal operation, but the output is shifted due to the extra
bypass data, which does not require check symbols.

 

Figure 7. Timing of an RS (7,3) Double Pipelined Encoder with 

 

byp

 

 Asserted

 

Figure 8 explains the timing of an RS (7,3) double-pipelined encoder with 

 

enable

 

 de-asserted during the opera-
tion of the encoder. The handshaking signal, 

 

dvalid

 

, indicates the data on 

 

d_out

 

 is invalid while the encoder
maintains its state during the time enable is low. 

 

Figure 8. Timing of an RS (7,3) Double Pipelined Encoder with 

 

enable

 

 De-asserted

X0X3 X2 X1

clk

rstn

start

enable

byp

d_in

d_out

status

rdy

dvalid

D6 D5 D4

D6 D5 D4 C3 C2 C1

DN6 DN5DBP

DBP

XX X3 X2 X1 X0d_in D6 D5 D4 DN5DN6

clk

rstn

start

enable

byp

d_out

status

rdy

dvalid

D6 D5 D4 C3 C2 C1D4



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

7

Figure 9 explains the timing of an RS (7,3) double-pipelined encoder with 

 

start

 

 re-asserted during the operation
of the encoder. The handshaking signal, 

 

rdy

 

, indicates the encoder is ready to receive a new set of data when

 

start

 

 is re-asserted during encoding. 

 

Figure 9. Timing of an RS (7,3) Double Pipelined Encoder with 

 

start

 

 Re-asserted

 

Signal Definitions 

 

Table 1 shows the input and output signals for the Reed-Solomon Encoder core. Refer to the 

 

ispLEVER™ Software
User’s Manual

 

 for additional information. 

 

Table 1. Reed-Solomon Encoder Signals

 

Signal Name I/O Type
Active 
State Signal Description

 

d_in[s-1:0]

 

Input N/A Input data

 

rstn

 

Input Low Asynchronous reset input

 

enable

 

Input High Enables the encoder to process data on 

 

d_in

 

. When low, the input data is 
ignored and 

 

d_out

 

 holds its state.

 

byp

 

Input High Indicates the data on 

 

d_in

 

 should pass directly through to 

 

d_out

 

 after the 
latency. This signal is ignored if 

 

enable

 

 is low.

 

start

 

Input High Indicates that the data on 

 

d_in

 

 is the first information symbol of a new code-
word.This signal is ignored if 

 

byp

 

 is high or enable is low.

 

clk

 

Input Rising Edge Master clock input

 

d_out[s-1:0]

 

Output N/A Output data

 

status

 

Output High Indicates the information symbols are present on 

 

d_out

 

 or 

 

byp

 

 is asserted.

 

dvalid

 

Output High Indicates valid data on 

 

d_out

 

.Not available with continuous configuration

 

rdy

 

Output High Indicates the encoder is ready to receive data.Active when 

 

rstn

 

 is asserted or 
when ready to receive data or 

 

start

 

 is asserted. Inactive when sufficient data 
has been received and check symbols are being calculated. Not available with 
continuous configuration

X3 X2 X1X3

clk

rstn

start

enable

byp

d_in D6 D5 D4

d_out D6 D5 D4 D6 D5 D4C3

status

rdy

dvalid

D6 D5 D4



 

Lattice Semiconductor Reed-Solomon Encoder User’s Guide

 

8

 

Reed-Solomon Encoder Parameters
The Reed-Solomon Encoder has several parameters that allow the core to be configured in different modes listed
in Table 2. Table 3 lists the default field polynomial for a given symbol width.

Table 2. Reed-Solomon Encoder Parameter Descriptions 

Table 3. Reed-Solomon Encoder Default Field Polynomial

Name Value Default Description

n 3 - 4095 255 Number of symbols. 

k 1 - 4093 239 Number of information symbols. 

s 3 - 12 8 Symbol width.

f 11 - 8191 See Table 3 Decimal value of the field polynomial.

rootspace 1 - 65535 1 Root spacing of the generator polynomial. The value of rootspace must satisfy the 
following equation: GCD(rootspace, 2S-1) = 1. GCD is Greatest Common Divisor.

gstart 0 - 65535 0 Offset value of the generator polynomial. The starting value for the first root of the 
generator polynomial is calculated as rootspace * gstart.

inreg 0, 1 1 0 = the inputs will not be registered 
1 = the inputs will be registered

latency 2, 3 3 2 = the input on d_in will take 2 clock cycles to reach d_out 
3 = the input on d_in will take 3 clock cycles to reach d_out

algorithm 0, 1 1 Selects between two different multiplication algorithms. Used to improve timing 
results

handshake 0, 1 0 1 = the core will be a non-continuous core configuration 
0 = the core will be a continuous core configuration 
(rdy and dvalid will be used in non-continuous configuration only)

Symbol Width Default Field Polynomial Decimal Value

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 +1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4 + 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

9

Reed-Solomon Encoder Core Design Flow
The Reed-Solomon IP Core can be implemented using various methods. The scope of this document covers only
the push-button Graphical User Interface (GUI) flow. Figure 10 illustrates the software flow model used when
designing with the Reed-Solomon Encoder core.

Figure 10. Lattice IP Core Implementation Flow

IPexpress™
The Lattice IP configuration tool, IPexpress, is incorporated in the ispLEVER® software. IPexpress includes a GUI
for entering the required parameters to configure the core. For more information on using IPexpress and the
ispLEVER design software, refer to the software help and tutorials included with ispLEVER. For more information
on ispLEVER, see the Lattice web site at www.latticesemi.com/software.

Functional RTL Simulation Under ModelSim (PC Platform)

Once the Reed-Solomon Encoder core has been downloaded and unzipped to the designated directory, the core is
ready for evaluation. The functional simulation of the RS Encoder core involved developing a verification environ-
ment that supports a very comprehensive test suite. 

Install and launch ispLEVER software

IP Core Netlist

Start

Protected
Simulation

Model

Obtain desired IP package (download
Core Evaluation package or purchase

IP package)

Install IP package

Perform functional simulation with
the provided core model

Synthesize top-level design with the
IP black box declaration

Place and route the design

Run static timing analysis

Done

Note: The following procedures are shown using the ORCA® Series 4 version of the Reed-Solomon Decoder 
core. For other device versions, refer to the Readme release notes included in that evaluation package.



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

10

A simulation script file is provided in the “eval” directory for RTL simulation. The script file eval_sim_rsenc.do uses
pre-compiled models provided with this package. The pre-compiled library of models is located in the directory
reeds_enco_o4_1_00x/orca4/ver1.3/lib/modelsim/work.

Simulation Procedures:
1. Launch ModelSim 

2. Using the main GUI, change the directory location:
Select: File -> Change Directory -> reeds_enco_o4_1_00x/orca4/ver1.3/eval/simulation

3. Execute <Modelsim macro name>.do
Select: Macro -> Execute Macro -> scripts/eval_sim_rsenc.do

The functional simulation for IP cores is currently not applicable with the OEM version of ModelSim embedded in
the ispLEVER 3.0 software. For more information on how to use ModelSim, please refer to the ModelSim User’s
Manual.

Core Implementation
Users can instantiate the IP core to implement it into their system design. The following Verilog source files for
Reed-Solomon Encoder core are provided:

• reeds_enco_o4_1_00x.v for the Reed-Solomon Encoder core-top RTL source

• top_rsenc_pll.v for top-level source

Users can use the core-top RTL as a black box to the system designs. All default signal names in the top-level RTL
source file must be replaced with real signal names from the system design.

Black Box Consideration
Since the core is delivered as a gate-level netlist, the synthesis software will not re-synthesize the internal nets of
the core. In the synthesis process, the instantiated core must be declared as a black box. The ispLEVER software
automatically detects the provided netlist of the instantiated IP core in the design. For more detailed information
regarding Synplify’s black box declaration, please refer to the Instantiating Black Boxes in Verilog section of the
Synplify reference manual.

The core implementation consists of synthesis and place and route sections. Each of the sections is described
below.

Two synthesis tools, Synplicity® Synplify® and LeonardoSpectrum™, are included in the ispLEVER software for
seamless processing of designs. The current IP cores are being tested with EDIF flow. The following are the step-
by-step procedure for each synthesis tool to generate an EDIF netlist containing the IP core as a black box. 

Synthesis Using Synplicity Synplify
The step-by-step procedure below describes how to run synthesis using Synplify outside the ispLEVER Project
Navigator.

1. Create a new working directory for synthesis. 

2. Launch the Synplify synthesis tool. 

3. Start a new project and add the specified files in the following order:
~/source/reeds_enco_o4_1_00x_params.v
~/source/orca4_synplify.v
~/source/pll_orca.v
~/source/reeds_enco_o4_1_00x.v
~/source/<top-level RTL source>.v



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

11

Note: <top-level RTL source> could be the user’s top-level design or the top-level source (top_rsenc_pll.v) file 
in the source directory of the downloaded package. 

4. In the Implementation Options, select a target device 4E02, speed grade -2 and package BA352. 

5. Specify an EDIF netlist filename and EDIF netlist output location in the Implementation Options. This top-level 
EDIF netlist will be used during place and route. 

6. Be sure the IP core (reeds_enco_o4_1_00x) is instantiated inside top-level RTL source file.

7. In the Implementation Options, set the following:
• Fanout guide: 500
• Enable FSM compiler
• Enable resource sharing
• Set the global frequency constraint to 195MHz.

8. Select Run. 

Synthesis Using LeonardoSpectrum
The step-by-step procedure provided below describes how to run synthesis using LeondardoSpectrum outside the
ispLEVER Project Navigator.

1. Create a new working directory for synthesis. 

2. Launch the LeonardoSpectrum synthesis tool. 

3. Start a new project and select Lattice device technology ORCA-4E. 

4. Set the source directory as the working directory. 

5. Open the specified files in the following order: 
~/source/reeds_enco_o4_1_00x_params.v
~/source/<top-level RTL source>.v
~/source/pll_orca.v
~/source/reeds_enco_o4_1_00x.v
Note: <top-level RTL source> could be users’ top-level design or the top-level source (top_rsenc_pll.v) file in 
the source directory of the downloaded package.

6. Set the synthesis directory, created in step 1, as the path where you would like to save the output netlist. 

7. Specify an EDIF netlist filename for the output file. This top-level EDIF netlist will be used during place and 
route. 

8. Be sure the IP core (reeds_enco_o4_1_00x) is instantiated inside top-level RTL source file.

9. Select Run Flow. 

Place and Route
Once the EDIF netlist is generated, the next step is to import the EDIF into the Project Navigator. The step-by-step
procedure provided below describes how to perform place and route in ispLEVER for an ORCA® device:

1. Create a new working directory for place and route. 

2. Start a new project, assign a project name and select the project type as EDIF. 

3. Select an ORCA target device, with -2 speed grade and BA352 package. 



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

12

4. Copy the following files to the place and route working directory: 
a) ..\..\par\reeds_enco_o4_1_00x.ngo
b) ..\..\par\reeds_enco_o4_1_00x.prf
c) The top-level EDIF netlist generated from running synthesis

5. Rename the reeds_enco_o4_1_00x.prf file (in step 4) to match the project name. For example, if the project 
name is “demo”, then the .prf file must be renamed to demo.prf. The preference file name must match that of 
the project name. 

6. Import the EDIF netlist into the project. 

7. In the ispLEVER Project Navigator, select Tools->Timing Checkpoint Options. The Timing Checkpoint Options 
window will pop-up. In both Checkpoint Options, select Continue. 

8. In the ispLEVER Project Navigator, highlight Place & Route Design, with a right mouse click select Properties. 
Set the following Properties: 
• Placement Iterations: 1
• Placement Save Best Run: 1
• Placement Iteration Start Point: 20
• Routing Resource Optimization: 5
• Routing Delay Reduction Passes: 2
• Routing Passes: 15
• Placement Effort Level: 5

All other options remain at their default values. The properties shown above are the settings for OC192 mode. 
Each configuration has its own properties settings. For the appropriate settings for specific configuration, 
please refer to the readme.htm that located in the downloaded package.

9. Select the Place & Route Trace Report in the Project Navigator to execute Place and Route and generate a 
timing report for ORCA. 

10. If the fMAX for the core does not meet the required static timing, then proceed to step 11. Otherwise, jump to 
step 13.

11. Select the Cycle Stealing process in the Project Navigator. 

12. Select the Place & Route Trace Report process again to generate a new timing report. The Timing Summary 
section should indicate no timing errors. 

13. When you open the timing report, it is possible you might see some timing violations due to over-constraint. Do 
the following steps to obtain a correct timing report:
• Copy the file post_route_trace.prf that is located in directory ~/reeds_enco_o4_1_00x/orca4/ver1.0/par 

to the place and route working directory in step 1.
• Open a DOS-shell and change its directory to the working directory in step 1.
• Type: trce -v 1 -c -o post_route_trace.twr <your project_name>.ncd post_route_trace.prf
• The new timing report is generated in post_route_trace.twr

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

13

Appendix for ORCA® Series 4 FPGAs
Table 4. Performance and Utilization1 

Table 5. Parameters for Typical Configurations

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of the Reed-Solomon Encoder core targeting ORCA Series
4 devices is REEDS-ENCO-O4-N1. Table 4 lists the netlists that are available in the Evaluation Package, which can
be downloaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Parameter File Mode
ORCA 4

PFUs LUTs Registers I/Os
sysMEM™

EBRs fMAX (MHz)

reeds_enco_o4_1_001.lpc OC192 58 210 194 24 N/A 168

reeds_enco_o4_1_002.lpc CCSDS 88 327 323 24 N/A 156

reeds_enco_o4_1_003.lpc DVB 58 201 194 24 N/A 167

reeds_enco_o4_1_004.lpc ATSC 71 233 226 24 N/A 166

1. Performance and utilization characteristics for OR4E02-2BA352. When using other devices, performance may vary.

Name CCSDS DVB ATSC OC192

n 255 204 207 255

k 223 188 187 239

s 8 8 8 8

f 391 285 285 285

rootspace 11 1 1 1

gstart 112 0 0 0

inreg 1 1 1 1

latency 3 3 3 3

algorithm 1 1 1 1

handshake 0 0 0 0



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

14

Appendix for ispXPGA® FPGAs
Table 6. Performance and Resource Utilization1

Table 7. Parameters for Typical Configurations

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of the Reed-Solomon Encoder core targeting ispXPGA
devices is REEDS-ENCO-XP-N1. Table 6 lists the netlists that are available in the Evaluation Package, which can
be downloaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Parameter File Mode
ispXPGA

PFUs LUTs Registers I/Os
sysMEM

EBRs fMAX (MHz)

reeds_enco_xp_1_001.lpc OC192 86 273 248 24 N/A 166

reeds_enco_xp_1_002.lpc CCSDS 161 504 457 24 N/A 149

reeds_enco_xp_1_003.lpc DVB 84 273 240 24 N/A 155

reeds_enco_xp_1_004.lpc ATSC 130 417 307 24 N/A 157

1. Performance and utilization characteristics are generated using LFX125B-04F256C in Lattice ispLEVER® v.3.x software. The evaluation 
version of this IP core only works on this specific device density, package, and speed grade.

Name CCSDS DVB ATSC OC192

n 225 204 207 255

k 223 188 187 239

s 8 8 8 8

f 391 285 285 285

rootspace 11 1 1 1

gstart 112 0 0 0

inreg 1 1 1 1

latency 3 3 3 3

algorithm 1 1 1 1

handshake 0 0 0 0



Lattice Semiconductor Reed-Solomon Encoder User’s Guide

15

Appendix for LatticeECP™ and LatticeEC™ FPGAs
Table 8. Performance and Resource Utilization1

Table 9. Parameters for Typical Configurations

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of the Reed-Solomon Encoder core targeting LatticeECP/EC
devices is REEDS-ENCO-E2-N1. Table 8 lists the netlists that are available in the Evaluation Package, which can be
downloaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Parameter File Mode SLICEs LUTs Registers I/Os
sysMEM

EBRs
fMAX 

(MHz)

reeds_enco_e2_1_001.lpc OC192 147 252 217 24 N/A 206

reeds_enco_e2_1_002.lpc CCSDS 280 460 413 24 N/A 194

reeds_enco_e2_1_003.lpc DVB 149 253 220 24 N/A 205

reeds_enco_e2_1_004.lpc ATSC 196 320 279 24 N/A 201

1. Performance and utilization characteristics are generated using LFEC20E-5F672C in Lattice’s ispLEVER v.4.1 software. When using this IP 
core in a different device, density, package, or speed grade, performance may vary.

Name CCSDS DVB ATSC OC192

n 255 204 207 255

k 223 188 187 239

s 8 8 8 8

f 391 285 285 285

rootspace 11 1 1 1

gstart 112 0 0 0

inreg 1 1 1 1

latency 3 3 3 3

algorithm 1 1 1 1

handshake 0 0 0 0


	Introduction
	The Reed-Solomon Encoder Core
	Multiplier Array
	Adder Array
	Remainder Array
	Control Block
	Timing Diagrams
	Signal Definitions
	Reed-Solomon Encoder Parameters

	Reed-Solomon Encoder Core Design Flow
	IPexpress™
	Functional RTL Simulation Under ModelSim (PC Platform)
	Simulation Procedures:

	Core Implementation
	Black Box Consideration
	Synthesis Using Synplicity Synplify
	Synthesis Using LeonardoSpectrum
	Place and Route

	Technical Support Assistance
	Appendix for ORCA® Series 4 FPGAs
	Supplied Netlist Configurations

	Appendix for ispXPGA® FPGAs
	Supplied Netlist Configurations

	Appendix for LatticeECP™ and LatticeEC™ FPGAs
	Supplied Netlist Configurations


