

PowerPro[™] User Manual

80A5000_MA001_10

November 2009

6024 Silver Creek Valley Road, San Jose, California 95138
Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775
Printed in U.S.A.
©2009 Integrated Device Technology, Inc.

GENERAL DISCLAIMER

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

CODE DISCLAIMER

Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely at your own risk. IDT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE OR SPECIAL DAMAGES, HOWEVER THEY MAY ARISE, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES. The code examples also may be subject to United States export control laws and may be subject to the export or import laws of other countries and it is your responsibility to comply with any applicable laws or regulations.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

IDT, the IDT logo, and Integrated Device Technology are trademarks or registered trademarks of Integrated Device Technology, Inc.

Contents

Ab	out t	his Do	cument	1
1.	Fun	ctional	Overview	j
		1.1.1	PowerPro Features	ļ
		1.1.2	PowerPro Benefits	į
		1.1.3	PowerPro Typical Applications	,
	1.2	Archite	ecture)
		1.2.1	Processor Bus (PB) Interface	,
		1.2.2	SDRAM Interface	ļ
		1.2.3	FLASH/ROM Interface	;
		1.2.4	Registers	;
		1.2.5	I2C Interface	ì
		1.2.6	General Purpose I/O Port	;
		1.2.7	UART Interface	ļ
		1.2.8	JTAG Interface	ļ
2.	Proc	essor]	Bus Interface	,
		2.1.1	Interface Support	í
		2.1.2	Terms	í
	2.2	Proces	sor Bus Interface)
		2.2.1	Overview	,
		2.2.2	PowerPro as PB Slave	į
		2.2.3	Address Phase	,
		2.2.4	Data Phase	
		2.2.5	Termination	,
	2.3	Proces	sor Bus Interface Arbitration)
		2.3.1	Data Bus Arbitration	

		2.3.2 Address Arbitration	51
		2.3.3 Delay Sampling of Transaction Start Signal	52
		2.3.4 Bus Parking	52
	2.4	Endian Conversion	52
3.	FLA	ASH/ROM Interface	. 53
	3.2	Changing the Configuration of a FLASH/ROM Bank	54
	3.3	FLASH/ROM Signals	54
		3.3.1 Time-Multiplexed SDRAM Signals	58
		3.3.2 Time-Multiplexed Processor Bus Signals	59
	3.4	FLASH/ROM Data Port	60
	3.5	Address Mapping	60
		3.5.1 Multiplexed Address Signals	60
		3.5.2 Address Mapping	61
	3.6	Transactions	67
		3.6.1 Processor Bus Transactions	67
		3.6.2 Reads	67
		3.6.3 Writes	68
	3.7	Connecting FLASH/ROM to PowerPro	69
		3.7.1 Typical Configurations	70
4.	SDR	RAM Interface	. 75
	4.2	Supported SDRAM Configurations	76
		4.2.1 Memory Bank Definition	76
	4.3	SDRAM Operation	78
	4.4	Registers	79
	4.5	Initialization	79
		4.5.1 SDRAM Datapath Tuning	82
	4.6	Commands	87
		4.6.1 Standard SDRAM Commands	87
		4.6.2 Supported SDRAM Commands	88
	4.7	Transactions	89
		4.7.1 Reads	89
		4.7.2 Writes	93
	4.8	SD_SELECT Signal	94
	4.9	Page Mode	96

	4.10	Refres	sh	96
	4.11	ECC F	Protection	97
	4.12	Endiar	n Conversion	97
	4.13	Addre	ss Mapping	97
5.	Dua	I UAR	T Interface	105
	5.2	Regist	ers	106
		5.2.1	Receive/Transmit Data Register	108
		5.2.2	Interrupt Enable Register	109
		5.2.3	Interrupt Status and FIFO Control Register	109
		5.2.4	Line Control Register	109
		5.2.5	Modem Control Register	109
		5.2.6	Line Status Register	109
		5.2.7	Modem Status Register	109
		5.2.8	Scratchpad Register	109
	5.3	Clocki	ing	110
		5.3.1	Baud Rate Setting	110
6.	Gen	eral Pı	urpose I/O Interface	111
	6.2	GPIO	Register	111
	6.3	GPIO	Signals	112
	6.4	Reads		112
	6.5	Writes	S	112
	6.6	Activa	ating GPIO Functionality	112
7.	I^2C	Interfa	ace	115
	7.2	Bus M	Iaster Transactions	116
		7.2.1	EEPROM Address	116
		7.2.2	Active Bit	117
		7.2.3	Errors	117
8.	Tim	ers	• • • • • • • • • • • • • • • • • • • •	119
	8.2	Genera	al Purpose Timer	119
		8.2.1	Base Count	120
		8.2.2	Capture Events	120
		8.2.3	Compare Events.	121
	8.3	Watch	idog Timer	121

		8.3.1	Enabling the Timer	. 121
		8.3.2	Time Counts	. 122
		8.3.3	Resetting the Timer	. 122
9.	Erro	r Han	dling	123
	9.2	Process	sor Bus Interface Errors	. 124
		9.2.1	Address Parity Errors	. 124
		9.2.2	Data Parity Errors	. 125
		9.2.3	Bus Errors	. 125
		9.2.4	Error Status Bits	. 125
		9.2.5	What PB Errors Indicate	. 127
	9.3	SDRA	M Interface Errors	. 127
		9.3.1	ECC Errors	. 128
		9.3.2	ECC Error Logging	. 129
		9.3.3	Testing ECC Functionality	. 129
		9.3.4	What ECC Errors Indicate	. 133
10.	Inter	rupt (Controller	135
	10.2	Interru	pt Sources	. 136
		10.2.1	Interrupts from Transaction Exceptions	. 136
	10.3	Interru	pt Registers	. 136
		10.3.1	Interrupt Status	. 137
		10.3.2	Interrupt Enabling	. 138
		10.3.3	Interrupt Mapping	. 138
	10.4	Softwa	re Debugging	. 139
		10.4.1	Interrupt Controller Vector Base Address Register	. 140
11.	Rese	t, Cloc	k and Power-up Options	141
	11.1	Reset .		. 141
		11.1.1	Reset Signals	. 142
		11.1.2	PORESET	. 142
		11.1.3	HRESET	. 142
		11.1.4	Power-on Reset Sequence	. 150
	11.2	Clocks		. 151
	11.3	Power-	up	. 151
		11.3.1	System Boot	. 152

12. JT A	AG Interface
12.2	Interface Description
12.3	JTAG Signals
	12.3.1 JTAG Registers
12.4	TAP Controller 160
13. Sign	nals and Pinout
13.2	Processor Bus Signals
13.3	Memory Signals
13.4	Miscellaneous Signals
13.5	Test Signals
13.6	Pin Information
14. Elec	ctrical Characteristics
14.1	Electrical Characteristics
14.2	Hardware Parameters
	14.2.1 Power Consumption
	14.2.2 Operating Conditions
15. Pro	gramming Multiplexed Signals
15. Pro 15.2	gramming Multiplexed Signals
15.2	Multiplexed Processor Bus Signals
15.2 15.3 15.4	Multiplexed Processor Bus Signals
15.2 15.3 15.4	Multiplexed Processor Bus Signals183Multiplexed Memory Signals190Multiplexed Miscellaneous Signals194sisters199
15.2 15.3 15.4 16. Reg	Multiplexed Processor Bus Signals183Multiplexed Memory Signals190Multiplexed Miscellaneous Signals194sisters199
15.2 15.3 15.4 16. Reg	Multiplexed Processor Bus Signals183Multiplexed Memory Signals190Multiplexed Miscellaneous Signals194isters199Register Access199
15.2 15.3 15.4 16. Reg	Multiplexed Processor Bus Signals183Multiplexed Memory Signals190Multiplexed Miscellaneous Signals194risters199Register Access19916.2.1 Register Reads199
15.2 15.3 15.4 16. Reg	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200
15.2 15.3 15.4 16. Reg 16.2	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200 16.2.3 Register Image 200
15.2 15.3 15.4 16. Reg 16.2	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200 16.2.3 Register Image 200 Register Reset 201
15.2 15.3 15.4 16. Reg 16.2	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200 16.2.3 Register Image 200 Register Reset 201 Register Descriptions 201
15.2 15.3 15.4 16. Reg 16.2 16.3 16.4 A. Pac	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200 16.2.3 Register Image 200 Register Reset 201 Register Descriptions 201 kaging Information 317
15.2 15.3 15.4 16. Reg 16.2 16.3 16.4 A. Pac A.1 A.2	Multiplexed Processor Bus Signals 183 Multiplexed Memory Signals 190 Multiplexed Miscellaneous Signals 194 isters 199 Register Access 199 16.2.1 Register Reads 199 16.2.2 Register Writes 200 16.2.3 Register Image 200 Register Reset 201 Register Descriptions 201 kaging Information 317 Packaging Information 317

C.	Timi	ing	323
	C.2	Reset Timing	. 324
	C.3	Processor Bus Timing	. 326
	C.4	FLASH/ROM Timing	. 328
	C.5	SDRAM Timing	. 328
	C.6	Miscellaneous Timing Signals	. 329
D.	Har	dware Implementation	331
	D.1	Power-up Sequencing	. 331
	D.2	Hardware Design for External PLL Decoupling	. 332
		D.2.1 PLL Supply Environment	. 332
Gle	ossar	y	337
Ind	lex		339

List of Figures

Figure 1:	PowerPro Block Diagram
Figure 2:	PowerPro, PowerPC and PCI Application
Figure 3: SDRAM D	PowerPro, PowerPC and PCI Application With Separate FLASH/ROM and Pata Buses 28
Figure 4:	PowerPro PowerPC Application
Figure 5:	PowerPro Dataflow Diagram
Figure 6:	Count Programmed to 80 System Clocks
Figure 7: tion	Count Programmed to 80 System Clocks During an Address Only Transac- 49
Figure 8:	PB Arbitration Order
Figure 9:	FLASH Address and Data De-muxing
Figure 10:	FLASH Read
Figure 11:	FLASH Write
Figure 12: Byte Read	PowerPro Executing a Two Byte FLASH/ROM Write, Followed by a Two 69
Figure 13:	Configuration One
Figure 14:	Configuration Two
Figure 15:	Configuration Three
Figure 16:	Configuration Four
Figure 17:	Single and Dual DIMM Banks
Figure 18:	SDRAM Bank Configuration
Figure 19:	Datapath TUNE bits set to 00
Figure 20:	Datapath TUNE bits set to 01
Figure 21:	Datapath TUNE bits set to 10
Figure 22:	Datapath TUNE bits set to 11
Figure 23:	Burst Read with Logical Bank Open at the Required Address 91
Figure 24:	Burst Read with a Logical Bank Open at the Incorrect Address

Figure 25:	Burst Read with Logical Bank Closed
Figure 26:	Burst Write With Memory Bank Open
Figure 27:	Typical System Using SD_SELECT
Figure 28:	SD_SELECT Assertion
Figure 29:	Error Priority Waveform
Figure 30:	Testing ECC with the ECC_TEST bit Equal to 1
Figure 31:	Single Bit Error Transaction and Correction
Figure 32:	Power-On Reset Sequence - PowerPro as Configuration Master 146
Figure 33:	PowerPro as Configuration Master with a 16-bit Data Width 146
Figure 34:	PowerPro as Configuration Master with a 32-bit Data Width 147
Figure 35:	PowerPro is the Configuration Master
Figure 36:	PowerPro as Configuration Master - One Cycle
Figure 37:	PowerPro as Configuration Slave
Figure 38:	Register Read
Figure 39:	Register Write
Figure 40:	Datapath TUNE bits set to 00
Figure 41:	Datapath TUNE bits set to 01
Figure 42:	Datapath TUNE bits set to 10
Figure 43:	Datapath TUNE bits set to 11
Figure 44:	BMGT Bit Set to 0
Figure 45:	BMGT Bit Set to 1
Figure 46:	376 PBGA - Bottom View
Figure 47:	376 PBGA - Top and Side View
Figure 48:	Power-up Reset: PowerPro Configured as a Power-up Slave
Figure 49:	Clocking
Figure 50:	Bootstrap Diodes for Power-up Sequencing
Figure 51:	Requirements for PLL Isolation and Decoupling Network
Figure 52:	Attenuation vs. Frequency

List of Tables

Table 1:	PowerPro PB Slave Transaction Types
Table 2:	PowerPro PB Address Parity Assignments
Table 3:	PowerPro PB Transfer Sizes
Table 4:	PowerPro PB Single Beat Data Transfers
Table 5:	PowerPro PB Data Parity Assignments
Table 6:	Parked PB Master
Table 7:	FLASH/ROM Interface Signals
Table 8:	Memory Signals
Table 9:	PB Signals
Table 10:	Address Mapping
Table 11:	SDRAM Commands
Table 12:	SDRAM Commands
Table 13:	SDRAM Address to Processor (60x) Bus Mapping
Table 14:	SDRAM Chip Select and Bank Mapping
Table 15:	Processor Bus to SDRAM Address Mapping
Table 16:	Summary of UART Register
Table 17:	ECC Syndromes
Table 18:	ECC Syndromes
Table 19:	Interrupt Register Description
Table 20:	Register Description for Interrupt Controller Status
Table 21:	Register Description for Interrupt Controller Masked Status 137
Table 22:	Register Description for Interrupt Controller Enable
Table 23:	Interrupt Register Map
Table 24:	PowerPro Reset Pins
Table 25:	PowerPro ROM Memory Map 3/4 as Reset Configuration Master 144
Table 26:	Configuration Addresses

Table 27:	Power-Up Pin Assignments	. 153
Table 28:	Test Signals	. 158
Table 29:	Signal Type Definitions	. 162
Table 30:	PB Signals	. 162
Table 31:	Memory Signals	. 166
Table 32:	Miscellaneous Signals	. 169
Table 33:	Test Signals	. 171
Table 34:	PowerPro PBGA Electrical Characteristics - CMOS Buffer	. 179
Table 35:	PowerPro PBGA Electrical Characteristics - TTL Buffer	. 180
Table 36:	Power Consumption Distribution	. 181
Table 37:	Recommended Operating Conditions	. 181
Table 38:	Absolute Maximum Ratings	. 182
Table 39:	Processor Bus Multiplexed Signals	. 184
Table 40:	Memory Multiplexed Signals	. 190
Table 41:	PowerPro Register Map	. 202
Table 42:	PB Register Base Address	. 208
Table 43:	Processor Bus General Control Register	. 209
Table 44:	Processor Bus Arbiter Control Register	. 214
Table 45:	Parked Bus Master	. 216
Table 46:	Processor Bus Error Attribute Register	. 217
Table 47:	Processor Bus Address Error Log.	. 220
Table 48:	Processor Bus Address Match	. 221
Table 49:	Processor Bus Address Match Mask	. 222
Table 50:	PowerPro Version.	. 223
Table 51:	SDRAM Refresh Interval	. 224
Table 52:	SDRAM Timing Parameters	. 225
Table 53:	PLL Feedback Tuning	. 232
Table 54:	SDRAM Memory Bank x Address	. 233
Table 55:	SDRAM Memory Bank x Address Mask	. 235
Table 56:	Memory Map to Processor (60x) Bus Address Space	. 236
Table 57:	SDRAM Memory Bank x Control and Status	. 237
Table 58:	ROM Memory Bank x Address	. 242
Table 59:	Reset state of the A field in all EE_Bx_ADDR Registers	. 243
Table 60:	Reset state of the MUX field in all EE_Bx_ADDR Registers	. 244
Table 61:	Reset state of the EN field in all EE_Bx_ADDR Registers	. 244

Table 62:	ROM Memory Bank x Address Mask
Table 63:	Reset state of the M Field in all EE_Bx_MASK Registers
Table 64:	ROM Memory Bank x Control
Table 65:	Reset state of the BM Field in all EE_Bx_CTRL Registers
Table 66:	Reset state of the FWE Field in all EE_Bx_CTRL Registers
Table 67:	Reset state of the WAIT Field in all EE_Bx_CTRL Registers 251
Table 68:	Reset state of the CSON Field in all EE_Bx_CTRL Registers 251
Table 69:	Reset state of the OEON Field in all EE_Bx_CTRL Registers 251
Table 70:	Reset state of the WEON Field in all EE_Bx_CTRL Registers 252
Table 71:	Reset state of the PORT Field in all EE_Bx_CTRL Registers 252
Table 72:	Reset state of the WEOFF field in all EE_Bx_CTRL Registers 252
Table 73:	Reset state of the THRD field in all EE_Bx_CTRL Registers 253
Table 74:	Reset state of the THWR field in all EE_Bx_CTRL Registers 253
Table 75:	Reset state of the FWT field in all EE_Bx_CTRL Registers 253
Table 76:	Reset state of the RE field in all EE_Bx_CTRL Registers
Table 77:	Reset state of the ARE field in all EE_Bx_CTRL Registers
Table 78:	Reset state of the WIDTH field in all EE_Bx_CTRL Registers 254
Table 79:	I2Cx_CSR
Table 80:	Watchdog Timer Control
Table 81:	Watchdog Timer Timeout
Table 82:	Watchdog Timer Count
Table 83:	Bus Watchdog Timer
Table 84:	General Purpose Timer 0 Base Count
Table 85:	General Purpose Timer 0 Capture Events
Table 86:	General Purpose Timer 0 Interrupt Control
Table 87:	General Purpose Timer 0 Interrupt Status
Table 88:	General Purpose Timer 0 Trigger x
Table 89:	General Purpose Timer 0 Compare x
Table 90:	General Purpose Timer 0 Compare Mask x
Table 91:	General Purpose Timer 1 Base Count
Table 92:	General Purpose Timer 1 Capture Events
Table 93:	General Purpose Timer 1 Interrupt Control
Table 94:	General Purpose Timer 1 Interrupt Status
Table 95:	General Purpose Timer 1 Trigger x
Table 96:	General Purpose Timer1 Compare x

Table 97: General Purpose Timer 1 Compare Mask x	278
Table 98: Interrupt Controller Status	279
Table 99: Interrupt Controller Masked Status	280
Table 100: Interrupt Controller Enable	280
Table 101: Interrupt Controller Enable	282
Table 102: Interrupt Controller Cycle Generation Type	283
Table 103: Interrupt Controller Polarity	284
Table 104: Interrupt Controller Trigger Type	285
Table 105: Interrupt Controller Vector Base Address	286
Table 106: Interrupt Controller Vector Increment	287
Table 107: Interrupt Controller Incremented Vector Base Address	289
Table 108: Interrupt Controller Software Set	291
Table 109: Interrupt Controller Software Source	292
Table 110: UARTx Receive / Transmit Data	293
Table 111: UARTx Divisor Latch (DLL)	295
Table 112: UARTx Interrupt Enable	296
Table 113: UARTx Divisor Latch (DLM)	298
Table 114: UARTx Interrupt Status / FIFO Control (Read Only)	299
Table 115: Interrupt Control Functions	300
Table 116: UARTx Interrupt Status / FIFO Control (Write Only)	302
Table 117: UART <i>x</i> Line Control	304
Table 118: WLEN Coding	304
Table 119: UARTx Modem Control	307
Table 120: UARTx Line Status	308
Table 121: UARTx Modem Status	311
Table 122: UARTx Scratchpad Register	312
Table 123: General Purpose I/O	313
Table 124: Reset state of the DIR field in all GPIO_x registers	314
Table 125: Thermal Estimate Parameters	320
Table 126: 376 PBGA Package Performance	320
Table 127: Ordering Information	321
Table 128: Reset, and Clock Timing Parameters	324
Table 129: Processor (60x) Bus Timing - Parameter Timing Group	326
Table 130: Processor (60x) Bus Timing - Control Timing Group	327
Table 131: Processor (60x) Bus Timing - Arbitration Timing Group	327

Table 132: FLASH/ROM Timing Group	328
Table 133: SDRAM Timing Group	328
Table 134: Miscellaneous Timing Group	329
Table 135: Capacitor Specifications	334
Table 136: Inductor Specifications.	334

About this Document

This chapter discusses general document information about the *PowerPro User Manual*. The following topics are described:

- "Revision History" on page 17
- "Document Conventions" on page 17
- "Related Documents" on page 21

Revision History

80A5000_MA001_10, Formal, November 2009

This version of the document was rebranded as IDT. It does not include any technical changes.

80A5000_MA001_09, Formal, March 2004

The PowerPro device has reached the production stage of its lifecycle and is a customer-ready product. The designation for the manual is Final at the production stage.

Document Conventions

This section explains the document conventions used in this manual.

Signal Notation

Signals are either active high or active low. Active low signals are defined as true (asserted) when they are at a logic low. Similarly, active high signals are defined as true at a logic high. Signals are considered asserted when active and negated when inactive, irrespective of voltage levels. For voltage levels, the use of 0 indicates a low voltage while a 1 indicates a high voltage.

For voltage levels, the use of 0 indicates a low voltage while a 1 indicates a high voltage. For voltage levels, the use of 0 indicates a low voltage while a 1 indicates a high voltage.

Each signal that assumes a logic low state when asserted is followed by an underscore sign, "_". For example, SIGNAL_ is asserted low to indicate an active low signal. Signals that are not followed by an underscore are asserted when they assume the logic high state. For example, SIGNAL is asserted high to indicate an active high signal.

Bit Ordering Notation

This document assumes the most significant bit is the smallest number (also known as *big-endian* bit ordering). For example, the Processor Bus transmit data signals consist of PB_D[0:63], where PB_D[0] is the most significant bit and PB_D[63] is the least-significant bit of the field.

Object Size Notation

The following object size conventions are used:

- A *byte* is an 8-bit object.
- A word is a 16-bit (2 byte) object.
- A *doubleword* is a 32-bit (4 byte) object.
- A *quadword* is a 64-bit (8 byte) object.
- A *Kword* is 1024 16-bit words.

Numeric Notation

The following numeric conventions are used:

- Hexadecimal numbers are denoted by the prefix 0x. For example, 0x04.
- Binary numbers are denoted by the suffix b. For example, 10b.

Typographic Notation

The following typographic conventions are used in this manual:

- *Italic* type is used for the following purposes:
 - Book titles: For example, *PCI Local Bus Specification*.
 - Important terms: For example, when a device is granted access to the PCI bus it is called the *bus master*.

- Undefined values: For example, the device supports four channels depending on the setting of the PCI_Dx register.
- Courier type is used to represent a file name or text that appears on a computer display. For example, "run load.exe by typing it at a command prompt."

Symbols Used

The following symbols are used in this manual.

This symbol indicates a basic design concept or information considered helpful.

This symbol indicates important configuration information or suggestions.

This symbol indicates procedures or operating levels that may result in misuse or damage to the device.

Related Documents

The following documents are useful for reference purposes when using this manual.

 I^2C Specification This specification defines the standard I2C bus

interface, including specifications for all the enhancements. For more information, see

www-eu2.semiconductors.com/i2c.

IBM product manuals Manuals define the features and Functionality of

supported IBM PowerPC processors. For more

information, see www.ibm.com.

Motorola product manuals Manuals define the features and Functionality of

supported Motorola processors. For more information, see www.motorola.com

PowerPro User Manual 80A5000_MA001_10

PowerPro Use

1. Functional Overview

This chapter describes the main features and functions of the PowerPro. The following topics are discussed:

- "Overview" on page 23
- "Architecture" on page 30
- "Architecture" on page 30

1.1 Overview

PowerPro is a memory controller for PowerPC processors. PowerPro is designed to interconnect with embedded PowerPC processors — the Motorola MPC8260 (PowerQUICC II), PowerPC 603e, PowerPC 740, PowerPC 750 and PowerPC 7400.

PowerPro can be used as a stand-alone device in non-PCI applications, or as a companion with the IDT PowerPC-to-PCI bus switch — PowerSpan II. Together, PowerSpan and PowerPro are a complete PowerPC chipset offering. With this chipset, IDT implements a new modular approach to PowerPC system design. The chipset provides embedded designers with the ability to adapt PowerPC as a computing platform in the communications market.

PowerPro is designed for applications to leverage the Switched PCI architecture of PowerSpan in PowerPC applications. PowerPro enables ECC protection in PowerPC systems.

For more information on PowerSpan, see the PowerSpan II User Manual.

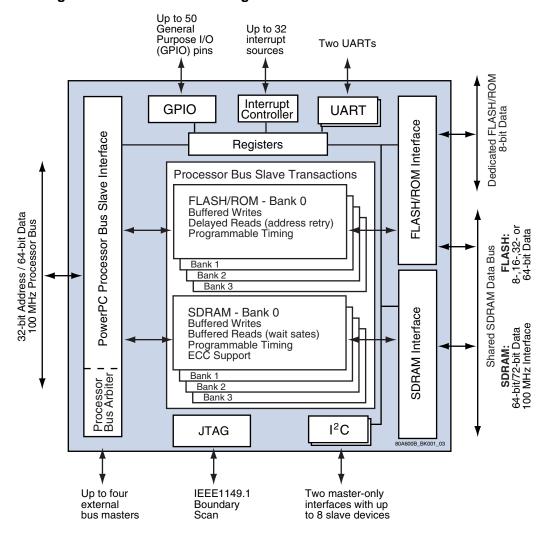


Figure 1: PowerPro Block Diagram

1.1.1 PowerPro Features

PowerPro features are listed in the following sub-sections.

1.1.1.1 Processor Interface

- Direct-connect support for:
 - MPC8260 (60x interface)
 - PowerPC 603e, PowerPC 740, PowerPC 750, PowerPC 7400 (60x interface)
- 66 to 100 MHz bus frequency
- 32-bit address, 64-bit data
- Address and data parity
- De-coupled address and data bus operation

- Bus Slave
 - 64-bit port size
 - Eight programmable slave images for memory peripherals
 - Programmable register image
- Bus Arbiter
 - Supports up to four external bus masters
 - Two level fair arbitration scheme
 - Independent address and data bus arbitration
 - Programmable bus parking
 - Boot control

1.1.1.2 SDRAM Interface

- Operating at processor (60x) bus speed
- 64-bit interface for non-ECC operations
- 72-bit interface (64-bit data and 8 check-bits) for ECC applications
- ECC protection applied to the data path
- Page management for optimal read and write access times. The SDRAM Interface has the ability to have 32 logical banks open simultaneously.
- Four banks supported with two chip selects per bank, up to 1 GB per bank.
- Programmable timing parameters per bank
- Programmable address mappings per bank

1.1.1.3 FLASH/ROM Interface

- Four banks of FLASH/ROM/SRAM
- Direct support for 8-, 16-, 32-, and 64-bit external peripherals
- Programmable timing per bank
- 64-bit packed reads for PowerPC bus accesses
- Programmable address mappings

1.1.1.4 Integrated Peripherals

- Dual high-speed UARTs
- I²C Interface
- Programmable General Purpose Timer, four compare and four trigger settings.
- System Watchdog Timer
- 32 channel Interrupt controller, interrupts from external and internal (UART, I²C, timers, ECC, errors) sources

- 50 General purpose I/O pins. These pins are multiplexed with other functions.
- JTAG support for board level testing

1.1.1.5 Registers

• Bidirectional interrupt pins (maskable/routable)

1.1.1.6 Packaging

- 376-pin HPBGA
 - 23 mm body size
 - 1.0 mm ball pitch

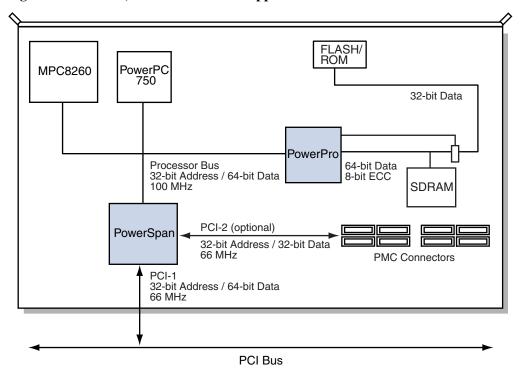
1.1.1.7 Operating Environment

- Commercial
- Industrial

1.1.2 PowerPro Benefits

PowerPro offers the following benefits to designers:

- Modular PowerPC design
- Increased through-put with memory system optimization
- Proven product testing in a hardware emulation environment
- Reduced design effort in both software and hardware PowerPC systems
- ECC protection in PowerPC systems.


1.1.3 PowerPro Typical Applications

PowerPro is targeted at communications infrastructure applications that use both PowerPC architectures, such as the following:

- ADSL concentrators
- CDMA base stations
- VoIP gateways
- Ethernet switches
- VPN equipment
- MPEG 2 encoders
- Exchange carrier switching equipment

Figure 2 illustrates a typical PowerPro application involving the PowerPC 750 and PowerSpan. In this diagram PowerPro is used in both a PowerPC and PCI system.

Figure 2: PowerPro, PowerPC and PCI Application

The SDRAM and FLASH/ROM can use a shared bus, as shown in Figure 2, or they can configured to use separate data buses. The FLASH/ROM data bus can be have a width of 8, 16 or 32-bit (see Figure 3).

Figure 3: PowerPro, PowerPC and PCI Application With Separate FLASH/ROM and SDRAM Data Buses

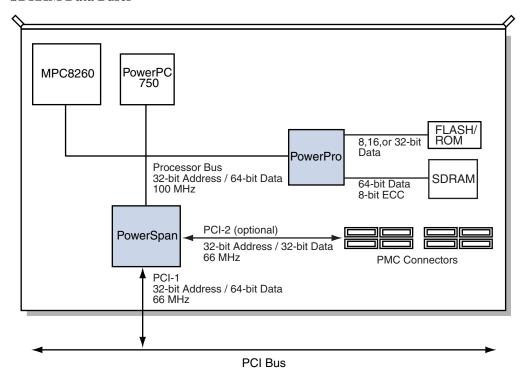
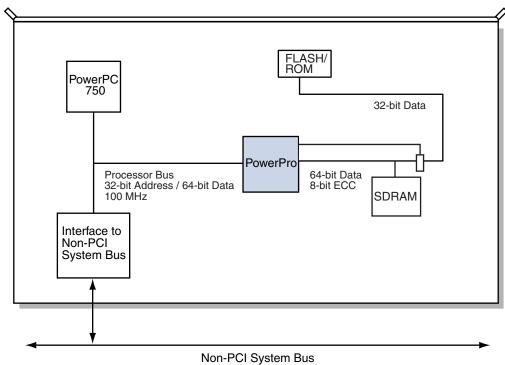



Figure 4 illustrates a typical PowerPro application involving the MPC8260 and the PowerPC 750. In this diagram PowerPro is used in both a PowerPC system.

1.2 Architecture

PowerPro operates in PowerPC systems and has a 64-bit, 100 MHz SDRAM Interface that allows the PowerPC 750 and PowerPC 740 to access memory on a high-speed bus. PowerPro also has a 64-bit Processor Bus Interface and a FLASH/ROM Interface.

The PowerPro Processor Bus Interface responds to read and write requests from external bus masters to any of the four SDRAM memory banks, the four FLASH/ROM memory banks, and internal registers.

Reads and writes to the Processor Bus Interface are processed in the order that they are received by PowerPro.

PowerPro's main architectural elements include:

- Processor Bus (PB) Interface
 - 64-bit data bus
- Processor Bus arbiter
 - Four external bus masters
 - Hardware verified against PowerPC 750, PowerPC 740 and MPC8260 bus interfaces
- SDRAM Interface
 - 64-bit data bus
 - 72-bit data bus with ECC protection enabled
 - 100 MHz operating frequency
 - PC-100 compliant
- FLASH/ROM Interface
 - 8-,16-,32-, or 64-bit
- Registers
 - 4 byte and 8 byte reads
 - 4 byte writes
- I²C Interface
- General Purpose I/O ports (GPIO)
- Dual UARTs (DUART)
- Interrupt controller
- JTAG

The functional diagram in Figure 5 outlines the major components of the PowerPro 64-bit architecture.

Processor (60x) Bus Processor Bus Interface (PB) **GPIO** Registers UART 0 Timers Datapath Interrupts UART 1 SDRAM Interface FLASH/ROM Interface SDRAM 0 FLASH/ROM 0 I²C 1 FLASH/ROM 1 SDRAM 1 SDRAM 2 FLASH/ROM 2 $I^2C 0$ SDRAM 3 FLASH/ROM 3 Memory Data Memory Address/Control

Figure 5: PowerPro Dataflow Diagram

Each of these major blocks are discussed in the following sections. For more detailed information, refer to specific chapters in this manual.

Not all PowerPro functionality is available at one time. Many of the functions on PowerPro are multiplexed. Refer to 13. "Signals and Pinout" on page 161 and 14. "Electrical Characteristics" on page 179 for more information on multiplexed functionality.

1.2.1 Processor Bus (PB) Interface

PowerPro has a Processor Bus Interface that directly connects to a variety of PowerPC microprocessors. PowerPro supports the following PowerPC microprocessors: MPC8260 (PowerQUICC II), PowerPC 603e, PowerPC 740, PowerPC 750 and PowerPC 400. The PB Interface operates at 100 MHz in PowerPC 740 and PowerPC 750 applications.

The PB Interface has a 32-bit address bus and 64-bit data bus. It is a slave only interface and supports single-beat and burst data transfers. The address and data buses are decoupled for pipelined transactions, and also support MPC8260 extended cycles. Extended cycles on the MPC8260 offers more flexible bursting and more efficient use of the processor bandwidth.

The PowerPro PB Interface is connected to the processor (60x) bus. Please refer to Motorola documentation for specific information on the processor (60x) bus and its requirements.

For more information on the PB Interface, refer to 2. "Processor Bus Interface" on page 35.

1.2.1.1 Processor Bus Arbitration

The PB Interface has an integrated bus arbiter. The arbiter supports four external bus masters for applications involving multiple bus masters.

The PB arbiter implements two levels of priority. Devices programmed into a specific priority level operate in a round robin fashion. Each master has a register to determine its arbitration level for the address bus. The arbitration level for each master is programmable.

1.2.2 SDRAM Interface

PowerPro provides control functions and signals for JEDEC-compliant SDRAM devices.

PowerPro enables access to four (single or dual) DIMMs of SDRAM with two chip selects per DIMM. Both buffered (registered) and non-buffered DIMMs are supported. PowerPro has a maximum of 4 GB of addressable SDRAM memory. All SDRAM parameters are selectable per bank, which allows each DIMM socket to contain a different variety of SDRAM. This capability gives each SDRAM optimized timing parameters.

For more information on the SDRAM Interface, refer to 4. "SDRAM Interface" on page 75.

1.2.2.1 ECC Protection

ECC protection is an alternative to simple parity detection. PowerPro offers ECC protection for the data path between PowerPro and system memory. ECC detects errors, and corrects single-bit errors in the 64-bit data path.

1.2.3 FLASH/ROM Interface

PowerPro supports four distinct banks of FLASH/ROM devices. The FLASH/ROM devices can either share the SDRAM data bus or have a single, dedicated 8-bit data bus. When the FLASH/ROM Interface shares the SDRAM data bus, the width of the bus can be configured as 8-, 16-, 32-, or 64-bit.

The FLASH/ROM Interface is a flexible interface with many multiplexing options to support a variety of address and data bus requirements.

Each of the four independent FLASH/ROM banks have individually programmable address images. Individual, internal chip-select machines drive each of the four FLASH/ROM banks. The chip-select machines arbitrate for required resources. This ability provides flexible system functionality.

For more information on the FLASH/ROM Interface, refer to 3. "FLASH/ROM Interface" on page 53.

1.2.4 Registers

The 512 byte control and status registers are used to program device specific parameters, as well as monitor settings. All registers are 32-bit and are accessible by external masters through the PB Interface. Register accesses can either be 4 or 8 bytes.

For more information on registers, refer to 16. "Registers" on page 199.

1.2.5 I²C Interface

PowerPro contains two master-only, I²C bus compatible interfaces. Each interface supports up to eight I²C slave devices.

The I²C Interfaces are connected to serial presence detect EEPROMs; these are commonly found on DIMM modules.

In a system that contains both PowerSpan and PowerPro, the same EEPROM can be shared between the two devices.

For more information on the I²C Interface, refer to 7. "I²C Interface" on page 115.

1.2.6 General Purpose I/O Port

PowerPro has flexible general purpose I/O capability. Although all PowerPro pins are programmed with a primary purpose, in many instances these pins are not enabled because their functionality is not required in the system. These unused pins are assigned to the General Purpose I/O (GPIO) pool. All pins capable of GPIO are mapped in a GPIO register.

The GPIO port, combined with the general purpose timers available on PowerPro, enable software to control any low to medium speed device that is not time critical.

For more information on the GPIO Port, refer to 6. "General Purpose I/O Interface" on page 111.

1.2.7 UART Interface

PowerPro has two, serial universal asynchronous receiver transmitter (UART) protocol interfaces. These dual UARTs complete parallel-to-serial conversion of digital data which must be transmitted, and complete the serial-to-parallel conversion of digital data which has been transmitted.

For more information on the UART Interface, refer to 5. "Dual UART Interface" on page 105.

1.2.8 JTAG Interface

PowerPro has a Joint Test Action Group (JTAG) Interface to facilitate boundary-scan testing. The JTAG Interface implements the five test port signals required to be fully compliant with IEEE 1449.1 specification. Refer to the *IEEE 1449.1 Boundary-scan Specification* for more information.

For more information on the JTAG Interface, refer to 12. "JTAG Interface" on page 157.

2. Processor Bus Interface

This chapter outlines the functionality of the Processor Bus Interface. The following topics are discussed:

- "Processor Bus Interface" on page 36
- "Processor Bus Interface Arbitration" on page 49
- "Endian Conversion" on page 52

2.1 Overview

The PowerPro Processor Bus (PB) Interface is a slave only interface. The PB Interface data width is 64-bit and the address width is 32-bit. The maximum operating frequency is 100 MHz.

2.1.1 Interface Support

The PB Interface is specifically designed to support the following PowerPC devices:

- MPC8260 (PowerQUICC II)
- PowerPC 603e/740/750
- PowerPC 7400

The MPC8260 and the PowerPC 7400 must operate in processor (60x) compatible bus mode to be used in systems. The MPC8260 has the option to operate in Single MPC8260 bus mode; PowerPro does not support this mode. The MPC7400 has the option to operate in MPX mode; PowerPro does not support this mode.

The supported PowerPC processor interfaces are not identical. However, the PB Interface discusses the processor (60x) bus protocol used by all the supported processors. The following sections highlight how PowerPro operates differently to address specific processor requirements. An example of different operation in PowerPC devices is the extended cycles with the MPC8260.

2.1.2 Terms

The following terms are used in the PB Interface description.

- Address retry window: This term refers to the clock following the assertion of PB_AACK_. It is the latest cycle that a snooping master can request for an address tenure re-run.
- Window of opportunity: This term refers to the clock following the assertion of PB_ARTRY_. The retrying master must request the bus on this clock to ensure that it is the next bus owner. This allows it to perform the transactions required to maintain cache coherency.

2.2 Processor Bus Interface

2.2.1 Overview

The PowerPro PB Slave Interface claims processor (60x) bus transactions intended for the SDRAM Interface, FLASH/ROM Interface, or the PowerPro internal control and status registers. The slave claims the transactions based on the address decode information in PowerPro. Refer to "Address Decoding" on page 37 for information on base address registers that are programmed in PowerPro.

2.2.2 PowerPro as PB Slave

The operation of the PB Slave Interface is described by dividing the PB slave transaction into three different phases:

• **Address Phase**: This section discusses the decoding of processor (60x) bus accesses.

- **Data Phase**: This section describes control of transaction length.
- **Terminations**: This section describes the terminations supported by PowerPro, as well as exception handling.

A pull-up resistor is required on PB_A[7] when PowerPro is operating as Configuration Master but resistors are not required on the remaining processor bus address (PB_A[0:31]) and data (PB_D[0:63]) signals to guarantee functional operation of PowerPro. However, adding resistors to the other address and data signals minimizes the current drawn by PowerPro's tristated buffers when the bus is in an idle condition. The system designer must decide whether to add these resistors to the address bus and data bus.

2.2.3 Address Phase

2.2.3.1 Address Decoding

A PB slave image is the range of PB physical address space used to decode a PowerPro access. A slave image is controlled by the information programmed in the base address registers. Each slave image monitors the Processor Bus Base Address (PB_REG_ADDR) register (see page 208). When the address falls into the configured address range, and the Processor Bus Transfer Type (PB_TT) is supported, PowerPro claims the address tenure. See "Transaction Types" on page 38 for more information on supported transaction types.

PowerPro has the following slave (address) images:

- "PB Register Base Address" on page 208
- "SDRAM Memory Bank x Address" on page 233
- "ROM Memory Bank x Address" on page 242

The "x" symbol in the register naming indicates that there are various images for both the SDRAM slave images and FLASH/ROM slave images. The PB slave supports four SDRAM slave images and four FLASH/ROM slave images. The PB slave supports one register image. Refer to 16. "Registers" on page 199 for more information on register access through the PB Interface.

A single dedicated address image can be connected to the general purpose timer trigger, or an interrupt, for debugging purposes. When the selected address appears on the processor (60x) bus the event is logged. This is independent of whether or not the address was destined for PowerPro. See 8. "Timers" on page 119 and 10. "Interrupt Controller" on page 135 for more information.

2.2.3.2 Claiming Transactions

The PB slave image claims transactions only under the following circumstances:

- the address falls into the configured slave image
- the transaction type is supported by PowerPro

2.2.3.3 Transaction Types

The PB slave only claims processor (60x) bus transactions with specific transaction types. The supported transaction types consist of address only, read, and write. These transaction types, and their binary codes, are described in Table 1.

PowerPro registers only accept single read cycles and single write cycles.

Address only transfer types are claimed to ensure PowerPro does not negatively impact cache control, reservation or ordering transactions on the processor (60x) bus. PowerPro handles address only cycles by asserting PB_AACK_ — no data transfer occurs.

Table 1: PowerPro PB Slave Transaction Types

PB_TT[0:4]	Name					
	Address only					
00000	Clean Block					
00100	Flush Block					
01000	Sync Block					
01100	Kill Block					
10000	eieio					
11000	tlb invalidate					
00001	lwarx					
01001	tlb sync					
01101	icbi					
	Read					
01010	Read					
01110	Read with intent to modify					
11010	Read Atomic					
11110	Read with intent to modify atomic					
01011	Read with no intent to cache					
	Write					
00010	Write with flush					
00110	Write with kill					
10010	Write with flush atomic					

Since PowerPro does not have a cache, all read and write transfer types are treated the same. For example, a "Read with intent to modify" (PB_TT= 01110) is handled the same way as a "Read Atomic" (PB_TT= 11010).

2.2.3.4 Address Tenure

The processor bus has independent address and data tenures to support pipelined transactions. PowerPro operates in systems with up to one level of address pipelining. PowerPro requires that data tenures be kept in strict order with respect to address tenures.

Each slave in a processor (60x) bus system is responsible for the following actions:

- decoding the address broadcast by the master
- claiming the address tenure with the assertion of Address Acknowledge (PB_AACK_)
- managing the data termination signals during the data tenure

Address Acknowledge (PB_AACK_)

The PB slave uses PB_AACK_ to limit the level of address pipelining to one. The PB slave does not acknowledge subsequent address phases until it finishes its participation in the current data tenure. If the previous address phase was claimed by another slave, the PB slave does not acknowledge the current address phase until the previous slave completes its data tenure.

The earliest time that the PB Slave Interface asserts PB_AACK_ is two clocks after the Processor Bus Transfer Start (PB_TS_) signal is asserted low. This signal indicates the beginning of a new address bus tenure. The PB slave can also delay the assertion of PB_AACK_ in order to wait for external memory devices to access data.

Address Retry (PB_ARTRY_)

The PowerPro PB Slave Interface uses the Address Retry Enable (ARTRY_EN) bit, in the PB_GEN_CTRL register (see page 209), to control its use of PB_ARTRY_during transactions. By default, the use of address retry is disabled. The PB slave supports a single read at a time when ARTRY_EN is disabled.

PB_ARTRY_ is never asserted in SDRAM accesses, but may be asserted (if enabled) in FLASH/ROM accesses. When ARTRY_EN is enabled, the PB slave retries a processor (60x) bus master under the following conditions:

- FLASH/ROM read when the transaction will take more than eight clocks
- FLASH/ROM write when the ROM machine is busy

When the assertion of PB_ARTRY_ is enabled, PB_ARTRY_ is only asserted the clock after PB_AACK_. This constraint places the assertion of the signal within the address retry window.

When PB_ARTRY_ is disabled — by setting the ARTRY_EN bit to 0 — the PB slave holds onto the bus after the assertion of PB_AACK_ until it is able to assert Processor Bus Transfer Acknowledge (PB_TA). The PB Slave acknowledges the address tenure with the PB_AACK_ signal and captures the address in the Delayed Read latch. The Delayed Read Request latch is de-allocated when the external processor (60x) bus master completes the transaction.

2.2.3.5 Address Parity

Address parity checking is supplied on each byte of the address bus. Parity is disabled on PowerPro by default.

Address parity bit assignments are defined in Table 2.

Table 2: PowerPro PB Address Parity Assignments

Address Bus	Address Parity
PB_A[0:7]	PB_AP[0]
PB_A[8:15]	PB_AP[1]
PB_A[16:23]	PB_AP[2]
PB_A[24:31]	PB_AP[3]

When the PB slave detects an address parity error during its decode process it does not assert Address Acknowledge (PB_AACK_). Address Parity checking is enabled when the Address Parity Enable (AP_EN) bit is set in the PB_GEN_CTRL register (see page 209).

Even or odd parity is configured with the Parity (PARITY) bit in the PB GEN CTRL register.

2.2.4 Data Phase

2.2.4.1 Data Tenure

The processor (60x) bus protocol has independent address and data tenures to support pipelined transactions. PowerPro operates in systems with up to one level of address pipelining. PowerPro requires that data tenures be kept in strict order with respect to address tenures.

2.2.4.2 Transaction Length

The PB slave supports a super-set of the data transfer sizes supported by the embedded PowerPC family. All data transfer sizes supported by the PB slave are illustrated in Table 3. Burst transfers are indicated by the assertion of Processor Bus Transfer Burst (PB_TBST_). The shaded regions indicate transaction sizes unique to the MPC8260.

Table 3: PowerPro PB Transfer Sizes

Transfer Size	Bytes	PB_TBST_	PB_TSIZ[0]	PB_TSIZ[1:3]
Byte	1	1	0	001
Half-word	2	1	0	010
Tri-byte	3	1	0	011
Word	4	1	0	100
Five bytes	5	1	0	101
Six bytes	6	1	0	110
Seven bytes	7	1	0	111
Double Word (DW)	8	1	0	000
Extended Double (MPC8260 only)	16	1	1	001
Extended Triple (MPC8260 only)	24	1	1	010
Burst (Quad DW)	32	0	0	010

2.2.4.3 Data Alignment

The PowerPro port size is 64-bit. Embedded processor (60x) bus transfer sizes and alignments, as defined in Table 3 and Table 4, are supported by the PB Interface for transaction accesses. PowerPro register accesses must be 8 bytes or less.

Register accesses are usually restricted to 4 byte (32-bit) accesses. Any accesses larger than 4 bytes normally results in an error condition and the assertion of the Processor Bus Transaction Error Acknowledge (PB_TEA_) signal when PB_TEA_ generation is enabled in PowerPro. PowerPro allows 8 byte register accesses for systems that require 8 byte register reads, but the PB_TEA_ signal must be disabled in the TEA_EN bit, in the PB_GEN_CTRL register (see page 209).

The size of the register access is controlled with the Vector Increment field, in the Interrupt Vector Increment register (see page 289). The VINC[1] bit controls upperword register access. When PB_TEA_ generation is disabled in PowerPro, an 8 byte register read returns the 4 byte register addressed repeated in the lower and upper word. When VINC[1] is set to 0 and an 8 byte read is performed, the register at offset (PB_REG_ADDR & 0xFF8) is returned (32-bit value) copied in the upper and lower 32-bit words. When VINC[1] is set to 1 and an 8-byte read is performed, the register at offset (PB_REG_ADDR & 0xff8) + 0x004 is returned (32-bit value) replicated in the upper and lower 32-bit words.

For example, an 8 byte read to REG_BADDR + 0x198 when VINC[1] is set to 0 returns the address {INT_VBADDR, INT_VBADDR}. An 8-byte read to REG_BADDR + 0x198 when VINC[1] is set to 1 returns address {INT_MISC, INT_MISC}. The TEA_EN bit, in the PB_GEN_CTRL register (see page 209), must be 0 in this mode. This setting disables the assertion of PB_TEA_ when a register access exceeds 4 bytes. Table 4 lists the size and alignment of transactions less than or equal to 8 bytes.

The information in Table 4 is independent of endian considerations and refers to byte lane control on the PB Interface.

Table 4: PowerPro PB Single Beat Data Transfers

Size	TSIZ[0:3]	A[29:31]		Data Bus Byte Lanes						
			0	1	2	3	4	5	6	7
Byte	0001	000	D0							
	0001	001		D1						
	0001	010			D2					
	0001	011				D3				
	0001	100					D4			
	0001	101						D5		
	0001	110							D6	
	0001	111								D7

Table 4: PowerPro PB Single Beat Data Transfers

Size	TSIZ[0:3]	A[29:31]		Data Bus Byte Lanes						
Half word	0010	000	D0	D1						
	0010	001		D1	D2					
	0010	010			D2	D3				
	0010	100					D4	D5		
	0010	101						D5	D6	
	0010	110							D6	D7
Tri-byte	0011	000	D0	D1	D2					
	0011	001		D1	D2	D3				
	0011	100					D4	D5	D6	
	0011	101						D5	D6	D7
Word	0100	000	D0	D1	D2	D3				
	0100	100					D4	D5	D6	D7
Five bytes	0101	000	D0	D1	D2	D3	D4			
	0101	011				D3	D4	D5	D6	D7
Six bytes	0110	000	D0	D1	D2	D3	D4	D5		
	0110	010			D2	D3	D4	D5	D6	D7
Seven bytes	0111	000	D0	D1	D2	D3	D4	D5	D6	
	0111	001		D1	D2	D3	D4	D5	D6	D7
Double word	0000	000	D0	D1	D2	D3	D4	D5	D6	D7

2.2.4.4 Cache Line Size

The supported set of embedded PowerPC processors implement a 32-byte cache line size. Cache wrap reads are supported by the PB slave for burst and extended transactions.

PowerPC processors do not generate cache wrap writes.

2.2.4.5 Reads

All PB Slave reads can be retried if the Address Retry Enable (ARTRY_EN) bit is set in the PB_GEN_CTRL register (see Table 43 on page 209).

Address retries are applicable to FLASH/ROM reads and are not applicable to SDRAM reads.

Retried Reads

An outstanding read is referred to as a retried read. The following steps outline what occurs during a read request:

- 1. Delayed Read Request: The PB slave latches transaction parameters and issues a retry (PB_ARTRY_).
- 2. Delayed Read Completion: The PB slave obtains the requested data and completion status on the destination bus.
- 3. Read Completion: The master repeats the transaction with the same parameters used for the initial request.

Any attempt by a PB master to complete the read transaction is retried by the PowerPro PB slave when PB_ARTRY_ is enabled.

Address Retry (PB_ARTRY_)

For more information refer to "Address Retry (PB_ARTRY_)" on page 40.

2.2.4.6 Writes

Write data is treated independently from read data. A write to an image does not invalidate the contents of the read line buffer currently in use.

2.2.4.7 Data Parity

Data Parity is enabled by setting the Data Parity Enable (DP_EN) bit in the PB_GEN_CTRL register (see page 209). Even or odd parity is enabled by setting the Parity (PARITY) bit in the same register.

Parity generation and checking is provided for each byte of the data bus and for each data beat of the data tenure. Parity checking is disabled by default.

Enabling data parity with the DP_EN enables both parity checking and generation. However, if systems require independent parity checking and generation, parity checking can be disabled in the DP_CHK bit with an additional register write.

Data parity bit assignments are defined in Table 5.

Table 5: PowerPro PB Data Parity Assignments

Data Bus	Data Parity
PB_D[0:7]	PB_DP[0]
PB_D[8:15]	PB_DP[1]
PB_D[16:23]	PB_DP[2]
PB_D[24:31]	PB_DP[3]
PB_D[32:39]	PB_DP[4]
PB_D[40:47]	PB_DP[5]
PB_D[48:55]	PB_DP[6]
PB_D[56:63]	PB_DP[7]

The data parity bits, PB_DP[0:7], are driven to the correct values for even or odd parity by the PB slave during reads. When checking is enabled, the data parity bits, PB_DP[0:7], are checked by the PB slave during writes.

The detection of a data parity error does not affect the transaction. Data is still forwarded to the destination. For more information on PB Interface errors refer to 9. "Error Handling" on page 123.

2.2.5 Termination

The PB Interface uses the following signals to indicate termination of individual data beats and/or data tenures:

- PB_ARTRY_: This signal terminates the entire data tenure and schedules the transaction to be retried. No data is transferred, even if the signal is asserted at the same time as PB_TA_ or Processor Bus data Valid (PB_DVAL_).
- PB_TA_: This signal is asserted by the PB slave to indicate the successful transfer of a single beat transaction, or each 8-byte quantity transferred for a burst.

- PB_DVAL_: This signal is asserted by the PB slave to indicate the successful transfer of an 8 byte quantity within an extended transfer of 16 or 24 bytes. PB_TA_ is asserted with PB_DVAL_ on the transfer of the last 8 byte quantity. The PB slave does not use PB_TA_, or PB_DVAL_ to insert wait states.
- PB_TEA_: This signal indicates an unrecoverable error and causes the external master to immediately terminate the data tenure.

The PB Slave does not assert a data termination signal earlier than the *address retry window*.

2.2.5.1 Assertion of PB TEA

The assertion of PB_TEA_ can be enabled or disabled through the Transaction Error Acknowledge (TEA_EN) bit in the PB_GEN_CTRL register (see page 209).

In a development environment, the TEA_EN bit can be set in order to enable the assertion of PB_TEA_ to assist with software debugging. In a production environment, it can be useful to disable the TEA_EN bit. When PB_TEA_ is disabled, the PB_TA_ signal is asserted in its place.

When PB_TEA_ is disabled, incorrect data can be transferred in a system.

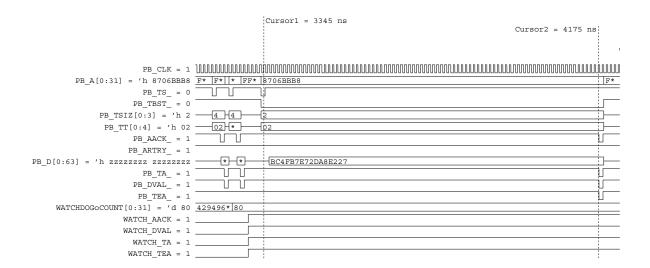
When a particular slave image cannot manage transactions involving more than 4 bytes, PowerPro asserts PB_TEA_. An example of the assertion of PB_TEA_ for unsupported reads is register accesses that exceed 4 bytes.

2.2.5.2 Processor Bus WatchDog Timer

PowerPro uses a watchdog timer to monitor the processor (60x) bus. The Processor Bus Watchdog register (see page 261) uses the setting that is programmed in the COUNT field to observe the processor (60x) bus. If the internal processor (60x) bus counter reaches the value programmed in COUNT, the signals PB_TA_, PB_AACK_, PB_TEA_, and PB_DVAL_ are asserted when they are enabled.

In order for the PB_TA_, PB_AACK_, PB_TEA_, and PB_DVAL_ to be asserted when the internal processor (60x) bus counter reaches the value programmed in COUNT, the following PB_GEN_CTRL register bits (see page 209) must be set to 1:

- WATCH_TA: Assert PB_TA_ when the watchdog timer expires
- WATCH DVAL: Assert PB DVAL when the watchdog timer expires
- WATCH TEA: Assert PB TEA when the watchdog timer expires
- WATCH_AACK: Assert PB_AACK_ when the watchdog timer expires


Figure 6 illustrates a transaction that has a programmed COUNT value of 80 system clocks. A transaction starts at 3345ns with the assertion of PB_TS_ and an address of 32'h8706BBB8.

The address 32'h8706BBB8 used in Figure 6 has no corresponding system bus slave. Therefore no device should claim the transaction, so the bus would normally enter a stalemate condition. It is only used as an example.

After the system clock reaches 83 clocks after the start of the transaction (the vertical cursors in Figure 6, starting at 3345ns and ending at 4175ns, mark the 830ns that represent the 83 system clock cycles), PowerPro claims the transaction by asserting PB_TA, PB_AACK, PB_DVAL and PB_TEA all on the same clock. PowerPro asserted these signals because the WATCH_AACK, WATCH_TEA, WATCH_DVAL, and WATCH_TA bits in the PB_GEN_CTRL register where set to 1.

Figure 6: Count Programmed to 80 System Clocks

WatchDog Timer During an Address Only Transaction

In Figure 7 a transaction is started that is an Address Only cycle. PowerPro is a slave device and does not respond with a data bus assertion. PowerPro, in this case, only asserts PB_AACK even though the WATCH_TEA, WATCH_DVAL, and WATCH_TA bits are programmed to 1.

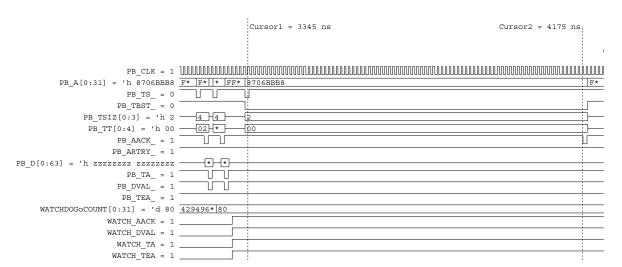


Figure 7: Count Programmed to 80 System Clocks During an Address Only Transaction

2.2.5.3 Errors

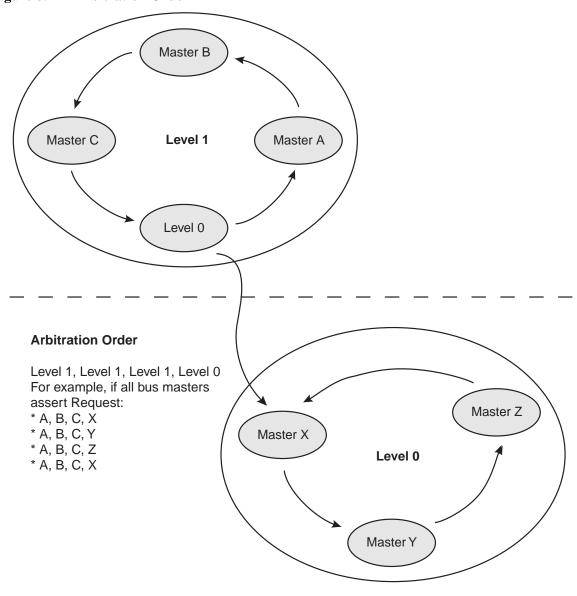
The PowerPro PB Slave Interface detects the following error conditions:

- address parity
- data parity on writes
- illegal accesses

See 9. "Error Handling" on page 123 and 10. "Interrupt Controller" on page 135 for more information.

2.3 Processor Bus Interface Arbitration

The PowerPro PB arbiter supports requests for address bus and data bus ownership from four external masters. The PB arbiter is enabled or disabled through the External Master x Enable (Mx_EN) bit in the Processor Bus Arbiter Control (PB_ARB_CTRL) register (see page 214). The ability to disable the internal PowerPro arbiter makes it possible to use an external arbiter in a PowerPro system.



All PowerPro arbitration signals are multiplexed with other device functionality. Refer to "Processor Bus Signals" on page 162 and "Multiplexed Processor Bus Signals" on page 183 for more information.

The PB arbiter implements two levels of priority. Devices programmed into a specific priority level operate in a round robin fashion. Each master has a External Master x Priority Level (Mx_PRI) bit in the PB_ARB_CTRL register to determine its arbitration level for the address bus. The arbitration level for each master can be reconfigured during system run-time.

Figure 8 illustrates the arbitration system used in the PB Interface arbiter.

Figure 8: PB Arbitration Order

2.3.1 Data Bus Arbitration

The arbiter samples PB_TT[3] when PB_TS_ is asserted to generate data bus requests. The arbiter grants the data bus to the current address bus owner by asserting PB_DBG_ the clock after PB_TS_ is asserted. The current data bus grant is negated when the requesting master has qualified the grant.

The Processor Bus Data Bus Grant (PB_DBG_) signals are asserted under the following conditions:

- The assertion of the Processor Bus Request (PB_REQ_) signal when the bus is idle
- After the assertion of the Processor Bus Transaction Start (PB_TS_) signal, the PB_DBG_ signal changes to the next requesting master or the parked master.

Requesting masters are required to qualify bus grants before beginning a data tenure, if the 7400_MODE bit in the PB_ARB_CTRL is set to 0.

The MPC8260 and other processor (60x) bus agents require the system signal DBB_ to qualify data bus grants. The PowerPro PB Master does not require DBB_ to qualify data bus grants.

2.3.1.1 PB Arbiter Qualifies Bus Grants

Some processors, specifically the MPC7400, must have the data bus grant qualified by the arbiter before it is issued to the master. PowerPro is set to PowerPC 7400 arbitration mode by default. PowerPro is set to PowerPC 7400 arbitration mode through the 7400_MODE bit in the PB_ARB_CTRL. See section "PB Arbiter Qualifies Bus Grants" on page 51 for more information. When PowerPro is configured not to qualify bus grants by the PB arbiter, the requesting master must qualify bus grants before beginning a data tenure.

2.3.2 Address Arbitration

Requesting bus masters are required to qualify bus grants before beginning an address tenure. Some processor (60x) bus agents, including the MPC8260, require the system signal ABB_ to qualify address bus grants. The PowerPro PB Interface does not require ABB_ to qualify address bus grants.

2.3.2.1 Address-Only Cycles

The arbiter supports address only cycles. When PB_TT[3] is sampled low during PB_TS_, the arbiter does not grant the data bus.

The use of PB_TT[3] as a data bus request means that the PowerPro arbiter does not support the PowerPC instructions eciwx and ecowx.

2.3.3 Delay Sampling of Transaction Start Signal

The PB arbiter can be programmed to sample requests two clocks after the PB_TS_ signals is asserted. The arbiter is programmed through the TS_DLY bit in the Processor Bus Arbiter Control register.

An example application for this feature is the MPC8260 L2 cache, which holds its BR_ signal after the TS_ signal starts. The PB Arbiter could see this as an additional valid request and therefore gives the bus to the L2 cache even though the bus was not actually requested. This bit delays when the PB arbiter samples the signal so a false bus request is not granted.

2.3.4 Bus Parking

The PowerPro PB arbiter offers a flexible address bus parking scheme. When there is no master requesting the address bus, the arbiter can park on either the last bus master or a specific bus master.

The bus parking mode is determined by the Bus Park Mode (PARK) bit, in the Processor Bus Arbiter Control (PB_ARB_CTRL) register (see page 214). To park the bus on a specific master, the Bus Master to be Parked (BM_PARK) field in the PB_ARB_CTRL register must be set to the specific bus master for address parking.

Table 6 shows the codes for parking external bus masters.

Table 6: Parked PB Master

BM_PARK [1:0]	Parked PB Master	External Pins
00	M0	PB_BR[0]_/PB_BG[0]_
01	M1	PB_BR[1]_/PB_BG[1]_
10	M2	PB_BR[2]_/PB_BG[2]_
11	M3	PB_BR[3]_/PB_BG[3]_

The parked master does not drive any address bus signals until it generates a request to use the address bus.

2.4 Endian Conversion

PowerPro does not perform any endian conversion. PowerPC big-endian bit ordering is assumed for all transactions.

3. FLASH/ROM Interface

This chapter discusses the functions of the FLASH/ROM Interface. The topics addressed in this chapter include:

- "FLASH/ROM Signals" on page 54
- "Address Mapping" on page 60
- "Transactions" on page 67
- "Connecting FLASH/ROM to PowerPro" on page 69

3.1 Overview

PowerPro supports four distinct banks of FLASH/ROM devices. The interface enables many multiplexing options to support a variety of address and data bus requirements. Each of the four independent FLASH/ROM banks have individually programmable address images. FLASH/ROM devices of 8-, 16-, 32-, and 64-bit data widths can be attached to the SDRAM data bus. Alternatively, a separate 8-bit data bus can be used either to attach a FLASH/ROM data path or as extra address lines

Each FLASH/ROM bank has an individually programmable image with unique address ranges, bus widths, addressing modes and timing parameters. The programmable images have separate parameters and an internal separate machine to drive the image. There are four chip selects; each of the four chip-select machines arbitrates for required resources.

When this document discusses FLASH/ROM transactions it is referring to all ROM-like devices with asynchronous or synchronous interfaces including FLASH, EEPROM, and SRAM.

3.2 Changing the Configuration of a FLASH/ROM Bank

When the configuration used on a FLASH/ROM bank must be changed when the system is active, the bank must first be disabled. After the bank is disabled, then the PER_Bx_CTRL register can be modified. The bank is re-activated only after the PER_Bx_CTRL register is modified.

Changing the configuration of a FLASH/ROM bank can be performed while a read is in progress to the bank, but not while a write is in progress to the bank. If the configuration is changed while a write is in progress the rest of the write executes with the new parameters.

The following steps show how to change the configuration of a FLASH/ROM bank.

- 1. Set the ENABLE bit of the FLASH/ROM bank
 - $PER_Bx_ADDR[31] = 0$
- 2. Modify the PER_Bx_CTRL register
- 3. Set the ENABLE bit of the FLASH/ROM bank
 - PER_Bx_ADDR[31] = 1

3.3 FLASH/ROM Signals

FLASH/ROM memory space is separate from SDRAM memory space. The FLASH/ROM chip selects activate the appropriate FLASH/ROM bank when the address falls within one of the FLASH/ROM address ranges.

Table 7 shows the FLASH/ROM Interface signals.

Table 7: FLASH/ROM Interface Signals

Pin Name	Pin Type	Description
SD_A[12:0] Multiplexed with: EE_A[12:0]	Output	1. SDRAM Address 2. EEPROM Address
SD_BA[1:0] Multiplexed with: EE_A[14:13]	Output	SDRAM Bank Address EEPROM Address
SD_SELECT Multiplexed with: • EE_SELECT • EE_AL[0]/ • GPIO[23]	Tristate bidirectional	 SDRAM Bank Select: External FET switch EEPROM Buffer Select EEPROM Address Latch 0: For time-multiplexing the EEPROM address, the first address phase is latched qualified with this signal General Purpose I/O
EE_AL1_ Multiplexed with: GPIO[24]	Tristate bidirectional	EEPROM Address Latch 1: For time-multiplexing the EEPROM address, the second address phase is latched qualified with this signal 2. General Purpose I/O.
EE_OE_ Multiplexed with: GPIO[25]	Tristate bidirectional	External Memory Output Enable General Purpose I/O
EE_WE_ Multiplexed with: GPIO[26]	Tristate bidirectional	External Memory Write Enable General Purpose I/O

Table 7: FLASH/ROM Interface Signals

Pin Name	Pin Type	Description
EE_RNW Multiplexed with: GPIO[27]	Tristate bidirectional	EEPROM Read not Write: Active 1 during an EEPROM read, 0 at all other times. General Purpose I/O
EE_AL2 Multiplexed with: GPIO[28]_	Tristate bidirectional	 EEPROM Address Latch 2: For time-multiplexing the EEPROM address, the third address phase is to be latched qualified with this signal. General Purpose I/O
EE_READY Multiplexed with: GPIO[29]	Tristate bidirectional	External Memory Ready Input Indicator: Tells PowerPro when FLASH is ready on the data bus so PowerPro knows when to sample it. General Purpose I/O
EE_CS[0:3]_ Multiplexed with: GPIO[30:33]	Tristate bidirectional	External Memory Chip Select: One per bank. General Purpose I/O

Table 7: FLASH/ROM Interface Signals

Pin Name	Pin Type	Description
EE_DATA[0:7] Multiplexed with: • EE_A[23:15] • EE_A[31:24] • EE_A[23:16] • EE_A[15:8] • EE_A[7:0] • INT[0:7] • GPIO[34:41] • PWRUP[0:7]	Tristate bidirectional	 ROM Data [0:7] ROM upper (MSB) address bits [23:15] ROM address bits [31:24] (time-multiplexed) ROM address bits [23:16] (time-multiplexed) ROM address bits[15:8] (time-multiplexed) ROM address bits[7:0] (time-multiplexed) Interrupt inputs[0:7] General Purpose I/O Power-Up Options: Only latched during power-on reset
UARTO_TX Multiplexed with: • INT[8] • GPIO[42]	Tristate bidirectional	Primary UART Transmit Line Interrupt Controller Input General Purpose I/O
UARTO_RX Multiplexed with: • INT[9] • GPIO[43]	Tristate bidirectional	Primary UART Receive Line Interrupt Controller Input General Purpose I/O

All of the GPIO signal pins can also be configured as General Purpose I/O (GPIO) pins for applications where the generic FLASH/ROM Interface controller does not perform the function desired in the end application. GPIO programming overrides normal ROM function.

When configuring GPIO pins it is possible to disable the FLASH/ROM Interface. By enabling GPIO functionality, the multiplexed pins that are dedicated to the FLASH/ROM Interface can be disabled.

3.3.1 Time-Multiplexed SDRAM Signals

The following signals are primarily SDRAM signals, but depending on the FLASH/ROM mode the signals can be time-multiplexed with the FLASH/ROM Interface.

Table 8: Memory Signals

Signal Name	Signal Type	Description
SD_A[12:0] Multiplexed with: EE_A[12:0]	Output	SD_BA[1:0] and SD_A[12:0] are always output as FLASH/ROM address [14:0], and can be time multiplexed as FLASH/ROM address [29:15].
SD_BA[1:0] Multiplexed with: EE_A[14:13]	Output	
SD_ECC[0:7] Multiplexed with: SD_DQM[0:7]	Tristate bidirectional	Always output as FLASH/ROM byte enables during FLASH/ROM cycles. No useful information is presented when accessing a 8-bit wide device. A 16-bit wide device can use SD_ECC/DQM[0:1] as byte enables. For a 32-bit device, byte enables appear on SD_ECC/DQM[0:3], and a 64-bit devices uses all of SD_ECC/DQM[0:7] for byte enables. In all cases, a 1 on these lines indicates that the particular byte should be written, while a 0 indicates that the byte should not be written (it must be masked).
SD_D[0:63]	Tristate bidirectional	An 8-bit wide FLASH/ROM can have its data port connected to SD_D[0:7], a 16-bit wide ROM must use SD_D[0:15], a 32-bit wide FLASH/ROM must use SD_D[0:31], and a 64-bit wide FLASH/ROM must use SD_D[0:63].
SD_SELECT Multiplexed with: • EE_SELECT • EE_AL[0] • GPIO[23]	Tristate bidirectional	This signal is used in heavily loaded SDRAM configurations to control a FET switch connected between data lines on bank 0/1 and bank 2/3. This signal toggles and can be used for selecting a FET switch, or buffer, between FLASH/ROM or SDRAM accesses. This is required when the SD_D port is shared between the FLASH/ROM and the SDRAM devices. This signal is high when an access is made to SDRAM bank 2/3. The signal is low when an access is made to SDRAM bank 0/1 or FLASH/ROM devices. This signal is also used as EE_AL[0] during FLASH/ROM Address Mode 11. When used as EE_AL[0], it must be connected to an external latch to hold FLASH/ROM address [0:7].

3.3.2 Time-Multiplexed Processor Bus Signals

The following signals are primarily Processor Bus Interface signals, but depending on the FLASH/ROM mode the signals can be time-multiplexed with the FLASH/ROM Interface.

Table 9: PB Signals

Pin Name	Pin Type	Description
PB_DP[0:7] Multiplexed with: • PB_DBG[2:3]_ • EE_A[28:23] • GPIO[4:11]	Tristate bidirectional	When data parity is not used on the processor (60x) bus, these pins can be connected to FLASH/ROM address [28:23], [29:24], or [20:15] depending on the FLASH/ROM configuration selected.
PB_BR[0:1]_ Multiplexed with: • EE_A[28:27] _ • GPIO[12:13]_	Tristate bidirectional	When the PB Interface arbiter is not used, these pins can be connected to FLASH/ROM address [28:23], [29:24], or [20:15] depending on the FLASH/ROM configuration selected.
PB_BG[0:1]_ Multiplexed with: • EE_A[26:25]_ • GPIO[14:15]_	Tristate bidirectional	
PB_DBG[0:1] Multiplexed with: • INT[20:21]_ • EE_A[24:23]_ • GPIO[16:17]_	Tristate bidirectional	

3.4 FLASH/ROM Data Port

The FLASH/ROM Interface can be connected to two different data ports: SD_D[0:63] (time-shared with SDRAM devices) or EE_DATA[0:7] (dedicated 8-bit port). Up to 32-bits of FLASH/ROM address are available.

Table 10 summarizes the four available FLASH/ROM addressing modes.

Signals PB_DP, PB_BR_, PB_BG_, and PB_DBG_ (see Table 9) have primary functions other than providing the FLASH/ROM address. When the on-board processor (60x) bus arbiter is used, PB_BR_, PB_BG_, and PB_DBG_ are not available for FLASH/ROM addresses. When data parity is enabled on the processor (60x) bus PB_DP[2:7] are not available for FLASH/ROM addresses.

3.5 Address Mapping

The address and block size of each FLASH/ROM image are programmable through the ROM Memory Bank X Address (EE_Bx_ADDR) register and the ROM Memory Bank X Address Mask (EE_Bx_MASK) register. Refer 16. "Registers" on page 199 for a description of these registers.

3.5.1 Multiplexed Address Signals

The least significant FLASH/ROM address lines (EE_A[14:0]) are shared with the SDRAM lines SD_A[12:0], SD_BA[1:0] for fifteen lines.

The most significant address lines appear in two places. First, if the power-up option for processor (60x) bus parity is programmed to disable parity, and GPIO[4:11] ports are disabled, then PB_DP[0:7] is configured as an output to EE_A[20:15]. Second, if INT[0:7] are masked and GPIO[34:41] are disabled, then EE_A[20:15] are output.

When the FLASH/ROM image is configured to use the port as a data input, then the port is turned around on read cycles coinciding with the assertion of EE_OE_. On write cycles the port changes from address to write data with the assertion of EE_WE_. The signal EE_DATA can be used as a multiplexed Most Significant Bit (MSB) address and data port by capturing MSB addresses in an external latch tied to EE_CS_, EE_OE_, or EE_WE_. This configuration is dependent on the programming of the EE_Bx_CTRL register (see page 247).

The two most significant address bits, EE_A[21] and EE_ADDR[22] are shared with UART #0. If UART #0 is disabled, INT[8] and INT[9] are masked and the corresponding GPIO ports are disabled, then the Most Significant Bit (MSB) EEPROM addresses are output on these lines.

Multiplexing FLASH/ROMs on SDRAM lines can overload the SDRAM lines and cause the SDRAM Interface to be unable to operate at the required frequency. The exact board layout and attachment of FLASH/ROMs depends on frequency requirements and loading.

The following bullets outline different configurations and address possibilities for the

8-, 16-, 32-, and 64-bit FLASH/ROM devices.

3.5.2 Address Mapping

The information in this section focuses on software information required to program PowerPro.

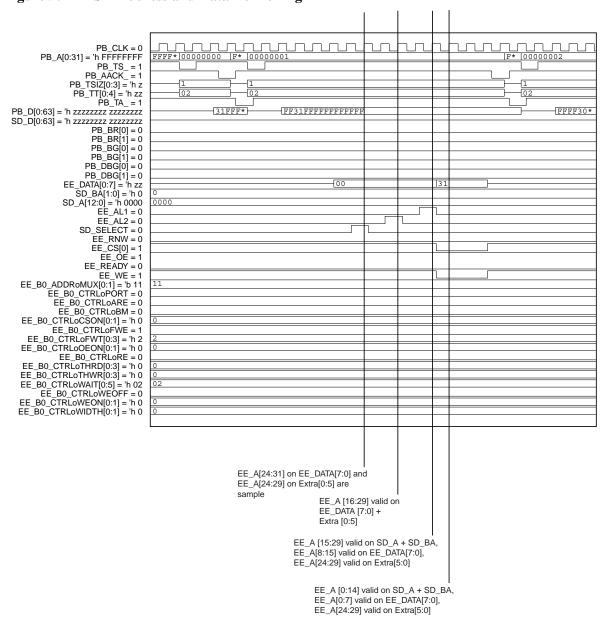
Table 10 shows the mapping of processor bus address to physical FLASH/ROM address. In order to understand the information in the table, the following table data must be used:

- Terminology
 - Control Signal Terms
 - NC means no control signal is used during a clock cycle
 - AL1 means EE AL1
 - AL2 means EE_AL2
 - SD means SD SELECT
 - Signal State Terms
 - HiZ means PowerPro does not drive during this time
 - Lo means that PowerPro drives a zero during this time
 - D means that PowerPro is driving Data
- Control Signals
 - De-muxing is accomplished by latching the control signals positive edge.
 In the case of NC, NC is only valid during the assertion of EE_CS[x].
 - Not all control signals are always used. For example in Column A no control is used, however, in Column H all three control signals are used.

- MUX and PORT settings
 - There are four MUX settings. Each A_MODE setting has two programmable PORT settings. Each of the eight MUX and PORT combinations has a single address/data phase. These eight phases are described in the columns marked A, B, C, D, E, F, G, H.
- Address and Data Multiplexing
 - Address and data are time division multiplexed on the signals listed in the first column, chronological ordering of the de-muxing control signals is:
 - SD_SELECT
 - EE_AL2
 - EE_AL1
 - NC
- Column Information
 - Column A and Column B do not use control signals
 - Column C and D has two address phases AL1 and NC.
 - Column E and F use AL1,AL2 and no control signals
 - Column G and H use AL1, AL2, SD and no control signals

Table 10: Address Mapping

MUX	(00	01				10							11							
PORT	0	1		0	1		0			1			0				1				
Phase	A	В	С		D		E			F			G				Н				
Control	NC	NC	NC	AL 1	NC	AL 1	NC	AL 1	AL 2	NC	AL 1	AL 2	NC	AL 1	AL 2	SD	NC	AL 1	AL 2	SD	
PB_BR[0]	20	28	20	20	28	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	
PB_BR[1]	19	27	19	19	27	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	
PB_BG[0]	18	26	18	18	26	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	
PB_BG[1]	17	25	17	17	25	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	
PB_DBG[0]	16	24	16	16	24	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
PB_DBG[1]	15	23	15	15	23	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	
EE_D[0]	D	22	D	22	22	Hi Z	D	15	23	7	15	23	D	15	23	7	7	15	23	31	
EE_D[1]	D	21	D	21	21	Hi Z	D	14	22	6	14	22	D	14	22	6	6	14	22	30	
EE_D[2]	D	20	D	20	20	Hi Z	D	13	21	5	13	21	D	13	21	5	5	13	21	29	
EE_D[3]	D	19	D	19	19	Hi Z	D	12	20	4	12	20	D	12	20	4	4	12	20	28	
EE_D[4]	D	18	D	18	18	Hi Z	D	11	19	3	11	19	D	11	19	3	3	11	19	27	
EE_D[5]	D	17	D	17	17	Hi Z	D	10	18	2	10	18	D	10	18	2	2	10	18	26	
EE_D[6]	D	16	D	16	16	Hi Z	D	9	17	1	9	17	D	9	17	1	1	9	17	25	
EE_D[7]	D	15	D	15	15	Hi Z	D	8	16	0	8	16	D	8	16	0	0	8	16	24	
SD_BA[1]	14	14	14	29	14	29	14	29	Lo	14	29	Lo	14	29	Lo	Lo	14	29	Lo	Lo	
SD_BA[0]	13	13	13	28	13	28	13	28	Lo	13	28	Lo	13	28	Lo	Lo	13	28	Lo	Lo	
SD_A[12]	12	12	12	27	12	27	12	27	Lo	12	27	Lo	12	27	Lo	Lo	12	27	Lo	Lo	
SD_A[11]	11	11	11	26	11	26	11	26	Lo	11	26	Lo	11	26	Lo	Lo	11	26	Lo	Lo	
SD_A[10]	10	10	10	25	10	25	10	25	Lo	10	25	Lo	10	25	Lo	Lo	10	25	Lo	Lo	


Table 10: Address Mapping

MUX	00		01				10							11							
PORT	0	1	0 1			0 1					0				1						
Phase	A	В	С		D		E			F			G				Н				
Control	NC	NC	NC	AL 1	NC	AL 1	NC	AL 1	AL 2	NC	AL 1	AL 2	NC	AL 1	AL 2	SD	NC	AL 1	AL 2	SD	
SD_A[9]	9	9	9	24	9	24	9	24	Lo	9	24	Lo	9	24	Lo	Lo	9	24	Lo	Lo	
SD_A[8]	8	8	8	23	8	23	8	23	Lo	8	23	Lo	8	23	Lo	Lo	8	23	Lo	Lo	
SD_A[7]	7	7	7	22	7	22	7	22	Lo	7	22	Lo	7	22	Lo	Lo	7	22	Lo	Lo	
SD_A[6]	6	6	6	21	6	21	6	21	Lo	6	21	Lo	6	21	Lo	Lo	6	21	Lo	Lo	
SD_A[5]	5	5	5	20	5	20	5	20	Lo	5	20	Lo	5	20	Lo	Lo	5	20	Lo	Lo	
SD_A[4]	4	4	4	19	4	19	4	19	Lo	4	19	Lo	4	19	Lo	Lo	4	19	Lo	Lo	
SD_A[3]	3	3	3	18	3	18	3	18	Lo	3	18	Lo	3	18	Lo	Lo	3	18	Lo	Lo	
SD_A[2]	2	2	2	17	2	17	2	17	Lo	2	17	Lo	2	17	Lo	Lo	2	17	Lo	Lo	
SD_A[1]	1	1	1	16	1	16	1	16	Lo	1	16	Lo	1	16	Lo	Lo	1	16	Lo	Lo	
SD_A[0]	0	0	0	15	0	15	0	15	Lo	0	15	Lo	0	15	Lo	Lo	0	15	Lo	Lo	

Figure 9 shows how PowerPro de-muxes the address and data signals when the MUX field is 11 and the PORT bit programmed to 1 — which enables the SDRAM data bus.

The Extra[0:5] signals, shown in Figure 9, are derived from multiplexed signals. The signals that comprise the Extra grouping are: PB_BG[0:1], PB_BR[0:1], and PB_DBG[0:1].

Figure 9: FLASH Address and Data De-muxing

3.5.2.1 Connection summary

- 8-bit devices
 - FLASH/ROM DATA[0:7] can occupy:
 - EE_DATA[0:7]: dedicated FLASH/ROM 8-bit data bus
 - SD_D[0:7]: a section of the SDRAM data bus
- 16-bit devices
 - FLASH/ROM DATA[0:15] can only be connected to:
 - SD D[0:15]: a section of the SDRAM data bus
- 32-bit devices
 - FLASH/ROM DATA[0:31] can only be connected to:
 - SD D[0:31]: a section of the SDRAM data bus
- 64-bit devices
 - FLASH/ROM DATA[0:63] can only be connected to:
 - SD_D[0:63]: a section of the SDRAM data bus
- EE_A[14:0] are time-shared with SD_A[12:0] and SD_BA[1:0].
- ROM ADDRESS[28:23], [29:24], or [20:15] appear on PB_DP[2:7] if PB parity is disabled and GPIO[6:11] are disabled.
- ROM ADDRESS[28:23], [29:24], or [20:15] appear on {PB_BR[0:1], PB_BG[0:1], PB_DBG[0:1]} if the internal PB arbiter is disabled.
- ROM ADDRESS[22:15], [31:24], [23:16], [15:8], and [7:0] can appear on EE_DATA[0:7] depending on the FLASH/ROM address mode. If EE_DATA is used as a data port as well as in the cycle, the address only appears at the beginning of the cycle. If EE_DATA is used, then an external latch is needed to hold the MSB address, assuming these bits are needed to connect to the FLASH/ROM device.

3.6 Transactions

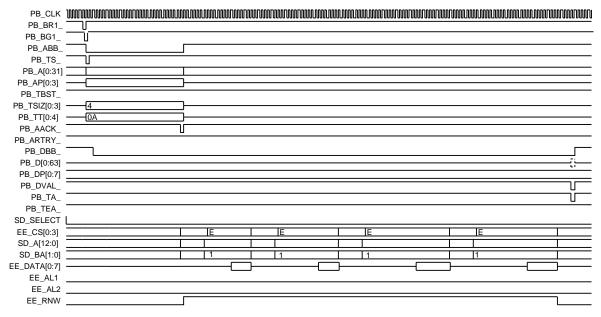
PowerPro can be configured to accept read burst transactions on the FLASH/ROM interface. PowerPro cannot produce write bursts. In order to program burst functionality, the BM bit in the EE_Bx_CTRL register must be set to 1. The following steps must also be completed for burst mode to work effectively:

- 1. RE bit, in the EE_Bx_CTRL register, must be set to 1.
- 2. If the PORT bit, in the EE_Bx_CTRL register, is set to 0, the MUX bit, in the EE_Bx_ADDR register (see page 237), must be set to 0. If the PORT bit is set to 1, the MUX bit can be either 0 or 1.
- 3. BM must be set to 1

3.6.1 Processor Bus Transactions

The FLASH/ROM Interface supports all valid processor (60x) bus transactions. All returned data is internally buffered in PowerPro before it is returned to the requesting master on the processor (60x) bus.

When PB_ARTRY_ is enabled (through the ARTRY Enable (ARTRY_EN) bit), the requesting master is retried until PowerPro has gathered all the requested data. Writes to FLASH/ROM devices are buffered within PowerPro.


3.6.2 Reads

Reading a FLASH/ROM device involves driving the address, EE_OE_ and EE_CS_. The return interval of the data depends on the speed of the FLASH/ROM device.

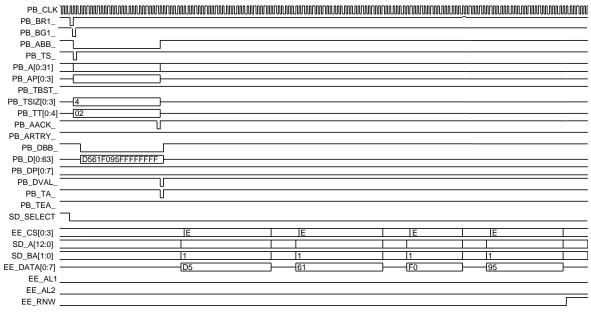
The Read Not Write (EE_RNW) signal is asserted during a FLASH/ROM read cycle, and EE_WE_ is asserted during a FLASH/ROM write cycle. Both of these signals are used to enable external logic to be selected during FLASH/ROM read and write cycles.

Figure 10 shows a 4-byte FLASH read from an 8-bit wide port. The figure shows four 8-bit reads.

3.6.2.1 Wait States

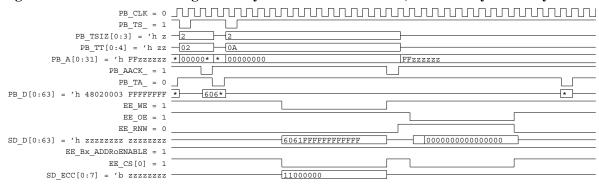
The definition of address-to-data wait states are the number of cycles between the assertion of the address and the arrival of data from the FLASH/ROM device on the data signals. The definition of recovery wait states are the number of cycles between the arrival of data, and the address for the next FLASH/ROM transaction.

Address-to-data wait states are programmed in the First Wait (FWT) bit in the EE_Bx_CTRL register (see page 247).


3.6.3 Writes

Address-to-data and recovery wait states for reads and writes are identical and are programmed in the First Wait (FWT) bit in the EE_Bx_CTRL register (see page 247).

The signal EE_RNW is asserted during an FLASH/ROM read cycle; EE_WE is asserted during a FLASH/ROM write cycle. Both of these signals are used to enable external logic to be selected during FLASH/ROM read and write cycles.


Figure 11 shows a 4-byte FLASH write from an 8-bit wide port. The figure shows four 8-bit writes.

When PowerPro is accessing a ROM-like device, if a write is being executed and the SD_ECC[0:7] lines are being used as write enable lines, then the polarity is positive. This means when writing two bytes to a 8 byte wide bus, two bits of the SD_ECC[0:7] lines are high while the others are low. Figure 12 demonstrates PowerPro executing a two byte write followed by a two byte read. When performing the write, PowerPro asserts SD_ECC[0:1]. During the read, none of the SD_ECC lines are asserted; they are write enables and kept low during reads.

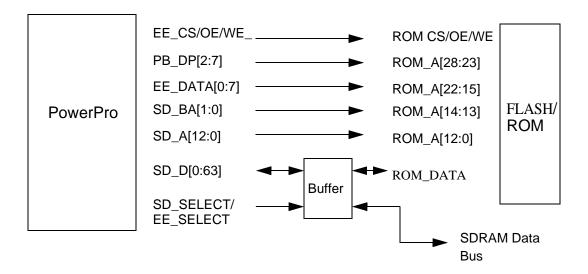
Figure 12: PowerPro Executing a Two Byte FLASH/ROM Write, Followed by a Two Byte Read

3.7 Connecting FLASH/ROM to PowerPro

Each of the four FLASH/ROM chip-select machines controls one of EE_CS[0:3] signals. These signals, plus EE_OE_, and EE_WE_ (where appropriate) are directly connected to their equivalent signals on the FLASH/ROM device.

Devices which have a READY output to control data selection can connect to EE_READY. This enables PowerPro to utilize READY. The signal EE_SELECT_ is active throughout the cycle and should be connected to external transceivers to remove load from the shared SDRAM data and address buses.

3.7.1 Typical Configurations

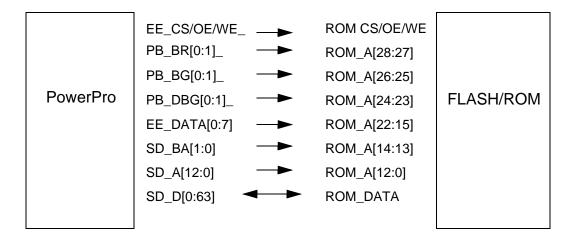

Figure 13 to Figure 16 illustrate options for connecting a FLASH/ROM device to PowerPro. These diagrams show potential system configurations.

3.7.1.1 Configuration One

The following list shows the register settings that are required for the configuration displayed in Figure 13:

- The PORT bit, in the ROM Memory Bank X Control (see page 247), is set to 1. Setting this bit to 1 selects the SDRAM data bus as the FLASH/ROM data port.
- The MUX bit, in the ROM Bank Address register (see page 242), is set to 00. Setting this bit to 00 defines the address mapping between the SDRAM Interface and the PB Interface. Refer to Table 10 on page 63 for more information on address mapping.
- Data parity in the Processor bus Interface is disabled, by setting the Data parity enable (DP_EN) bit, in the Processor Bus General Control register (see page 209) to 0.
- SD_SELECT signal (see page 166) is used to control an external buffer to off-load the FLASH/ROM from the SDRAM data bus.

Figure 13: Configuration One

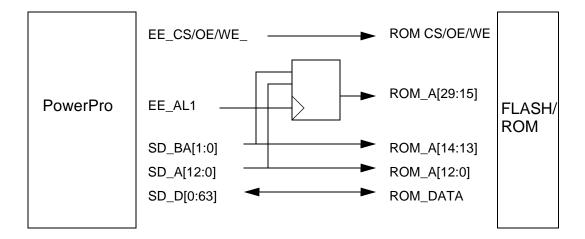


3.7.1.2 Configuration Two

The following list shows the register settings that are required for the configuration displayed in Figure 14:

- The PORT bit, in the ROM Memory Bank X Control (see page 247), is set to 1. Setting this bit to 1 selects the SDRAM data bus as the FLASH/ROM data port.
- The MUX bit, in the ROM Bank Address register (see page 242), is set to 00. Setting this bit to 00 defines the address mapping between the SDRAM Interface and the PB Interface. Refer to Table 10 on page 63 for more information on address mapping.
- The internal PowerPro arbiter is disabled, by setting the External Master Enable (Mx_EN) bit, in the Processor Bus Arbiter Control register (see page 214), to 0.

Figure 14: Configuration Two



3.7.1.3 Configuration Three

The following list shows the register settings that are required for the configuration displayed in Figure 15:

- The PORT bit, in the ROM Memory Bank X Control (see page 247), is set to 1. Setting this bit to 1 selects the SDRAM data bus as the FLASH/ROM data port.
- The MUX bit, in the ROM Bank Address register (see page 242, is set to 01). Setting this bit to 01 defines the address mapping between the SDRAM Interface and the PB Interface. Refer to Table 10 on page 63 for more information on address mapping.
- EE_DATA used for GPIO or interrupts
- The address is latched with positive-edge triggered external latch

Figure 15: Configuration Three

3.7.1.4 Configuration Four

The following list shows the register settings that are required for the configuration displayed in Figure 16.

- The PORT bit, in the ROM Memory Bank X Control (see page 247), is set to 0. Setting this bit to 1 selects the SDRAM data bus as the FLASH/ROM data port.
- The MUX bit, in the ROM Bank Address register (see page 242), is set to 11. Setting this bit to 11 ensures all three parts of the address appear on EE_DATA[0:7] lines. Refer to Table 10 on page 63 for more information on address mapping.
- All connections made using EE_DATA, as extra loading (in this case), cannot be tolerated on the SDRAM bus.
- The address is latched by external positive-edge triggered latch

Figure 16: Configuration Four

4. SDRAM Interface

This chapter outlines the functionality of the SDRAM Interface. The topics addressed in this chapter include:

- "Supported SDRAM Configurations" on page 76
- "Initialization" on page 79
- "Transactions" on page 89
- "Refresh" on page 96
- "Page Mode" on page 96
- "Commands" on page 87

4.1 Overview

PowerPro supports many different types of Synchronous DRAM (SDRAM) memory. Both discrete memory modules and Dual Inline Memory Modules (DIMM) can be used in a PowerPro system.

SDRAM operating frequency is dependent on bus loading.

PowerPro accesses a maximum of four DIMMs of SDRAM memory. PowerPro supports both buffered (registered) and non-buffered DIMMs. A DIMM can be either single or dual. A DIMM in single bank configuration has one chip select and supports up to four logical memory banks. A DIMM in dual bank configuration has two chip selects and supports up to eight logical memory banks.

Buffered (registered) DIMMs place a register (buffer) between PowerPro's command/address line and the DIMM's command/address line.

4.2 Supported SDRAM Configurations

Each DIMM of SDRAM must be connected to a DIMM socket. DIMMs are divided into either two or four logical memory banks per side. Each DIMM can be individually configured through the SDRAM registers. The ability to individually configure the memory means that each DIMM socket can contain different types of memory. The different memory configuration can be optimized for the timing requirements (refer to "SDRAM Memory Bank x Control and Status" on page 237).

PowerPro supports either ECC protected DIMMs or a non-ECC protected DIMMs in a system. PowerPro cannot support a system with mixed ECC and non-ECC DIMMs.

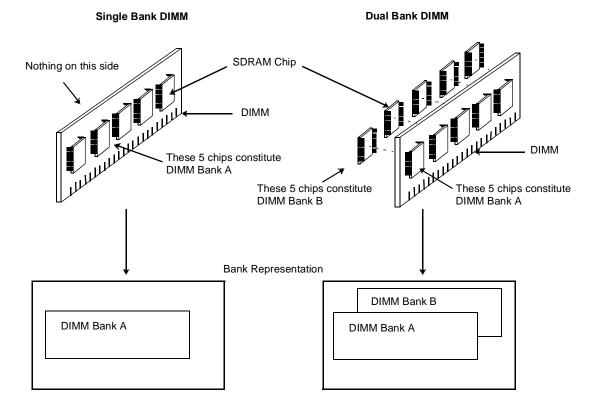
PowerPro has a separate controller for each logical bank of SDRAM supported within a DIMM; the separate controllers manage the memory attached to it. The controllers internally arbitrate for the SDRAM command bus, and chip-wide data bus. Each separate controller snoops the addresses of the processor for transactions that fall within the SDRAM address range. Refer to "Registers" on page 199 for more information on SDRAM address images.

Snooping a transaction refers to monitoring addresses driven by a bus master.

4.2.1 Memory Bank Definition

The word bank, when used in memory, can have the following meanings:

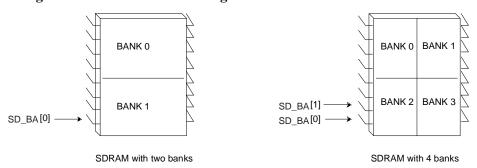
- SDRAM Banks
- DIMM Banks (physical banks)
- Logical banks


4.2.1.1 SDRAM Banks

Each SDRAM bank refers to a separate DIMM.

4.2.1.2 DIMM Banks

DIMMS are available in single and dual bank (physical bank) configurations. Both of these configurations are supported by the PowerPro. The Chip Select (SD_CS[0:7]) signals select between different physical banks of modules. PowerPro supports a maximum of four DIMMs of SDRAM memory. Figure 17 shows both single and dual configurations. The single bank DIMM contains one physical bank (bank A) and therefore only one Chip Select (SD_CS[0:7]) is required. The dual bank DIMMs contains two physical banks (bank A and bank B) and therefore two Chip Selects (SD_CS[0:7]) are required to access each physical memory bank on the DIMM.


Figure 17: Single and Dual DIMM Banks

4.2.1.3 Logical Banks

SDRAM contain memory arranged in two or four logical banks. The PowerPro Memory Controller selects these banks using Bank Address (SD_BA[0:1]) signals. Figure 18 illustrates SDRAM with two and four memory banks.

Figure 18: SDRAM Bank Configuration

4.3 SDRAM Operation

Before any read or write commands can be issued to a logical bank within the SDRAM, a row in that logical bank must be opened. The *active* command is issued by the PowerPro Memory Controller. The command opens the logical bank and selects both the logical bank and the row within that logical bank to be activated.

After opening a row (by issuing an active command) a read or write command can be used for that row of the logical bank within SDRAM, subject to the tRCD operation specification. The tRCD (min) must be divided by the clock period and rounded-up to the next whole number to determine the earliest clock edge after the active command on which a read or write command can be entered.

A subsequent active command to a different row in the same logical bank can only be issued after the previous active row has been closed. Closing a logical bank is accomplished with the precharge command. The minimum time interval between successive active commands to the same logical bank is defined by tRC.

A subsequent active command to another logical bank can be issued while the first logical bank is being accessed. This functionality results in a reduction of total row access overhead. The minimum time interval between successive active commands to different logical banks is defined by tRRD.

4.4 Registers

The SDRAM Interface has one control register, and four bank specific registers. The SDRAM registers include the following:

- "SDRAM Refresh Interval" on page 224: This register determines the refresh interval for SDRAM in units of processor bus clocks (PB_CLKs)
- "SDRAM Timing Parameters" on page 225: This register controls the setting of bits that dictate timing parameters for the device.
- "SDRAM Memory Bank x Address" on page 233: This register maps the four available SDRAM banks to the processor (60x) bus address space.
- "SDRAM Memory Bank x Address Mask" on page 235: This register indicates the memory block size of the SDRAM bank address.
- "SDRAM Memory Bank x Control and Status" on page 237: This register contains the bits that control specific SDRAM bank functionality, such as ECC protection.

4.5 Initialization

The SDRAM Interface must be configured through the PowerPro Processor Bus Interface before it can be used in the system.

The following sequence is used to initialize the SDRAM Interface:

- 1. Determine the parameters that must be programmed in the memory module registers.
 - a. If SDRAM DIMMs are being used in the system, the following action is taken:
 - Access the primary I²C Interface and read the serial presence detect information from each SDRAM DIMM.

PowerPro does not access I²C automatically. The I²C must be programed accordingly or the manufacturer's specification sheets must be used to program the appropriate values into PowerPro's registers.

- b. If discrete memory modules (non-DIMMs) are being used the following action is taken:
- If no serial presence detect is present on the primary I²C Interface, the stored values in the SDRAM_CTRL register are used for the banks that are present. When the I²C information is present, the I²C information is used to program the SDRAM_CTRL register.

2. Program the Base Address (A[0:15]) field and Enable (ENABLE) bit in the SDRAM Memory Bank X Address (SD_Bx_ADDR) register (see page 233) and the Mask (M[0:15]) bit in the SDRAM Memory Bank X Address Mask (SD_Bx_MASK) register (see page 235). These registers must be programmed for all SDRAM banks used in the system.

All SDRAM memory images must be aligned to the size of the memory being used. For example, a 64-Mbyte device must be on a 64-Mbyte boundary, a 256-Mbyte device on a 256-Mbyte boundary. This relationship continues until the maximum device width is reached. Refer to 16. "Registers" on page 199 for more information.

3. Program the SDRAM Memory Bank X Control and Status (SD_Bx_CTRL) register (see page 237) with the appropriate parameters for the physical type of memory being used in the system. These parameters are determined from either the specification sheets for the memory itself, or from the primary I²C Interface serial presence detect information.

The bits and fields which must be set in the SD_Bx_CTRL register include:

- T_RCD: This bit specifies the timing delay between the Activate (ACTV) command and the READ/WRITE command. This bit can be used to optimize SDRAM performance.
- T_RP: This field specifies the timing delay between the Precharge (PRE) command to the ACTV command. This field can be used to optimize SDRAM performance.
- T_RAS: This field specifies the timing delay between the ACTV command and the PRE command. This field can be used to optimize SDRAM performance.
- Number of Banks (NBANK): This bit selects the number of physical and logical banks in the DIMM.
- Buffered SDRAM DIMM select (BUF): This field tells PowerPro if buffered or unbuffered SDRAM DIMMs are being used.
- Address Mapping Mode (A_MODE): This bit maps the address of the number of columns PowerPro is supporting.
- ECC Checking and Correction Enable (ECC_EN): This bit enables ECC checking and correction.

• ECC Correction Mode (ECC_CE): When this bit is enabled, PowerPro corrects all correctable errors.

SDRAM banks (DIMMs) can be individually enabled for ECC protection. However, enabling ECC protection has no effect if the system has the Data Quality Mask Enable (DQM_EN) bit, in the SDRAM Timing Parameters (SD_TIMING) register (see page 225), set to 1. Selecting ECC protection on banks which do not have physical ECC memories attached results in continuous multi-bit ECC errors. All banks must have the ECC enable bit set to 1.

4. Program the SD_TIMING register.

The bits and fields which must be set in the SD_TIMING register include:

- Datapath Tune (TUNE): This setting is determined by the board layout, pin loading, and clock frequency. Refer to "SDRAM Datapath Tuning" on page 82 for clarification.
- External Datapath (EX_DP): This bit must be set to connect the SDRAM data bus to the processor (60x) data bus.
- CAS Latency (CL): This is a global parameter and is set to all the SDRAMs simultaneously.
- SDRAM Timing Parameter (T_RC): This setting is determined from SDRAM specification and should be taken as the worst-case value the longest delay for all of the attached SDRAMs.
- 5. Ensure the minimum amount of time has elapsed from PORESET_. This time is dependent on the SDRAM memory specifications.
- 6. Set the Enable (ENABLE) bit, in the SD_TIMING register, to 1. This setting forces a power-on reset sequence to the SDRAMs. This sequence consists of the following:
 - precharge-all command
 - eight auto-refresh commands
 - mode register set command
 - eight auto-refresh commands

Refer to "Commands" on page 87 for more information on SDRAM commands.

The worst case timing from all of the four possible enabled SDRAM banks must be used during the power-on reset sequence.

7. The SDRAMs are initialized.

4.5.1 SDRAM Datapath Tuning

High system performance is obtained with a combination of the least amount of latency between the processor (60x) bus requesting memory, and that request being fulfilled and throughput. However, a heavily loaded and fast system is not able to meet timing criteria without pipeline stages inserted in the datapath. The TUNE bits in the SDRAM Timing register (see page 225) control the number of pipeline stages inserted in the datapath.

By pipelining the datapath, system performance and timing may be enhanced.

When ECC correction is enabled on any bank, two pipeline stages are inserted in the data path by default.

When using a high speed bus (over 66MHz) the TUNE bits should be set to 11. This is the default when using ECC. ECC has no real impact on latency.

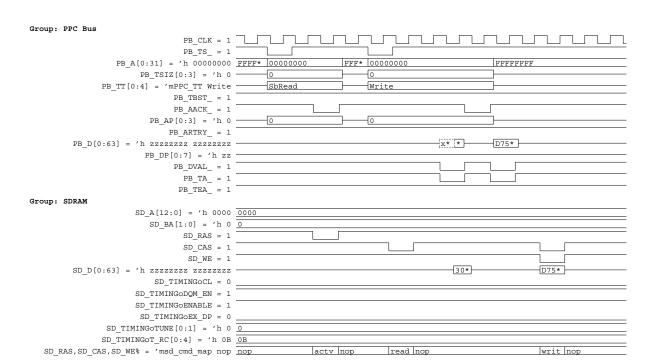
If ECC correction is not used on any memory bank, then the following settings are available:

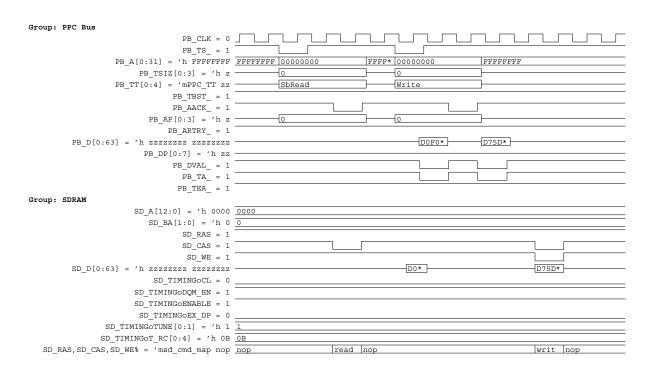
TUNE bits only effect the read datapath; the Tune bits do not effect the write datapath.

• TUNE 00 = no pipeline stages.

If $EX_DP = 0$, then data flows from SDRAM to the processor (60x) bus through the PowerPro in the same clock, with PowerPro acting as a simple data buffer. If $EX_DP = 1$, then it is assumed that the SDRAM data bus is connected directly to the processor (60x) data bus; in this case PowerPro drives $PB_DVAL_$ and $PB_TA_$ but not $PB_D[0:63]$.

Figure 19 shows SD_D is driven by the SDRAM on one clock and PB_D is sampled by a PowerPC master on the next clock. With write transactions, PowerPro samples PB_D on one clock and drives SD_D to the SDRAM on the next clock. TUNE never effects the write data path to SDRAM.




Figure 19: Datapath TUNE bits set to 00

• TUNE 01 = one piplined stage on the output data path.

Figure 20 shows that on SDRAM reads, the SDRAM drives SD_D on one clock and the processor (60x) bus master can sample PD_D two clocks later. This is one clock later than in the case where TUNE=00.On SDRAM writes, PowerPro samples PB_D on one clock and drives SD_D to the SDRAM on the next clock.

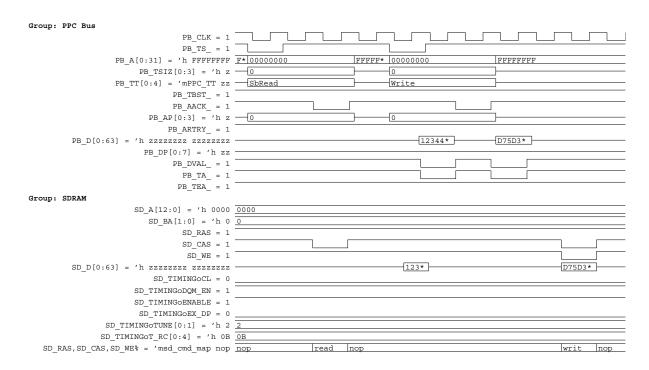
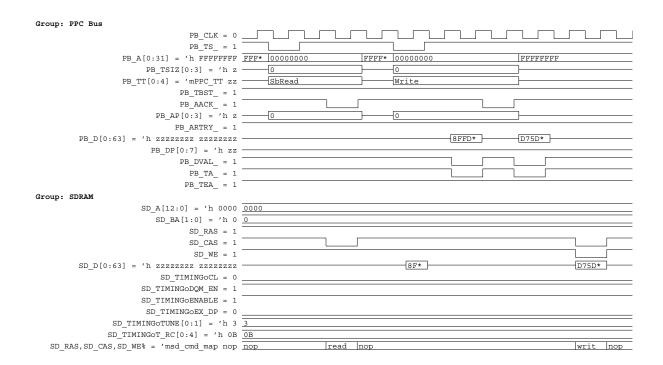

84

Figure 20: Datapath TUNE bits set to 01

• TUNE 10 = one pipeline stage on the input data path. Figure 21 shows SDRAM reads and writes work the same as when TUNE=01.


Figure 21: Datapath TUNE bits set to 10

• TUNE 11 = two pipeline stages, one on the input path and one on the output path.

Figure 22 shows two pipeline stages, one on the input path and one on the output path for both reads and writes.

Figure 22: Datapath TUNE bits set to 11

When ECC correction is enabled on any bank, two pipeline stages are inserted in the data path by default. The TUNE bits are programmed to 11 in most applications.

4.6 Commands

PowerPro issues commands specific to the SDRAM devices by encoding them on the following signals:

- SD_CS[0:3]_
- SD_CS[4:7]_
- SD_RAS_
- SD_CAS_
- SD_WE_

Table 11: SDRAM Commands

Name	Description	SD_CS_	SD_RAS_	SD_CAS_	SD_WE_
Active	Select logical bank and activate row	Low	Low	High	High
Read	Select logical bank and column and start read burst	Low	High	Low	High
Write	Select logical bank and column and start write burst	Low	High	Low	Low
Precharge	De-activate row in logical bank or banks	Low	Low	High	Low
Auto Refresh	Refresh both logical banks from a on-chip refresh counter	Low	Low	Low	High

4.6.1 Standard SDRAM Commands

There are standard commands that are used for SDRAM activation and transactions. The following sections describe the commands.

4.6.1.1 Active Command

The active command is used to open (or activate) a row in a particular logical bank for a subsequent access. This row remains active (or open) for accesses until a precharge command is issued to that logical bank. A precharge command must be issued before opening a different row.

4.6.1.2 Read Command

The read command is used to initiate a burst read access to an active row.

4.6.1.3 Write Command

The write command is used to initiate a burst write access to an active row

4.6.1.4 Precharge

The precharge command is used to deactivate the open row in a particular logical bank or the open row in all logical banks. The logical bank(s) are available for a subsequent row access a specified time (tRP) after the precharge command is issued. Once a logical bank has been precharged, it is in idle state and must be activated prior to any read or write commands being issued to that logical bank.

4.6.1.5 AUTO REFRESH

Auto refresh is used during normal operation of the SDRAM and is similar to CAS_-BEFORE-RAS_ REFRESH in conventional DRAMs. This command is non-persistent, so it must be issued each time a refresh is required

4.6.2 Supported SDRAM Commands

Table 12 lists all of the SDRAM commands used by SDRAM devices. PowerPro supports a sub-set of these commands. The shaded areas of the table indicate commands that are not supported in PowerPro.

Table 12: SDRAM Commands

Command	Description
NOP	No operation
Mode Register Set	Load the Mode Register from SD_A[12:0]
Row Activate	Activate a row specified on SD_A[12:0]
Read	Column burst read
Read with Auto- Precharge	Column burst read with row precharge at the end of the transfer
Write	Column burst write
Write with Auto-Precharge	Column burst write with row precharge at the end of the transfer
Precharge	Precharge a single logical bank
Precharge All	Precharge both logical banks within an addressed physical bank
Auto-Refresh	Refresh SDRAM from a on-chip refresh counter
Self-Refresh	Refresh autonomously
Power Down	Power down if SDRAM is pre-charged
Stop	Interrupt a read or write burst

4.7 Transactions

The SDRAM Interface supports both read transactions and write transactions to memory.

Cache wrap reads occur for burst and extended transactions to SDRAM. The supported embedded processors, MPC8260, PowerPC 740 and PowerPC 750, do not generate cache wrap writes.

4.7.1 Reads

There are three different scenarios which affect PowerPro SDRAM reads. The following categories list different areas that impact reads on PowerPro:

- The desired logica bank is open at the required address
- The desired logica bank is open, but at the incorrect address
- The desired logica bank is closed

These categories are summarized in the following sections.

4.7.1.1 Logical Bank Open at the Required Address

Read performance is optimized for SDRAM page hits. Refer to "Page Mode" on page 96 for more information on page hits.

A page hit occurs when the current address falls within a row that is currently open. PowerPro follows these steps for a page hit on a read:

- 1. PowerPro decodes the transaction to determine if the transaction should be claimed. PowerPro latches the address, size and type of the transaction.
 - If the address falls in the SDRAM address range indicated by Base Address (A[0:15]) field, in the SDRAM Memory Base X Address (SD_Bx_ADDR) register, PowerPro claims the transaction.

The memory space allotted must be aligned with the block size of the attached memory. For example, a 128 Mbyte DIMM can only be mapped to addresses on a 128 Mbyte boundary.

 PowerPro determines whether or not the open pages are hit. If the open pages are hit the SDRAM Interface activates the appropriate bank by asserting its chip select for the next cycle. Once the physical bank is selected the appropriate logical bank within the physical bank is selected through SD_BA[1:0].

- 2. In the next cycle, PowerPro asserts SD_CAS_ and de-asserts SD_WE_, then places the column address on the requested address. This initiates the burst read cycle.
- 3. After the SD_CAS_ latency expires, the SDRAM device drives the data to PowerPro.
- 4. When the data is received, PowerPro initiates ECC protection (if enabled) and compares it against the data returned from SDRAM. Refer to 9. "Error Handling" on page 123 for more ECC protection information.
- 5. Assuming ECC protection indicates no error in the data, PowerPro drives the data to the processor (60x) bus.

Figure 23 shows a burst read when the logical bank is open to the required address. The Bank Management (BMGT) field is set to 0 in the SDRAM Memory Bank x Control and Status (page 237). When the BMGT field is set to 0, the memory bank is left open until a miss or refresh occurs. If the BMGT field is set to 0xF, the memory bank is closed after each access. The timing of this transaction is not effected if the BMGT field is set to 0 or 1.

Figure 23 through Figure 26 are meant to clarify information. However, they are based on generic information and are for example purposes only.

Figure 23: Burst Read with Logical Bank Open at the Required Address

90 PowerPro User Manual 80A5000_MA001_10

4.7.1.2 Logical Bank Open at the Incorrect Address

In order to access data on a read when the required logical bank is detected as open, but is at the incorrect address, PowerPro follows these steps:

- 1. Close the current logical bank with a Precharge (PRE) command
- 2. Open the new logical bank with an Activate (ACTV) command
- 3. Issue a Read (READ) command
- 4. After the SD_CAS_ latency expires, the SDRAM device drives the data to PowerPro.
- 5. Assuming ECC protection indicates no error in the data, PowerPro drives the data to the processor (60x) bus.

Figure 24 shows a burst read when the logical bank is open to the incorrect address. The Bank Management (BMGT) field is set to 0 in the SDRAM Memory Bank x Control and Status (page 237). When the BMGT field is set to 0, the memory bank is left open until a miss or refresh occurs. If the BMGT field is set to 0xF, the memory bank is closed after each access. The timing of this transaction is not effected if the BMGT field is set to 0 or 1.

Figure 24: Burst Read with a Logical Bank Open at the Incorrect Address

4.7.1.3 Burst Read With Logical Bank Closed

In order to access data on a read when the required logical bank is closed, PowerPro follows these steps:

- 1. Assert the ACTV command to open the logical bank
- 2. Issue a READ command

- 3. After the SD_CAS_ latency expires, the SDRAM device drives the data to PowerPro.
- 4. Assuming ECC protection indicates no error in the data, PowerPro drives the data to the processor (60x) bus.

Figure 25 shows a burst read when the logical bank is open to the required address. The Bank Management (BMGT) field is set to 0 in the SDRAM Memory Bank x Control and Status (page 237). When the BMGT field is set to 0, the memory bank is left open until a miss or refresh occurs. If the BMGT field is set to 0xF, the memory bank is closed after each access.

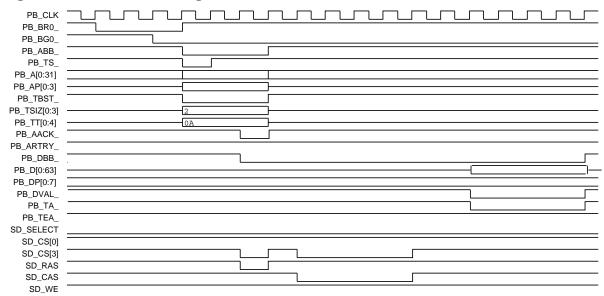


Figure 25: Burst Read with Logical Bank Closed

4.7.2 Writes

PowerPro writes are fully pipelined. From the processor (60x) bus perspective, PowerPro accepts four data writes after PB_AACK_ is asserted.

PowerPro follows these steps on a write:

- 1. PowerPro decodes the transaction to determine if the transaction must be claimed. PowerPro latches the address, size and type of the transaction.
 - If the address falls in the SDRAM address range indicated by Base Address (A[0:15]) field, in the SDRAM Memory Base X Address (SD_Bx_ADDR) register, PowerPro claims the transaction.

92

- PowerPro determines whether or not the open pages are hit. If the open pages are hit then the SDRAM Interface activates the physical bank by asserting its chip select for the next cycle. Once the physical bank is selected the appropriate logical bank within the physical bank is selected through SD_BA[1:0].
- 2. ECC protection (if enabled) generates the ECC code for the data to be written.
- 3. In the next cycle PowerPro asserts SD_CAS_ and asserts SD_WE_, then places the column address on the requested address. PowerPro drives the data to be written and its ECC code to the SDRAM devices.
- 4. PowerPro drives the new data on the data bus each cycle until the transaction is complete.

Figure 26 shows a single write when the bank is open to the required address. The Bank Management (BMGT) field is set to 0 in the SDRAM Memory Bank x Control and Status (page 237). When the BMGT field is set to 0, the memory bank is left open until a miss or refresh occurs. If the BMGT field is set to 0xF, the memory bank is closed after each access. The timing of this transaction is not effected if the BMGT field is set to 0 or 1.

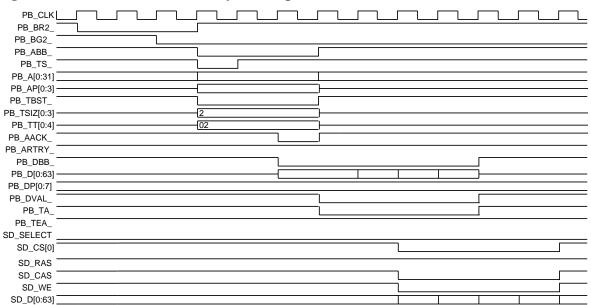


Figure 26: Burst Write With Memory Bank Open

4.8 SD_SELECT Signal

SD_SELECT is a multiplexer select line which helps reduce SDRAM data bus loading in system which has four SDRAM DIMMs in use. This signal is used in heavily loaded SDRAM configurations to control a FET switch, or buffer, connected between data lines on bank 0/1 and bank 2/3. This signal toggles and can be used for selecting a FET switch between FLASH/ROM or SDRAM accesses. This is required when the SD_D port is shared between the FLASH/ROM and the SDRAM devices.

SD_SELECT is high when an access is made to SDRAM bank 2/3. The signal is low when an access is made to SDRAM bank 0/1 or FLASH/ROM devices.

Figure 27 shows a typical system schematic where the protocol of SD_SELECT as used with a SDRAM access to either SD_B2 or SD_B3.

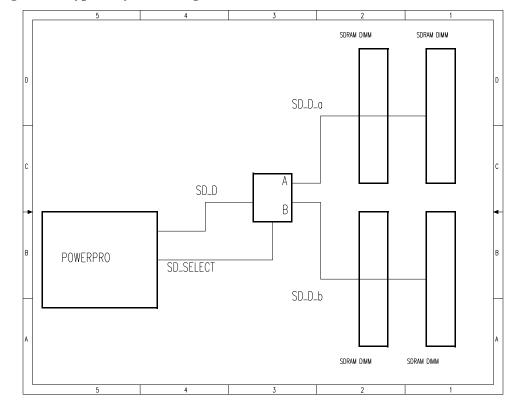


Figure 27: Typical System Using SD_SELECT

SD_SELECT is asserted one clock before the SD_D becomes valid in both read and write transactions. Figure 28 shows that SD_SELECT is asserted one clock before the data (SD_D) is valid. Cursor 1 shows when SD_SELECT is asserted and Cursor 2 represents when SD_D is valid.

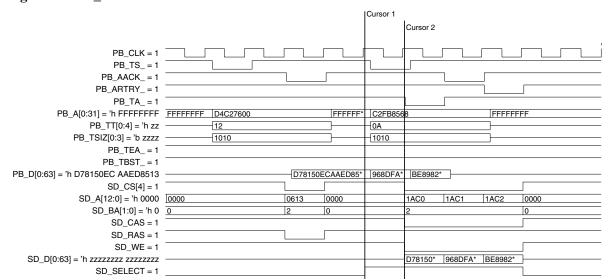


Figure 28: SD_SELECT Assertion

In Figure 28 the assertion of SD-SELECT shows that the access is for SD_B2 or SD_B3.

SD_SELECT is not asserted for accesses to SD_B0 or SD_B1.

4.9 Page Mode

The SDRAM page mode size is determined by the number of column bits in the SDRAM attached to PowerPro. The SDRAM Interface supports back-to-back page mode. Pipelined accesses to system memory that lie in the same logical bank are treated as a continues burst as long as the addressed page is open.

The Bank Management (BMGT) bits, in the SDRAM Memory Bank X Control and Status (SD_Bx_CTRL) register, determine if pages are left open after access, or closed immediately with an auto-precharge command during the last read or write. A BMGT bit is assigned to each SDRAM. Pages left open by setting the BMGT bit to 0, remain open until an access to that page results in a miss or a Refresh command is driven to memory.

4.10 Refresh

SDRAM is dynamic memory and must be periodically refreshed. A refresh cycle is issued for the SDRAM memory. All enabled logical banks of SDRAM are refreshed simultaneously at the expiry of the refresh timer. The refresh interval is programmed in the SDRAM Refresh Interval (T[0:15]) field, in the SDRAM Refresh Interval (SD_REFRESH) register (see page 224).

SDRAM needs to be refreshed thousands of times per second or it looses its stored data.

The refresh interval for SDRAM is in units of processor bus clocks. The programmed number of clocks are counted, and at the end of the interval a refresh command is sent to all logical banks. The register must be set to an appropriate interval for the memory attached and the processor (60x) bus clock frequency used in the system. If memory with differing requirements for refresh time, a refresh time appropriate to the worst case device — requiring the most frequent refresh intervals — must be assigned to all SDRAM devices.

The PowerPro refresh counter is designed to minimize the disruption of other memory accesses.

PowerPro collects a maximum of 16 refreshes while waiting for an inactive time to assert the refresh command. If, by 16 refresh periods no inactive time is detected, the refresh counter allows the current transaction to finish then takes priority over any pending transactions. The next transaction is paused by the refresh controller. Once the refresh starts, all pending refreshes — up to the maximum of 16 — are performed.

During a refresh command, all SDRAM and FLASH/ROM accesses are either delayed or retried until the refresh cycle completes.

4.11 ECC Protection

ECC protection can be enabled on the SDRAM Interface. Refer to 9. "Error Handling" on page 123 for information on ECC protection.

4.12 Endian Conversion

The PowerPC platform is big-endian. In a big-endian environment A[0] refers to the most significant bit. PowerPro is designed for a PowerPC system and uses the big-endian notation wherever possible. However, many available memories are specified with little-endian notation. All available SDRAM DIMMs and modules use A[0] as the least significant bit. However, PowerPro does not perform any endian conversion.

The general rule for connection is connect like-to-like when attaching SDRAM and FLASH/ROMs to PowerPro.

PowerPro does not perform any endian conversion. It is a big-endian device.

4.13 Address Mapping

The information in this section focuses on software information required to program PowerPro. It is software specific information.

Address mapping occurs between the processor (60x) bus and SDRAM memory. The following parameters must be programmed in order for proper address mapping to occur:

- The address from the processor (60x) bus map to the SDRAM chip select must be programmed in the A[0:15] field. This programming is based on the Address Mode (A_MODE) bit, in the SD_Bx_CTRL register.
- The size of the memory installed must be programmed through the SD_Bx_MASK register.
- The number of physical and logical banks must be programmed through the Number of Banks (NBANK) bit in the SD_Bx_CTRL register.

Table 13 and Table 14 illustrate the mapping of processor bus address to physical SDRAM address.

Table 13: SDRAM Address to Processor (60x) Bus Mapping^a

SDRAM Address	PB_A A_Mode 0	PB_A A_Mode 1	PB_A A_Mode 2	PB_A A_Mode 3	PB_A A_Mode 4	All Modes
(SD_A)	Row	Row	Row	Row	Row	Column
SD_A[12]	PB_A8	PB_A7	PB_A6	PB_A5	PB_A4	PB_A17
SD_A[11]	PB_A9	PB_A8	PB_A7	PB_A6	PB_A5	PB_A18
SD_A[10]/AP	PB_A10	PB_A9	PB_A8	PB_A7	PB_A6	PB_AP
SD_A[9]	PB_A11	PB_A10	PB_A9	PB_A8	PB_A7	PB_A19
SD_A[8]	PB_A12	PB_A11	PB_A10	PB_A9	PB_A8	PB_A20
SD_A[7]	PB_A13	PB_A12	PB_A11	PB_A10	PB_A9	PB_A21
SD_A[6]	PB_A14	PB_A13	PB_A12	PB_A11	PB_A10	PB_A22
SD_A[5]	PB_A15	PB_A14	PB_A13	PB_A12	PB_A11	PB_A23
SD_A[4]	PB_A16	PB_A15	PB_A14	PB_A13	PB_A12	PB_A24
SD_A[3]	PB_A17	PB_A16	PB_A15	PB_A14	PB_A13	PB_A25
SD_A[2]	PB_A18	PB_A17	PB_A16	PB_A15	PB_A14	PB_A26
SD_A[1]	PB_A19	PB_A18	PB_A17	PB_A16	PB_A15	PB_A27
SD_A[0]	PB_A20	PB_A19	PB_A18	PB_A17	PB_A16	PB_A28

a. AP = 1 when Auto-Precharge command issued. At other times AP = 0.

The relationship between the processor (60x) bus address and the SDRAM chip selects and bank address pins (SD_BA[1:0]) involves the NBANK bit in the SD_Bx_CTRL register. This relationship is shown in Table 15. Table 15 illustrates the mapping between processor (60x) bus addresses and SD_A[12:0] for the row and column phases of an SDRAM access. The Mask (M) bit, in the SD_Bx_MASK register, indicates the size of the memory block (decode).

Table 14: SDRAM Chip Select and Bank Mapping

PB Address (PB_A)	NBANK Setting								
(see Table 15)	00	01	10	11					
1	SD_BA[0]	SD_BA[0]	CS[x] or CS[x+1]	CS[x] or CS[x+1]					
2	-	SD_BA[1]	SD_BA[0]	SD_BA[0]					
3	-	-	-	SD_BA[1]					

Table 15: Processor Bus to SDRAM Address Mapping

	A_Mode field setting in the SD_Bx_CTRL register				Mask (M) field setting in the SD_Bx_MASK register												
PB_A	A_ Mode 0 ^a	A_Mode 1	A_Mode 2	A_Mode 3	A_Mode 4	0X800 ^b	0xC00	0xE00	0xF00	0xF80	0xFC0	0xFE0	0xFF0	0xFF8	0xFFC	0xFFE	0xFFF
0						_c	-	-	-	-	-	i	-	-	-	-	-
1						1 ^d	с	-	-	-	-	1	-	1	-	-	-
2						2	1	-	-	-	-	,	-	•	-	-	-
3						3	2	1	-	-	-	,		1	-		-
4					R-12		3	2	1	-	-	1	-	1	-	-	-
5				R-12	R-11			3	2	1	-	1	-	1	-	-	-
6			R-12	R-11	R-10				3	2	1	1	1	1	-	1	-
7		R-12	R-11	R-10	R-9					3	2	1	-	1	-	-	-
8	R-12	R-11	R-10	R-9	R-8						3	2	1	1	-	-	-
9	R-11	R-10	R-9	R-8	R-7							3	2	1	-		-
10	R-10	R-9	R-8	R-7	R-6								3	2	1	-	-
11	R-9	R-8	R-7	R-6	R-5									3	2	1	-
12	R-8	R-7	R-6	R-5	R-4										3	2	1
13	R-7	R-6	R-5	R-4	R-3											3	2
14	R-6	R-5	R-4	R-3	R-2												3

100 PowerPro User Manual 80A5000_MA001_10

Table 15: Processor Bus to SDRAM Address Mapping

	A_Mode field setting in the SD_Bx_CTRL register					Mask (M) field setting in the SD_Bx_MAS								iste
PB_A	A_ Mode 0 ^a	A_Mode 1	A_Mode 2	A_Mode 3	A_Mode 4	0X800 ^b	0xC00	0xE00	0xF00	0xF80	0xFC0	0xFE0	0xFF0	
15	R-5	R-4	R-3	R-2	R-1									
16	R-4	R-3	R-2	R-1	R-0									
17	R-3	R-2	R-1	R-0	C-12									
18	R-2	R-1	R-0	C-11	C-11									
19	R-1	R-0	C-9	C-9	C-9									
20	R-0	C-8	C-8	C-8	C-8									
21	C-7	C-7	C-7	C-7	C-7									
22	C-6	C-6	C-6	C-6	C-6									
23	C-5	C-5	C-5	C-5	C-5									
24	C-4	C-4	C-4	C-4	C-4									
25	C-3	C-3	C-3	C-3	C-3									
26	C-2	C-2	C-2	C-2	C-2									
27	C-1	C-1	C-1	C-1	C-1									
28	C-0	C-0	C-0	C-0	C-0									
29														İ
30														
31														

a. The A_Mode table heading indicates the setting in the A_Mode field of the SD_Bx_CTRL register.

b. The hexadecimal value in this table heading represents the setting in the Mask (M) bit, in the SD_Bx_MASK register.

c. This table value represents no value.

d. This table value represents the setting in the NBANK bit of the SD_Bx_CTRL register.

5. Dual UART Interface

A UART (Universal Asynchronous Receiver/Transmitter) is a logic module that converts parallel data from the host processor to serial data for serial devices (for example, a modem) in an embedded application. A UART can also handle interrupts from a keyboard or mouse, or help coordinate the host processor's speed of operation with the speed of its serial devices.

This chapter outlines the functionality of PowerPro's dual UARTs. The topics addressed in this chapter include:

- "Registers" on page 106
- "Clocking" on page 110

5.1 Overview

PowerPro has two serial interfaces which use the UART protocol for communication. The UARTs perform serial-to-parallel conversion on data characters received from a peripheral device, and parallel-to-serial conversion on data characters received from the processor. The processor can read the complete status of the UART at any time during the functional operation. Status information reported includes the type and condition of the transfer operations being performed by the UART, as well as any error conditions, for example parity, overrun, framing, or break interrupt.

The UARTs include a receive and transmit control, and a user programmable processor interrupt system. Interrupts can be programmed to the user's requirements, minimizing the computing required to handle the communications link.

5.2 Registers

UART registers are accessed through the processor. PowerPro UART operations, including transmission and reception, are controlled by the following registers:

- UARTx Receive/Transmit Data (UARTx_RX_TX) register
- UARTx Interrupt Enable (UARTx_IER) register
- UARTx Interrupt Status / FIFO Control (UARTx_ISTAT_FIFO) register

The UARTx_ISTAT_FIFO register has different functionality depending on whether the register is read or if it is written. Table 16 on page 107 shows the register in its read only state and its write only state. In the "Registers" on page 199 the register bits are explained first in the read only state (Table 114 on page 299) and then in their write only state (Table 116 on page 302).

- UARTx Line Control (UARTx_LCR) register
- UARTx Modem Control (UARTx_RT) register
- UARTx Line Status (UARTx_LSR) register
- UARTx Modem Status (UARTx_MSR) register
- UARTx Scratchpad (UARTx_SCR) register

Table 16: Summary of UART Register

Register Address												
	0 DLAB=0	0 DLAB=0	1 DLAB=0	2	2	3	4	5	6	7	0 DLAB= 1	1 DLAB= 1
	UARTX_ RX_TX (read only)	UARTX_ RX_TX (write only)	UARTx_ IER	UARTx_ ISTAT_FIFO (read only)	UARTX - ISTAT_ FIFO (write only)	UARTx _ LCR	UARTx _ RT	UARTx _ LSR	UARTx _ MSR	UARTx _ SCR	Divisor Latch	Divisor Latch
Bit	RX	TX	IER	ISTAT	FIFO	LCR	MCR	LSR	MSR	SCR	DLM	DLL
7 (LSB)	Data Bit 0 ^a	Data Bit 0	Enable Received Data Available Interrupt (ERBFI)	0 if interrupt is pending	FIFO Enable	Word Length Select Bit (0) (WLEN)	Reserve d	Data Ready (DR)	Reserve d	Bit 0	Bit 8	Bit 0
6	Data Bit 1	Data Bit 1	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	Interrupt ID Bit (0)	RCVR FIFO Reset	Word Length Select Bit (1) (WLEN)	Reserve d	Overrun Error (OE)	Reserve d	Bit 1	Bit 9	Bit 1
5	Data Bit 2	Data Bit 2	Enable Receiver Line Status Interrupt (ELSI)	Interrupt ID Bit (1)	XMIT FIFO Reset	Number of Stop Bits (STB)	Reserve d	Parity error (PE)	Reserve d	Bit 2	Bit 10	Bit 2
4	Data Bit 3	Data Bit 3	0	Interrupt ID Bit (2)	Reserve d	Parity Enabled (PEN)	Reserve d	Framing error (FE)	Reserve d	Bit 3	Bit 11	Bit 3
3	Data Bit 4	Data Bit 4	0	0	Reserve d	Even Parity Select (EPS)	Reserve d	Break Interrupt (BI)	Reserve d	Bit 4	Bit 12	Bit 4
2	Data Bit 5	Data Bit 5	0	0	Reserve d	Stick Parity (SP)	Reserve d	Transmit ter Holding Register (THRE)	Reserve d	Bit 5	Bit 13	Bit 5
1	Data Bit 6	Data Bit 6	0	FIFO Enabled	RCVR Trigger (LSB)	Set Break (SB)	Reserve d	Transmit ter Empty (TEMT)	Reserve d	Bit 6	Bit 14	Bit 6
0 (MSB)	Data Bit 7	Data Bit 7	0	FIFO Enabled	RCVR Trigger (LSB)	Divisor Latch Access Bit (DLAB)	Reserve d	FIFO in RCVR FIFO	Reserve d	Bit 7	Bit 15	Bit 7

a. Bit 7 is always the least significant bit. It is the first to be serially transmitted or received.

5.2.1 Receive/Transmit Data Register

The UARTx_RX_TX register enables the PowerPro to receive read data or send write data. Refer to UARTx Receive/Transmit Data register (page 293) for more information.

When the Divisor Latch Access (DLAB) bit is set, writes to UART offset 0x0 and 0x1 set the baud rate divisor. When the DLAB bit is set to 1, the UARTx_RX_TX and UARTx_IER registers are not accessible. The register space is shared between the UARTx_DLL register and the UARTx_Rx_Tx at offset 1B0 (Table 110 on page 293 and Table 113 on page 298) and the UART1_DLM register and the UARTx_IER register (Table 112 on page 296 and Table 113 on page 298) at offset 1B1.

Writing 1 to the DLAB bit enables the UARTx_DLM or UARTx_DLL (depending on reads and writes) and disables the other registers that share their register offset.

5.2.2 Interrupt Enable Register

The UARTx_IER register enables UART interrupts. Each interrupt can individually activate an interrupt output signal. The UART interrupts that can be enabled include:

- Enable Received Data Available Interrupt: Activated by setting the ERBFI bit.
- Enable Transmitter Holding Register Empty Interrupt: Activated by setting the ETBEI bit.
- Enable Receiver Line Status Interrupt: Activated by setting the ELSI bit.

Refer to the UARTx Interrupt Enable register (page 296) for more information.

5.2.3 Interrupt Status and FIFO Control Register

The UARTx_ISTAT_FIFO register is used for providing interrupt status information to the processor, as well as performing FIFO control operations. FIFO operations include setting the receiver FIFO trigger levels and enabling the FIFOs. Refer to UARTx Interrupt Status/FIFO control register (page 299) for more information.

5.2.4 Line Control Register

The UARTx_LCR register specifies the format of the asynchronous data communications exchange and enables the Divisor Latch Access bit. This register enables parity, and even parity. Refer to the UARTx Line Control register (page 304) for more information.

5.2.5 Modem Control Register

The UARTx_RT register functionality is not supported in PowerPro.

5.2.6 Line Status Register

The UARTx_LSR registers provides status information to the processor concerning the data transfer. It logs parity error, receiver FIFO errors and framing errors. This register is intended for read operations. Refer to the UARTx Line Status register (page 308) for more information.

5.2.7 Modem Status Register

The UARTx_MSR register functionality is not supported in PowerPro.

5.2.8 Scratchpad Register

The UARTx_SCR is an 8-bit read and write register. This register does not control UART operation, but is designed to hold temporary data.

5.3 Clocking

The UARTs run synchronously with the processor bus clock (PB_CLK). The UARTs do not contain their own clock generator or crystal input. The baud rate selection is unique to PowerPro.

The PowerPro UARTs are controlled by the Baud Rate Divisor Latches (B) bit in the UARTx_DLL or the UARTx_DLM registers (see page 295 and page 298). The divisor is a self-resetting, free running 32-bit counter which allows the UART's logic to continue when it has reached zero.

With a 100 MHz clock, the baud rate is programmable from 100 Mbaud (one bit every 10 ns) to 0.023 baud — one bit every 42 seconds.

5.3.1 Baud Rate Setting

In order to determine the correct setting, the system clock frequency and the required baud (bits per second) rate must be equated. The output frequency of the Baud Generator is represented in the following equation:

The divisor latch setting can be computed by using the following formula:

Divisor Latch = (Frequency/ (16 * Baud))-1

Due to errors introduced by rounding numbers, baud rates may not be attainable at certain PB_CLK frequencies.

For example, if the frequency is 10 MHz and the Baud Rate is 300, the Divisor Latch is:

Divisor Latch = $((10*10^6)/(16*300))-1$

Divisor Latch = 10 000 000/4800

Divisor Latch = 2083 (decimal)

Divisor Latch = 0x823

The two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization to ensure proper operation of the Baud Generator. Upon loading either of the divisor latches, a 16-bit Baud counter is immediately loaded.

6. General Purpose I/O Interface

This chapter outlines the functionality of the General Purpose I/O port. The topics addressed in this chapter include:

- "GPIO Register" on page 111
- "Reads" on page 112
- "Writes" on page 112

6.1 Overview

PowerPro features a flexible, General Purpose I/O (GPIO) interface. GPIO functionality is multiplexed with other features on PowerPro. Although all pins on PowerPro have a primary purpose, in many instances these pins are not used in their primary role. For example, a system may not require two UARTS and two I²C ports. These pins, when not being used for their primary purpose, are assigned to the GPIO pool. All pins capable of GPIO have a mapping in the GPIO register (see page 313).

6.2 **GPIO Register**

The following bullets outline the GPIO register bits:

- GPIO Enable (ENABLE[0:7]): This bit controls whether the GPIO port is activated.
- GPIO Mask (MASK[0:7]): This bit enables or masks writes.
- GPIO Direction (DIR[0:7]): This bit controls whether the GPIO port is an output or an input.
- GPIO Data (DATA[0:7]): This bit is a write value, which controls the value the pin assumes when it is an output.

Refer to "General Purpose I/O" on page 313 for more information on the GPIO register.

6.3 GPIO Signals

PowerPro has a series of multiplexed signals that can be programmed as GPIO signals. GPIO signals are present on all PowerPro interfaces. Refer to "Signals and Pinout" on page 161 for more information on multiplexed PowerPro signals.

6.4 Reads

Reading from the data port returns the pin's current value. When the pin is an input, the input value is returned. When the pin is configured as an output, the value output on the pin is returned.

Reading from a GPIO port, even if that port is not enabled, returns the value on the pin at the time the read command is executed.

6.5 Writes

In order to set pins bit-wise without affecting other pins in the same register, a write mask is provided. When the write mask value is 0, the enable, direction, and write data values are ignored. When the write mask value is 1, the enable, direction, and write data values are written.

The write mask has no effect on reads.

The GPIO, coupled with the general purpose timers, can enable software to control any low-to-medium speed device. The GPIO can control anything on the system with a non-time critical protocol.

6.6 Activating GPIO Functionality

Actually upon negation of HRESET none of the GPIO ports are active. There are no GPIO ports that are configured as enabled until the user writes to the ENABLE register bits.

After HRESET_ is negated, no GPIO pins are active. They are all configured disabled. There are no GPIO ports that are configured as enabled until the ENABLE register bits are written.

GPIO signals must be programmed as GPIO signals before a GPIO interface can operate correctly.

For example, if signal GPIO[15], which is multiplexed with the PB_BG[1]_ signal, if it was required as a GPIO signal the following steps occur:

- GPIO[15] is floated during HRESET_
- HRESET_ is deasserted
- Power-up option determines that the arbiter is not enabled
 - The GPIO[15] signal is multiplexed with the PB_BG[0:1]_. Only one of the multiplexed functions is available. In order to enable the GPIO[15] pin, the PB_BG[0:1]_ signal and therefore the arbiter cannot be enabled.
- GPIO[15]_ is driven low

	6.	General	Purpose	I/O	Interfac
--	----	---------	---------	-----	----------

7. I²C Interface

This chapter outlines the functionality of the I²C Interface in PowerPro. The topics addressed in this chapter include:

• "Bus Master Transactions" on page 116

7.1 Overview

PowerPro has two master-only, I^2C bus compatible interfaces that each support a maximum of eight I^2C slave devices. Refer to the I^2C Specification for more information on the I^2C protocol and the requirements for I^2C bus compatible devices.

The I²C Interface is used for reading serial presence detect data from DIMMs. PowerPro also provides a mechanism for the user to perform master read and write operations to EEPROMs or other I²C compatible slave devices.

The two I²C interfaces are classified as primary and secondary. The primary I²C Interface is connected to serial presence detect EEPROMS commonly found on DIMM modules. The secondary I²C interface is intended for general use. An example application could be using the interface for templates sensing.

The I²C signals can be multiplexed with Interrupt and GPIO functionality. When the signals are multiplexed, I²C functionality is no longer available on PowerPro.

The PowerPro I²C interfaces support the following features:

- I²C 7-bit device addressing
- Standard mode (up to 100 kbits/s)

- Single read/write (random read, byte write)
- Sequential read during post reset load sequence

The interface consists of two pins: I2Cx_SDA and I2Cx_SCL. I2Cx_SDA is a bidirectional open drain pin for transferring address, control, and data bits. I2Cx_SCL is the clock output for the I²C slave devices. I2Cx_SCL is derived from the processor clock. At the maximum Processor Bus Clock (PB_CLK) frequency of 100 MHz, the I2Cx_SCL clock rate is 100 kHz.

PowerPro does not support multiple masters on the same I²C bus. However, through the GPIO ports it is possible to accomplish multiple masters on the same I²C bus in software.

7.2 Bus Master Transactions

The I²C interfaces can perform master reads and writes from all external interfaces. These I²C transactions are generated by accessing the I2Cx Control and Status (I2Cx_CSR) register (see page 255). This register can be used to access EEPROMs or perform arbitrary single byte transfers to other I²C compatible devices. The I2C_CSR register contains the following fields:

- EEPROM Address (ADDR)
- Data (DATA)
- Device Code (DEV CODE)
- Chip Select (CS)
- Read/Write (RW)
- Active (ACT)
- Error (ERR)

7.2.1 EEPROM Address

The 8-bit EEPROM ADDR field specifies the address for byte writes and random reads. The 8-bit DATA field is the source for writes and destination for reads. DEV_CODE is the 4-bit field that specifies the I²C device type. The default setting is 1010b. This is the code for EEPROMs. CS is the 3-bit field used to select one of the eight slaves on the I²C bus. The DEV_CODE and CS fields from the I²C 7-bit device address.

7.2.2 Active Bit

When the ACT bit is set, it means a transfer is in progress and the register is in readonly mode. After performing a write or read access, ACT bit must be polled until it is negated before performing other transfers. The ACT bit is also asserted during power-up EEPROM load.

7.2.3 Errors

When PowerPro is unable to complete an I^2C access, the Error (ERR) bit, in the $I2Cx_CSR$ register, is set when the Act (ACT) bit, in the $I2Cx_CSR$, is negated. The ERR bit must be cleared before attempting another access.

8. Timers

This chapter outlines the functionality of PowerSpan timers. The topics addressed in this chapter include:

- "General Purpose Timer" on page 119
- "Watchdog Timer" on page 121

8.1 Overview

PowerSpan has two general purpose timers and a watchdog timer.

8.2 General Purpose Timer

PowerSpan features two, free-running 32-bit counter as general purpose system timer.

The general purpose timers are controlled by a series of registers. The registers include the following:

- General Purpose Timer x Base Count (GPTx_COUNT) register
- General Purpose Timer x Capture Events (GPTx_CAPTURE) register
- General Purpose Timer x Interrupt Control (GPTx_IEN) register
- General Purpose Timer x Interrupt Status (GPTx_ISTATUS) register
- General Purpose Timer x Trigger (GPTx_Tx) register
- General Purpose Timer x Compare x (GPTx_Cx) register
- General Purpose Timer x Compare Mask x (GPTx_Mx)

The functionality of these registers are discussed in the following sections.

8.2.1 Base Count

The General Purpose Timer x Base Count (GPTC) field, in the GPTx_COUNT register (see page 262), contains the current value of the base count. All general purpose timer functions work from the value in the GPTC field.

The counter increments once per system clock (PB_CLK) if the prescale bits are all zero. All general purpose timer functions are based-on the reference count.

The GPTC bit must be written to in order set a new value in the case count. This resets the counter to the new input value.

There is no start or stop mechanism on the base count. It is constantly running in PowerPro but it can be reset by writing to it.

8.2.2 Capture Events

PowerPro has capture time registers to capture the current value of the general purpose timer when an event occurs. The time of the free running counter (GPTC bit) is copied into the appropriate capture register when an enabled capture event occurs. The four capture registers are GPTx_Tx.

There are four different types of capture events which cause the GPTC bit value to be copied into the capture register. The following events cause the value to be copied:

- 1. A software event caused by setting one or more of Software Capture Event (SEVT[0:3]) bits, in the GPTx_CAPTURE register (see page 263), to 1.
- 2. Activity on one of the four SDRAM banks, combined with SDRAM Bank Address Match Capture Enable (SD_AM) bits, in the GPTx_CAPTURE register, being set. For example, to capture the timer time of the last activity on SDRAM bank number two, set SD_AM[2] to 1.
- 3. Activity on one of the four FLASH/ROM banks, combined with the setting of the ROM Bank Address Match Capture Enable (EE_AM) bits, in the GPTx_CAPTURE register.
- 4. A match on the processor (60x) bus address match register, combined with Processor (60x) Bus Address Match Capture Enable (PB_AM) bits, in the GPTx_CAPTURE register, being set.

Matching on this register does not require that the matched address lie within the address space normally claimed by PowerPro.

8.2.3 Compare Events

PowerPro has compare registers which provide an event indicating the general purpose timer has reached and passed the compare time. The event could be an interrupt or register status setting.

Four registers are compared against the current value of the GPTC[0:31] bits. A compare event is generated when the current value of the general purpose timer counter matches the compare value of General Purpose Timer Compare Value (CT[0:31]) bits, in the GPTx_CT register (see page 268). The compare event is logged in the Compare Status (CSTAT) bits, in the GPTx_ISTATUS register (see page 266). An interrupt can also be generated when the feature is enabled through the GPT Compare Interrupt Enable (C_IEN) field, in the General Purpose Timer Interrupt Control (GPTx_IEN) register (see page 265).

8.2.3.1 Qualifying Compare Events

The compare time is qualified with the GPT Timer Compare Mask (CM) field, in the General Purpose Timer Compare Mask x (GPTx_Cx) register. When a corresponding mask bit is clear, that bit is used in the compare. When the CM field is set, that bit is ignored and assumed to always to match.

For example, to be notified every time the counter rolled over to 0xxx3_0000 (where 'x' is unimportant value) program the following values:

- $CT[0:31] = 0x0003_0000$
- CM[0:31] = 0x0003_FFFF

8.3 Watchdog Timer

PowerPro's watchdog timer can be used to catch faults in real time operating systems The watchdog timer monitors the operation of a system and forces it to act correctly if it begins to act incorrectly. Incorrect behavior could include missfetched instructions which cause the system to begin executing code from non-existent or improper memory locations.

Errors in system behavior can be caused by electrical noise power line, static electric discharge, power interruption, voltage drop or a variety of other issues.

8.3.1 Enabling the Timer

The watchdog timer is enabled by setting the Enable (ENABLE) bit, in the Watchdog Timer Control (WD_CTRL) register (see page 257).

8.3.2 Time Counts

At a 100 MHz (10 ns) clock period, the 32-bit watchdog timer gives about 42 seconds for a maximal setting. Reading the Current Watchdog Timer Count (WDC[0:31]) field in the Watchdog Timer Count (WD_COUNT) register (see page 260), returns the current value of the watchdog timer.

8.3.2.1 Time-outs

When enabled, the watchdog timer counts down from the value in the Watchdog Timer Initial Value (WDT[0:31]) bits, in the Watchdog Timer Timeout (WD_TIMEOUT) register (see page 258), to zero. When the to counter reaches zero, a watchdog time-out interrupt is asserted.

8.3.3 Resetting the Timer

When the Watchdog Timer Count Reset (WD_RST) bit, in the WD_CTRL register, is set to 1, the watchdog timer is reset back to value in the WDT field, in the WD_TIMEOUT register.

The watchdog timer can also be reset to the value in the WDT field by setting the ENABLE bit, in the WD_CTRL register, to 1 or by changing (writing to) the WDT field.

If the watchdog timer functionality is not required, the timer can be used as a general purpose timer.

9. Error Handling

Errors occur in a system as a result of parity, bus, or internal problems. In order to handle errors so that they have minimum effects on an application, devices have a logic module called an error handler. The error handler logs data about the error then communicates the information to another device (for example, a host processor) that is capable of resolving the error condition.

This chapter outlines the error handling functionality of the PowerPro and describes how PowerPro handles different error conditions. The topics addressed in this chapter include:

- "Processor Bus Interface Errors" on page 124
- "SDRAM Interface Errors" on page 127

9.1 Overview

PowerPro has error detection, reporting and recovery for both the Processor Bus (PB) Interface and the SDRAM Interface.

Errors detected by PowerPro are reported to the processor (60x) bus through the assertion of the PB_TEA_ signal. When the Transaction Error Acknowledge Enable (TEA_EN) bit is set in the Processor Bus General Control (PB_GEN_CTRL) register (see page 209), processor (60x) bus and SDRAM non-correctable errors generate the PB_TEA_ signal, as well as the mapped interrupt signal (see "Interrupt Mapping" on page 138).

For SDRAM correctable errors only the chosen interrupt will be generated. PB_TEA_ will not be generated even if enabled in the PB_GEN_CTL register.

PowerPro latches the address and type of transaction that caused the error in the status registers to assist diagnostic and error handling software. Processor Bus (PB) Interface and SDRAM Interface errors are logged in their corresponding register fields. PB Interface transaction errors are captured in the Processor Bus Error Attribute (PB_ERR_ATTR) register while the address where the error occurred is logged in the Processor Bus Address error Log (PB_AERR) register. Refer to the "Processor Bus Interface Errors" on page 124 for more information.

SDRAM ECC errors are logged in the ECC Uncorrectable Error Flag (ECC_UC) bit and the ECC Correctable Error Occurred Flag (ECC_CO[0:7]) field in the SDRAM Memory Bank X Control and Status (SD_BX_CTRL) register. Refer to "SDRAM Interface Errors" on page 127 for more information.

PowerPro logs an error in its error registers when one of the following conditions occur:

- invalid register access
- uncorrectable error
- data parity error on the processor (60x) bus

PowerPro does not log the transaction that caused a correctable, singlebit ECC error

When interrupts are enabled, PB Interface and SDRAM Interface error conditions can be routed to one of two external interrupt outputs. Refer to 10. "Interrupt Controller" on page 135 for more information.

9.2 Processor Bus Interface Errors

The PB Interface detects and reports the following errors:

- address parity
- data parity
- bus errors
 - invalid transaction type
 - invalid addressing for a memory space

9.2.1 Address Parity Errors

Address parity is enabled by setting the Address Parity Enable (AP_EN) bit, in the in the Processor Bus General Control (PB_GEN_CTRL) register (see page 209). Address parity errors are logged in the Processor Bus Address Error Log (PB_AERR) register (see page 220).

9.2.2 Data Parity Errors

Data parity is enabled by setting the Data Parity enable (DP_EN) bit in the PB_GEN_CTRL register. A data parity error is logged when the Data Parity Error (DPAR) bit is set in the PB_ERR_ATTR register (see page 217).

9.2.3 Bus Errors

When an unsupported processor (60x) bus transaction occurs, the Transaction Type Error Log (TT_ERR[0:4]) bit in the PB_ERR_ATTR register (see page 217) is set to indicate the error type. Refer to "Transaction Types" on page 38 for information on supported PB Interface transaction types.

9.2.4 Error Status Bits

The processor bus interface logs errors when PowerPro detects either an address parity error, data parity error, ECC error or an invalid PowerPro access. The Processor Bus Error Attribute register helps the system determine what error has occurred. Then, in conjunction with the Processor Bus Address Error Log (PB_ERR_ADDR) register, the system can determine exactly which address, transaction type, transaction size caused the error.

PowerPro monitors the type of errors that occur with the Address Parity (APAR) status bit and the ECC Correctable Error (ECC_CE) bit. These bits enable the system to determine the types of errors occurring in the system.

9.2.4.1 Error Status Bit

When the Error Status (ES) bit, in the PB_ERR_ATTR register, is set it means an error has been logged and the contents of the Processor Bus Transaction Type Error Log (TT_ERR) field, Processor Bus SIZ Error Log (SIZ_ERR) field and PB_ERR_ADDR register are valid. Information in the log cannot be changed while ES is set. ES must be cleared by writing 1, in order for the error log registers to capture future errors (ECC_UC and APAR are always captured).

When the ES bit is 0 and the PB address match interrupt is set to 1, TT_ERR, SIZ_ERR, PB_ERR_ADDR contain information on the transaction which triggered the PB match address interrupt. This information is overwritten by a processor (60x) bus error.

This address logging and address match mechanism is designed to be a system level debugging tool.

If ES is clear and the PB address match interrupt is set, TT_ERR, SIZ_ERR, PB_ERR_ADDR contain information on the transaction which triggered the PB match address interrupt. This information is overwritten by a genuine processor (60x) bus error. This address logging and address match mechanism is useful as a system level debugging tool.

9.2.4.2 Error Priority

ECC_UC and APAR errors have the highest priority of any error. For example, if a data parity error and an ECC_UC error occurs at the same time, the ECC_UC error is captured and the DPAR error is not captured.

If the ES bit is set to 1, meaning an error has occurred but has not been cleared, and a ECC_UC or APAR error occurs, the error attributes registers (including PB_ERR_ADDR) is overridden with the transaction characteristics of the transaction which caused the ECC_UC or APAR error. However, MES remains set to 1.

Figure 29 shows a waveform for a transaction where an error has occurred at the 6195ns cursor, and the transaction that completes at the 6305ns cursor incurs an error that is of a higher priority than the previous data parity error. This means the DPAR bit in the PB_ERR_ATTR register and the ES bit in the PB_ERR_ATTR register are se to 1. Since the transaction that completes at 6305ns is a multi-bit ECC error, and multi-bit ECC errors and Address Parity errors are given error-logging priority, then the transaction attributes of the most recent highest priority error are logged in the PB_ERR_ATTR and PB_ERR_ADDR registers.

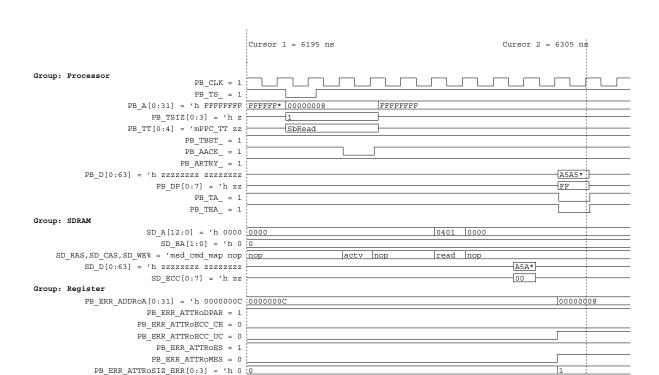


Figure 29: Error Priority Waveform

9.2.5 What PB Errors Indicate

PB_ERR_ATTROTT_ERR[0:4] = 'h 02 02

There are two types of PB Interface errors: programming problems resulting in invalid transaction types, and programming problems resulting in sizes invalid for the memory space. Both of these errors are potentially fatal errors to a system.

9.3 SDRAM Interface Errors

The SDRAM Interface detects and reports the following errors:

- ECC correctable error
- ECC non-correctable error

9.3.1 ECC Errors

PowerPro enables ECC protection in MPC8260 and PowerPC 750 applications. The MPC8260 can enable ECC protection in certain applications, but when multiple processors are involved there is a potential for processor (60x) bus compliancy issues.

PowerPro supports ECC protection for the data path between PowerPro and system memory. ECC enables PowerPro to detect errors in the memory data path, as well as correct single-bit errors in the 64-bit data path. The ECC logic in PowerPro detects and corrects all single-bit errors and detects all double-bit errors.

PowerPro supports either ECC protected DIMMs or a non-ECC protected DIMMs in a system. PowerPro cannot support a system with mixed ECC and non-ECC DIMMs.

9.3.1.1 Enabling ECC Protection

ECC is globally enabled if the DQM_EN in the SD_TIMING register is set to 0. If DQM_EN is set to 1, then DQM is enabled and ECC globally disabled. When the DQM is enabled, then ECC cannot be individually enabled by the ECC_EN bit in the SD_Bx_CTL register.

When using ECC the DQM_EN bit must be set to 0. ECC can then be individually enabled in each SDRAM bank by setting the ECC_EN bit in the SD_Bx_CTL registers.

ECC can then be individually enabled in each SDRAM bank by setting the ECC Global Enable (ECC_EN) bit in the SDRAM Memory Bank x Control and Status register (see page 237). With this bit set, and a DIMM with ECC functionality is in the memory bank, ECC correction is enabled for the individual bank.

When ECC correction is enabled, the ECC Uncorrectable Error (ECC_UC) bit, in the SDRAM Memory Bank X Control Status (SD_Bx_CTRL) register (see page 247), indicates if an uncorrectable error occurred. The ECC Correctable Error (ECC_CO) field flags if a correctable error occurred, and in which byte lane.

When the memory bank is in ECC correction mode, by setting the ECC Correction Enable (ECC_CE) bit in the SD_Bx_CTRL register, and the ECC Checking and Correction Enable (ECC_EN) bit is enabled, any single-bit correctable errors are corrected.

When ECC is enabled and a byte write to SDRAM memory is performed, PowerPro does not assert a response on the processor (60x) bus until the SDRAM accesses — reads followed by 64-bit write— are completed. PowerPro does not assert PB_ARETRY_ on the processor (60x) bus for an SDRAM access; PowerPro inserts wait states instead of PB_ARETRY_.

When ECC_CE is disabled, single-bit correctable errors are logged, but the uncorrected (invalid) data is returned. The ECC_CO field logs the ECC error and the byte lane where the error occurred. Writing a 1 clears the ECC_CO bit.

9.3.2 ECC Error Logging

In a PowerPro system, whenever a correctable or uncorrectable error passes through the Processor Bus Interface, the address, transaction type, and transaction size are logged to an internal register. This information is held in the register until that register is cleared. This ability enables the identification and debugging of software errors.

9.3.2.1 ECC Uncorrectable Error Logging

When the ECC Uncorrectable Error (ECC_UC) bit, in the SDRAM Memory Bank X Control Status (SD_Bx_CTRL) register (see page 247), is set to 1 it indicates that an uncorrectable error occurred. PowerPro logs the address, transaction type, and transaction size of the ECC uncorrectable error. Writing a 1 clears the ECC_UC bit.

9.3.2.2 ECC Correctable Error Logging

When a ECC correctable error occurs, PowerPro sets the ECC_CO bit. This bit indicates that a correctable ECC error did occur and on which byte lane. PowerPro does not log the address, transaction type, and transaction size when a ECC correctable error occurs. Writing a 1 clears the ECC_CO bit.

9.3.3 Testing ECC Functionality

The ECC_TEST bit in the Processor Bus General Control register (see page 209), enables the testing of the ECC protection functionality in PowerPro.When the ECC_TEST bit is set to 0, PowerPro is in normal operation. When the ECC_TEST bit is set to 1 all write data is masked. All writes to D[0:7] are mapped to the eight ECC check bits.

Figure 30 shows a transaction that has been configured with the ECC_TEST bit set to 1. The 6065ns cursor marks the beginning of a one byte write transaction. Since the ECC_TEST is set to 1, the single byte on PB_D is routed to the SD_ECC bits. However, before PowerPro knows to route the bits to SD_ECC PowerPro must first read the contents of SD_D and SD_ECC then modifies PB_D[0:7]=8'hC8 to SD_ECC. PowerPro retains the original SD_D=64'hA5A5A5A5_A5A5A5A5 and writes the new ECC syndrome (PB_D[0:7]) and previous data back into SDRAM at 6155ns. PowerPro uses read-modify-write (RMW) transaction during this process.

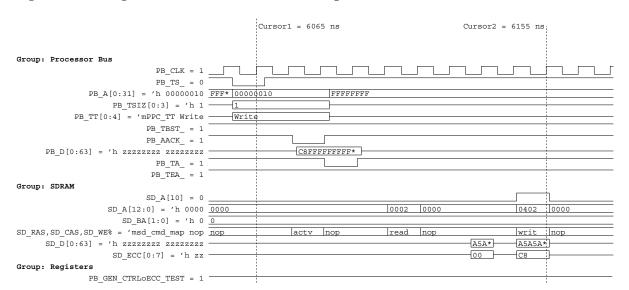


Figure 30: Testing ECC with the ECC_TEST bit Equal to 1

9.3.3.1 Single Bit Error Testing Using ECC_TEST

In Figure 31, when the cursor is at 6785ns, a transaction to read location 32'h00000010 has begun. This transaction reads data and an ECC syndrome that was changed to 8'C8 in the Figure 30, through the ECC_TEST bit in the PB_GEN_CTRL register.

When the transaction completes, shown at the 6875ns cursor, PowerPro has taken several actions. First, because the ECC syndrome has been changed from 8'h00 to 8'C8, which indicates an error on SD_D bit zero, PowerPro has inverted (corrected) SD_D[0]. Refer to Table 17 and Table 18 for more information on which bit is represented by which ECC syndrome. Because the ECC_CE bit is set, in the SD_B0_CTRL register, PB_D[0] is also corrected.

Another action PowerPro has taken is updated the error logs to reflect the ECC error that has just occurred; ECC_CE, ES, SIZ_ERR, TT_ERR, and A bits (in the PB_ERR_ATTR register) now represent the fact that a single bit ECC error has occurred at address 32'h00000010 with a transaction size of 0x01 and a transaction type of 0x0A. ECC_CO[0:8] indicates that the ECC error was in byte lane 0.

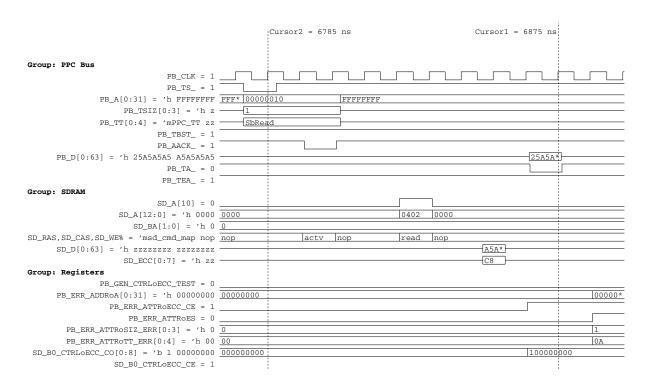


Figure 31: Single Bit Error Transaction and Correction

Because the ECC_CE bit is set, in the SD_B0_CTRL register, PB_D[0] is also corrected. PowerPro has updated the error logs to reflect the ECC error that has just occurred. The following bits in the PB_ERR_ATTR and PB_ERR_ADDR registers now represent the fact that a single bit ECC error has occurred at address 32'h00000010 with a transaction size of 4'h01 and a transaction type of 5'h0A. ECC_CE

- ES
- SIZ_ERR
- TT_ERR
- A (PB_ERR_ADDR register)

ECC_CO[0:8] indicates that the ECC error was in byte lane 0.

Table 17 and Table 18 show which bit is represented by which ECC syndrome.

Table 17: ECC Syndromes

									Bit Lo	cation										
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	1	1	1	1	1	1	1	1												
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
2									1	1	1	1	1	1	1	1	1	1	1	1
3																	1	1	1	1
4	1				1	1	1		1				1	1	1		1			
5		1			1	1		1		1			1	1		1		1		
6			1		1		1	1			1		1		1	1			1	
7				1		1	1	1				1		1	1	1				1
									Bit Lo	cation										
Bit	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
0					1	1	1	1	1	1	1	1	1				1	1	1	
1														1			1	1		1
2	1	1	1	1											1		1		1	1
3	1	1	1	1	1	1	1	1	1	1	1	1				1		1	1	1
4	1	1	1		1				1	1	1		1	1	1	1	1	1	1	1
5	1	1		1		1			1	1		1	1	1	1	1	1	1	1	1
6	1		1	1			1		1		1	1								
7		1	1	1				1		1	1	1								
									Bit Lo	cation										
Bit	40	41	42	23	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
0	1				1	1	1		1				1	1	1		1			
1		1			1	1		1		1			1	1		1		1		
2			1		1		1	1			1		1		1	1			1	
3				1		1	1	1				1		1	1	1				1
4																	1	1	1	1
5	1	1	1	1	1	1	1	1												
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
7									1	1	1	1	1	1	1	1	1	1	1	1

Table 18: ECC Syndromes

					Bit Lo	cation						
Bit	60	61	62	63	64	65	66	67	68	69	70	71
0	1	1	1		1							
1	1	1		1		1						
2	1		1	1			1					
3		1	1	1				1				
4	1	1	1	1					1			
5										1		
6											1	
7	1	1	1	1								1

9.3.4 What ECC Errors Indicate

The SDRAM Interface produces two errors: correctable and non-correctable ECC errors. A high frequency of correctable ECC errors can indicate faulty memory, a faulty motherboard, or a faulty system chip. A non-correctable error can have its transaction retried for correction. A series of non-correctable errors indicates a faulty board, faulty memory, electrical interface problems, or a clock frequency to high for the current board configuration and operating conditions.

10. Interrupt Controller

An interrupt is a signal informing a program that an event (for example, an error) has occurred. When a program receives an interrupt signal, it temporarily suspends normal processing and diverts the execution of instructions to a sub-routine handled by an interrupt controller. The controller communicates with the host processor and the device that initiated the interrupt to determine how to handle the interrupt.

Interrupt signals can come from a variety of sources. Interrupt signals generated by devices (for example, a printer) indicate an event has occurred and are called hardware interrupts. Interrupt signals generated by programs are called software interrupts.

This chapter outlines the interrupt functionality of PowerPro.The topics addressed in this chapter include:

- "Interrupt Sources" on page 136
- "Interrupt Registers" on page 136
- "Software Debugging" on page 139

10.1 Overview

PowerPro has a 32-input interrupt controller. Each of the 32 interrupt sources can be mapped to generate one of two external interrupt outputs. When the Interrupt Enable (IE) bit, in the Interrupt Controller Enable (INT_ENABLE) register (see page 280), is set and an interrupt occurs, that interrupt generates either Processor Bus Interrupt Out (PB_INT_OUT) or External Interrupt Out (EXT_INT_OUT). The type of interrupt signaled is dependent on the setting in Interrupt Generation Type (IGTYPE) field, in the Interrupt Controller Cycle Generation Type (INT_GENERATE) register (see page 283).

Each of the 32 interrupt sources can be specified as edge or level sensitive. When the interrupt source is edge sensitive, an interrupt event can be generated on the presence of a positive or negative edge. When the interrupt source is level sensitive, an interrupt event can be continuously generated on the presence of a high or low level. These features are set in the Interrupt Controller Trigger Type (INT_TRIGGER) register (see page 285) and the Interrupt Controller Polarity (INT_POLARITY) register (see page 284).

10.2 Interrupt Sources

Interrupt sources are classified as either interrupts from normal device operation, or from a device exception.

10.2.1 Interrupts from Transaction Exceptions

Bus transaction type exceptions occur due to address parity errors, data parity errors or bus errors. When an error occurs PowerPro tracks the direction of the transaction through the interrupt enabling and status function.

Please refer to 9. "Error Handling" on page 123 for more information.

10.3 Interrupt Registers

PowerPro interrupt status and enabling, as well as message passing through mailboxes and doorbells are controlled by the interrupt registers. Table 19 provides a description of the PowerPro registers controlling these functions.

Table 19: Interrupt Register Description

Register Type	Register Description and Operation
Status	The status register bits cover all of the interrupt sources supported in PowerPro and indicate active interrupt sources when set (see "Interrupt Status" on page 137). With a some exceptions, all bits in these registers are read and cleared by setting ("R/Write 1 to Clear")
Enable	The enable register bits cover all of the interrupt sources supported by PowerPro. (see "Interrupt Enabling" on page 138). With some exceptions, all bits in these registers are Read/Write.
Mapping	This series of registers allow each interrupt source to be mapped to a specific interrupt output pin. The mapping definitions are provided in Table 23 (see "Interrupt Mapping" on page 138)

10.3.1 Interrupt Status

When an interrupt source becomes active, the relevant status bit is set in one of the interrupt status registers. The status of each of the interrupt channels is reported in two registers: Interrupt Controller Status (INT_STATUS) and Interrupt Controller Masked Status (INT_MSTATUS). INT_STATUS (see page 279) reports the status of the interrupt sources regardless of INT_ENABLE settings. INT_MSTATUS (see page 280) masks INT_STATUS with INT_ENABLE to provide masked status results. Writing a 1 to INT_STATUS clears the associated interrupt flag.

Table 20: Register Description for Interrupt Controller Status

Name	Туре	Reset By	Reset State	Function
STAT[0:31]	R/W1Clr	PB_RST	0	Interrupt status. Note that this status is independent of INT_ENABLE. This register reports the interrupt status regardless of that interrupt being enabled. 0 = Interrupt has not occurred 1 = Interrupt has occurred Write 1 to clear interrupt.

Table 21: Register Description for Interrupt Controller Masked Status

Name	Туре	Reset By	Reset State	Function
MSTAT[0:31]	R	PB_RST	0	Masked interrupt status, result of INT_STATUS and INT_ENABLE. 0 = Interrupt has not occurred or is masked 1 = Interrupt has occurred and is not masked

10.3.2 Interrupt Enabling

The Interrupt Controller Enable (INT_ENABLE) register (see page 280) enables interrupt generation to the processor bus. The interrupt is enabled by setting the Interrupt Enable (IE) bit. When the IE bit is not set, no interrupt is sent to the processor. However the status of the interrupt sources are still detected..

Table 22: Register Description for Interrupt Controller Enable

Name	Туре	Reset By	Reset State	Function
IE[0:31]	R/W	PB_RST	0	Interrupt Enable. 0 = Interrupt Disabled: generation to the processor is suppressed, but detection is still active. 1 = Interrupt Enabled: causes an interrupt to be generated to the processor.

10.3.3 Interrupt Mapping

A variety of internal and external events are mapped to each bit of the interrupter. Table 23 numbers the bit position that corresponds to each interrupt source.

The EE_DATA lines must be programmed as GPIO pins and as inputs in order for the interrupt functionality to be enabled.

Table 23: Interrupt Register Map

Bit	Description
0	External interrupt input, shared with EE_DATA[0]
1	External interrupt input, shared with EE_DATA[1]
2	External interrupt input, shared with EE_DATA[2]
3	External interrupt input, shared with EE_DATA[3]
4	External interrupt input, shared with EE_DATA[4]
5	External interrupt input, shared with EE_DATA[5]
6	External interrupt input, shared with EE_DATA[6]
7	External interrupt input, shared with EE_DATA[7]
8	External interrupt input, shared with UART0_TX
9	External interrupt input, shared with UART0_RX
10	External interrupt input, shared with UART1_TX

Table 23: Interrupt Register Map

Bit	Description
11	External interrupt input, shared with UART1_RX
12	External interrupt input, shared with I2C0_SCLK
13	External interrupt input, shared with I2C0_SDA
14	External interrupt input, shared with I2C1_SCLK
15	External interrupt input, shared with I2C1_SDA
16	External interrupt input, shared with SD_CS[4]
17	External interrupt input, shared with SD_CS[5]
18	External interrupt input, shared with SD_CS[6]
19	External interrupt input, shared with SD_CS[7]
20	External interrupt input, shared with PB_DBG0
21	External interrupt input, shared with PB_DBG1
22	Watchdog timer time-out
23	UART #0
24	UART #1
25	PB Address Match
26	I ² C0 and I ² C1 ACT bit
27	GPT Capture or Trigger
28	SDRAM ECC uncorrectable error detected
29	SDRAM ECC correctable error detected
30	PB address parity error
31	PB data parity error

10.4 Software Debugging

The following series of registers are provided to help in software debugging

- Interrupt Controller Vector Base Address register
- Interrupt Controller Vector Increment register

- Interrupt Controller Incremented Vector Base Address register
- Interrupt Controller Software Set register

10.4.1 Interrupt Controller Vector Base Address Register

These registers can be used as a pointer to an interrupt service routine. The following equation shows the constantly regenerated value:

Vector base address (INT_VBADDR[0:31]) + interrupt number (interrupt #) * increment amount (VINC)

When the registers are used in this fashion, the set of interrupt service routines is placed at INT_VBADDR[0:31]. Each interrupt service routine is separated from its neighbor by the Vector Increment (VINC) field, in the INT_VBADDR register (see page 286). For example, VINC: 0x100, 0x200, 0x400, or 0x800 in address space. Reading this register is a convenient way of finding the code to handle a generic PB_INT_ signal.

The Software Interrupt (SINT) field, in the Interrupt Controller Software Set register, is designed for software debugging. When a bit in INT_SOFTSET is programmed to one, the same effect as the corresponding interrupt is realized within the chip.

11. Reset, Clock and Power-up Options

This chapter outlines the reset, clock and power-up functionality of PowerPro. The topics addressed in this chapter include:

- "Reset" on page 141
- "Clocks" on page 151
- "Power-up" on page 151

11.1 Reset

The PowerPro reset design enables it to be used in both MPC8260-compatible systems and with PowerPC 603e, PowerPC 740, PowerPC 750, and PowerPC 7400 processors. PowerPro has two reset signals: power-on reset (PORESET_) and hard reset (HRESET_). The PORESET_ signal is a power-on reset that resets PowerPro. The PORESET signal must be asserted for 300ms in order to reset the PowerPro PLL. The HRESET_ signal is initiated from the processor (60x) bus.

All internal logic is synchronously reset at the de-assertion of HRESET_. While HRESET_ is asserted, all bidirectional output buffers are tristated asynchronously — without the presence of a clock.

11.1.1 Reset Signals

Table 24 lists PowerPro (CA91L750 - Z2) reset signals.

Table 24: PowerPro Reset Pins

Pin Name	Direction	Description
PORESET_	Input (Internal pull-down)	Power-on reset, active low. This signal enables the PLL to lock.
HRESET_	Tristate bidirectional	Processor (60x) bus reset, active low. Resets PowerPro.

11.1.2 PORESET

The PORESET_ signal is an input only signal. The PORESET_ signal must be asserted with the initial application of power and held asserted for 300 ms after a stable clock is present at the PB_CLK input. With initial power-up, PowerPro enters an undefined state until the PORESET_ signal is asserted. All logic within PowerPro is reset when PORESET_ is asserted.

The PORESET_ signal must be asserted for 300 ms in order to allow time for the internal Phase Lock Loop (PLL) to lock. During the 300 ms a clock must be both present and stable on PB_CLK.

The power-up options (see page 151) are only latched upon the release (positive edge) of PORESET_. The system board must properly control the PORESET_ signal during the power-on cycle, and make sure that the required power-up options are present on EE_DATA[0:7] at the end of the PORESET_ assertion period.

11.1.3 HRESET

The HRESET_ signal is a processor (60x) bus signal. This signal is used to perform a power-on hard reset of the devices connected to the processor bus. Many devices on the processor bus can simultaneously drive this signal. Every device connected to the processor bus has the capability of asserting this signal to reset its processor bus interface.

The power-up option on signal EE_DATA[4] determines whether the reset sequence corresponding to a configuration master is used, or the reset sequence corresponding to a configuration slave is used. If PowerPro latches EE_DATA[4] = 0 at the negation of PORESET_, PowerPro is configured as a configuration master and drives HRESET_ low until the configuration cycle is complete. Refer to page 143 for more information on configuration master and slave devices.

11.1.3.1 Configuration Master and Slave Devices

The terms configuration master and configuration slave originate from the reset sequence used by the MPC8260. The MPC8260 does not use the traditional power-up method of weak pull-ups or pull-downs on input pins. In systems with an MPC8260, a device on the processor (60x) bus — the reset configuration master — reads a 32-bit configuration word from a FLASH/ROM device it controls, and applies it to PB_D[0:31] while HRESET_ is asserted. The configuration master reads seven of these configuration words from FLASH/ROM, places the 32-bit value for each word on PB_D[0:31] and asserts PB_A[0:6] to signal to the configuration slaves the presence of the configuration words on the processor (60x) data bus.

In order to reset the system so that PowerPro remains configured and does not revert to its default setting, both PORESET_ and HRESET_ must be asserted. If only HRESET_ is asserted to reset the system, PowerPro powers-up in its default configuration. PowerPro is a configuration slave by default.

A processor (60x) bus device configured as a configuration slave is designed to recognize the assertion of one of A[0:6] to be the configuration word it must use, and latch that word as a 32-bit power-up option.

An MPC8260 reset configuration master holds HRESET asserted until the reset configuration cycle is complete. During this time, it first reads four bytes out of a FLASH/ROM attached to it and places these bytes on PB_D[0:31]. When the data on PB_D[0:31] is stable, it asserts one of PB_A[0:6]. It then de-asserts the address line, reads the next four bytes out of it's local FLASH/ROM, and continues the process until seven 32-bit words are read from FLASH/ROM and placed separately on PB_D[0:31]. For each of the seven words placed on PB_D[0:31], a unique bit from PB_A[0:6] is asserted to allow up to seven devices on the processor (60x) bus to be configured. The configuration master then reads a 32-bit word from FLASH/ROM and configures itself. The exact meaning of each of the 32-bits in the configuration word is unique to the device being configured.

PowerPro is able to act as either a configuration master or a configuration slave during the HRESET_ assertion period based on the PowerPro power-up option EE_DATA[4].

There can only be one device assuming the configuration master role on a processor (60x) bus system bus at one time.

PowerPro as Configuration Master

When PowerPro is acting as a configuration master, there must be a FLASH/ROM connected to the PowerPro on EE_CS[0]. The FLASH/ROM connected to PowerPro can have its data port connected to either the EE_DATA[0:7] — making the data port 8- bit — or to the SDRAM data bus — making the data port 8-,16-,32-, or 64-bit. These options are selectable through power-up options. Refer to 3. "FLASH/ROM Interface" on page 53 for more information.

The PB_A[7] line must be pulled-up when PowerPro is operating in configuration master mode.

PowerPro uses the lowest 64 bytes of memory in the FLASH/ROM to store both the seven configuration words applied sequentially to PB_D[0:31] during the HRESET_ cycle, and the configuration word used to set the PowerPro's base address register. Table 25 illustrates the FLASH/ROM memory map used by the PowerPro when acting as a configuration master.

In order to reset the system so that PowerPro remains configured and does not revert to its default setting, both PORESET_ and HRESET_ must be asserted. If only HRESET_ is asserted to reset the system, PowerPro powers-up in its default configuration.

PowerPro is a configuration slave by default.

Table 25: PowerPro ROM Memory Map — as Reset Configuration Master

FLASH/ROM Address	Value
0x00000 - 0x00003	Configuration word placed on PB_D[0:31] coinciding with assertion PB_A[0] in HRESET
0x00004 - 0x00007	Not used
0x00008 - 0x0000B	Configuration word placed on PB_D[0:31] coinciding with assertion PB_A[1] in HRESET
0x0000C - 0x0000F	Not used
0x00010 - 0x00013	Configuration word placed on PB_D[0:31] coinciding with the assertion of PB_A[2] in HRESET
0x00014 - 0x00017	Not used

Table 25: PowerPro ROM Memory Map — as Reset Configuration Master

FLASH/ROM Address	Value
0x00018 - 0x0001B	Configuration word placed on PB_D[0:31] coinciding with the assertion of PB_A[3] in HRESET
0x0001C - 0x0001F	Not used
0x00020 - 0x00023	Configuration word placed on PB_D[0:31] which coincides with the assertion of PB_A[4] in HRESET
0x00024 - 0x00027	Not used
0x00028 - 0x0002B	Configuration word placed on PB_D[0:31] which coincides with the assertion of PB_A[5] in HRESET
0x0002C - 0x0002F	Not used
0x00030 - 0x00033	Configuration word placed on PB_D[0:31] which coincides with assertion of PB_A[6] in HRESET
0x00034 - 0x00037	Not used
0x00038 - 0x0003B	Configuration word used to configure PowerPro. D[0:23] is used to set PowerPro's register base address. D[24:31] must be set to the same values as the byte that was placed on EE_DATA[0:7] as power-up options.
0x0003C - 0x0003F	Not used

As a reset configuration master, PowerPro configures seven devices on the processor (60x) bus with a 32-bit word for each device. PowerPro also configures itself with the eighth configuration word. The register base address is the only value which is set using this option.

When PowerPro is configured during a HRESET_ assertion as a configuration master, the byte latched from EE_DATA[0:7] is overwritten with the configuration word value from PB_D[24:31]. In this situation, the appropriate value must be placed in the least significant byte of the configuration word.

Figure 32 illustrates the actions taken by PowerPro as configuration master. Information is latched from EE_DATA when PORESET_ is deasserted. The latched information that says whether PowerPro is a configuration master or configuration slave in the system. The FLASH/ROM address information in Table 25 is represented as word transfers in Figure 32.

PORESET_ HRESET_ PB_A[0] PB_A[1] PB_A[2] PB_A[3] PB_A[4] PB_A[5] PB_A[6] PB_A[7] EE_DATA[0:7] Power-up option PB_D[0:31] word#0 word#3 word#5 word#6 PowerPro word#1 word#2 word#4 word#7

Figure 32: Power-On Reset Sequence - PowerPro as Configuration Master

Note:

Power-up options latched on EE_DATA[0:7] on the rising edge of PORESET_ $\,$

The reset configuration can occur with different data widths. The following figures show the configuration with a 16-bit data width and a 32-bit data width.

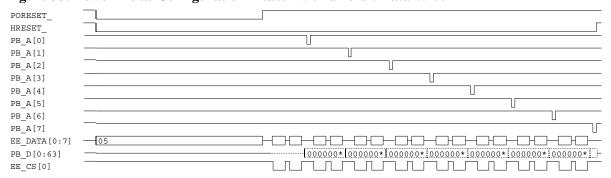
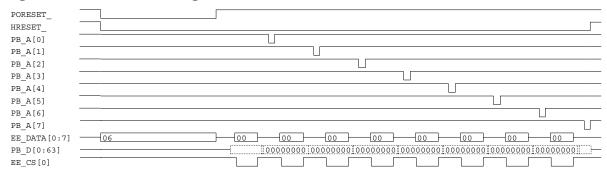



Figure 33: PowerPro as Configuration Master with a 16-bit Data Width

Figure 34: PowerPro as Configuration Master with a 32-bit Data Width

When PowerPro is the configuration master, it does not drive the SD_ECC[0:7] lines. When SD_D[0:63] is being used as a FLASH/ROM data bus SD_ECC[0:7] lines become flash write enables. If SD_D[0:63] is being used a FLASH/ROM data bus, the FLASH/ROM write enables are floating and require a pull-up resister (see Figure 35).

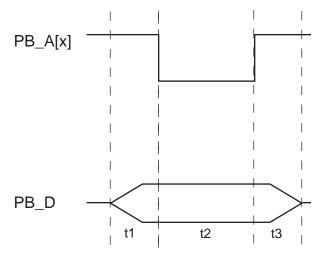

SD_ECC not driven during the master configuration read cycles.

Figure 35: PowerPro is the Configuration Master

Figure 36 outlines one cycle in the power-up sequence. One PB_A[x] and PB_D cycle is highlighted. The x in PB_A[x] designates that this is a generic transaction but the diagram can be applied to any of the address and data lines.

Figure 36: PowerPro as Configuration Master - One Cycle

Note:

t1 = minimum of five clocks

t2 = minimum of five clocks

t3 = minimum of five clocks

PowerPro as Configuration Slave

PowerPro is a configuration slave by default when it is not configured as a configuration master. When PowerPro is a configuration slave the power-up options present on EE_DATA[5:7] are used to select which PB address line (0-7) PowerPro uses to latch its configuration word. If no configuration master is present, PowerPro uses the default value for the register base address and uses EE_DATA[5:7] to define the FLASH size and port (see Table 27 on page 153).

When PowerPro is configured as a configuration slave, the 32-bit word latched into PowerPro is used to set the register base address (PB_D[0:23]). The 32-bit word latched into PowerPro is also used to replace the power-up options normally latched on EE_DATA[0:7] with the value held in the configuration word at PB_D[24:31].

The value of the 32-bit configuration word which configures PowerPro is the same if it is acting as a configuration master and configuring itself, or acting as a configuration slave and latches this word from PB_D[0:31] when the selected PB_A[0:7] is asserted.


Systems which do not use the MPC8260 style reset configuration word mechanism provided in PowerPro must set PowerPro to act as a configuration slave, and ensure that the PB_A[0:7] pins are pulled high during the HRESET_ cycle.

The proper power-up configuration options must be set on EE_DATA[0:7] during the assertion of PORESET_.

Figure 37 illustrates PowerPro latching the configuration word for the register base address.

Figure 37: PowerPro as Configuration Slave

Note:

t1 = one clock t2 = one clock

Configuration Addresses

Table 26 displays the different configuration addresses present on EE_DATA[5:7] that are used to select which PB address line (0-7). The Configuration Address Least Significant Bit (LSB) is EE_DATA[5]. The Configuration Address Most Significant Bit (MSB) is EE_DATA[7].

Table 26: Configuration Addresses^a

Configuration Address	EE_DATA[5:7]
0	000
1	100
2	010
3	110

Table 26: Configuration Addresses^a

Configuration Address	EE_DATA[5:7]
4	001
5	101
6	011

a. PowerPro does not use A[7] as a configuration address line when it is a configuration slave. When PowerPro is a configuration master, it uses A[7] to latch its configuration word.

11.1.4 Power-on Reset Sequence

When PORESET_ is asserted, PowerPro performs self-configuration steps. The self-configuration steps are different of PowerPro is configured as a configuration slave or as a configuration master.

11.1.4.1 Reset Sequence For PowerPro as Configuration Slave

PowerPro has a series of steps that are followed when it is configured as a configuration slave. The following steps show the PowerPro's reset sequence:

- 1. Registers are loaded with their defined reset values.
- 2. Any registers with power-up reset options associated to them have the power-up reset value latched at the rising edge of HRESET_.
- 3. During the assertion of HRESET_ PowerPro monitors the PB_A[x] signal. The value for PB_A[x] is selected by EE_DATA[5:7] at the negation of PORESET_. If PB_A[x] is toggled, PowerPro latches the configuration word.

When PowerPro is the configuration slave, the reset configuration word is derived from the device driving the processor (60x) bus.

11.1.4.2 Reset Sequence For PowerPro as Configuration Master

PowerPro has a series of steps that are followed when it is configured as a configuration master. The steps of the PowerPro's reset sequence are as follows:

- 1. Registers are loaded with their defined reset values.
- 2. Any registers with power-up reset options tied to them have the power-up reset value latched at the rising edge of HRESET_.

3. PowerPro assumes that a boot FLASH/ROM is connected to EE_CS[0]. PowerPro reads the configuration words from system FLASH/ROM configuration table (refer to Table 25 and Figure 32).

When PowerPro is the configuration master, all reset configuration words are derived from the FLASH/ROM connected to EE_CS[0].

- 4. PowerPro applies the configuration words sequentially to PB_D[0:31].
- 5. The last configuration word (0x0003C) is used to configure PowerPro. This final word configures the Processor Bus Register Base Address register (see page 208).

11.2 Clocks

The PowerPro logic contains a single clock, the Processor Bus Clock (PB_CLK). All logic is synchronous to this clock. An internal PLL aligns the internal and external clocks.

The clock input enables PowerPro to be synchronized to the processor (60x) bus. PowerPro has a dedicated PLL designed to eliminate clock tree insertion delay. PowerPro requires the input clock to be at the specified frequency before reset is removed. The PLL is reset during the assertion of the PORESET_ signal. PORESET_ must be asserted for 300 ms in order to allow time for the internal Phase Lock Loop (PLL) to lock. During this time a clock must present and stable on PB_CLK. The PLLs are not locked until after the de-assertion of PORESET_.

The clocks to all devices on the processor (60x) bus and the SDRAM Interface must be balanced. Skew between these clocks must be accounted for when calculating timing requirements.

11.3 Power-up

A number of PowerPro features must be configured by the completion of the power-up reset sequence in order to ensure proper operation. PowerPro has multiplexed system pins to configure the power-up options. During the assertion of the PORESET_ signal, specific system pins are multiplexed as power-on reset inputs (refer to Table 27).

Figure 32 shows power-up options that are latched continuously by PowerPro while PORESET_ is de-asserted and HRESET _is asserted. Stable values must be present on the multiplexed system pins during the last 10 PB_CLKs before PORESET_ is de-asserted. The power-up option levels are usually provided by an external transceiver.

When PowerPro is configured during a HRESET_ assertion as a configuration master, the byte latched from EE_DATA[0:7] is overwritten with the configuration word value from PB_D[24:31]. In this situation, the appropriate value should be placed in the least significant byte of the configuration word.

11.3.1 System Boot

PowerPro can have a system boot FLASH/ROM attached to it. The boot FLASH/ROM must be attached to EE_CS[0] in order to communicate with PowerPro.

11.3.1.1 Attaching System Boot FLASH/ROM Memory

PowerPro reads the configuration word from a system boot FLASH/ROM device that can be attached to EE_CS[0].

When the reset sequence ends and there is a system boot FLASH/ROM is attached to EE_CS[0], the following register bits and fields are set by default:

- EE_DATA[0:7] signals are enabled as the dedicated FLASH/ROM data port.
 - The PORT bit in the EE_B0_CTRL register is set to 0.
- The MUX bit in the EE_B0_ADDR register is set to 11.
- The ENABLE bit in the EE_B0_ADDR register is set to 1.
- The A[0:23] field is set to 0xFFF001

11.3.1.2 System Boot FLASH/ROM Data Width

The PORT bit sets which FLASH/ROM data port the FLASH/ROM Interface is using: either the dedicated 8-bit FLASH/ROM data port or the SDRAM data bus. The MUX bit determines the FLASH/ROM multiplexing and on what data port the FLASH/ROM address appears. These two registers work together in the FLASH/ROM Interface in order to select the data ports used and address locations.

When EE_DATA[5] is used to set the Port (PORT) bit, in the ROM Memory Bank X Control (EE_BX_CTRL) register (see page 247), it also causes the ROM Address Multiplexing (MUX) 0 bit to be set in the ROM Memory Bank X Address (EE_BX_ADDR) register (see page 242).

When the PORT bit is to 0 — which enables EE_DATA[0:7] as the FLASH/ROM data port — the addressing mode register EE_B0_ADDR[MUX] is set to 11. Setting the Port bit to 1 — which enables the SDRAM data bus (SD_D) as the FLASH/ROM data port — causes the MUX bit to be set to 01.

This configuration limits how the boot FLASH/ROM can be connected to PowerPro. See 3. "FLASH/ROM Interface" on page 53 and 16. "Registers" on page 199 for more information on FLASH/ROM addressing modes.

11.3.1.3 System Boot FLASH/ROM Memory not Required in the System

When no system boot FLASH/ROM is required in a system, EE_DATA[5:7] must be set to 001. This sets the boot FLASH/ROM to use EE_DATA[0:7] for a data port, and sets an invalid port width of 16-bits. The invalid data port disables the FLASH/ROM Interface.

Table 27 lists the multiplexed system pins, and the power-up options selected by them. Most power-up options have a read-only register associated with them, however, EE Bx CTRL registers have writable bits.

Table 27: Power-Up Pin Assignments

Power-Up option	Selection	System Pin	Status Register
PLL Control	Enable internal PLL	$EE_DATA[0] = 0$	PB_GEN_CTRL
	Disable internal PLL	EE_DATA[0] = 1	[PLL_EN]
Boot FLASH/ROM Ready Throttling	Boot FLASH/ROM is not ready throttled. EE_READY is not used when accessing the boot FLASH/ROM on EE_CS[0].	EE_DATA[1] = 0	EE_B0_CTRL[RE]
	Boot FLASH/ROM is ready throttled. EE_READY is used to determine when data is available.	EE_DATA[1] = 1	

Table 27: Power-Up Pin Assignments

Power-Up option	Selection	System Pin	Status Register
PB Arbiter	Arbiter PB arbiter disabled		PB_ARB_CTRL
	PB arbiter channel #0-1 enabled	EE_DATA[2:3] = 01 (= 0 for disabled)	[Mx_EN]
	PB arbiter channel #0-2 enabled. Address and data parity on the processor (60x) bus is disabled.	EE_DATA[2:3] = 10	
	PB arbiter channel #0-3 enabled. Address and data parity on the processor (60x) bus is disabled.	EE_DATA[2:3] = 11	
MPC8260 Configuration Master: RSTCONF	Act as a reset configuration master from the FLASH/ROM attached to the PowerPro.	EE_DATA[4] = 0	n/a
	Act as a reset configuration slave, with (optionally, see "PowerPro as Configuration Slave" on page 148) EE_DATA[5:7] indicating which address line to listen on.	EE_DATA[4] = 1	

Table 27: Power-Up Pin Assignments

Power-Up option	Selection	System Pin	Status Register
Boot FLASH/ROM Port	Boot FLASH/ROM data port connected to EE_DATA[0:7]	EE_DATA[5] = 0	EE_B0_CTRL[PORT] EE_B0_ADDR[MUX]
	Boot FLASH/ROM data port connected to SD_D[0:7] / SD_D[0:15] / SD_D[0:31] or SD_D[0:63] depending on width.	EE_DATA[5] = 1	EE_DATA[5] = 0 EE_B0_ADDR[MUX]= 11 or EE_DATA[5] = 1 EE_B0_ADDR[MUX]= 01
Boot FLASH/ROM Width: 8, 16, 32 or 64-bit	Select the boot FLASH/ ROM width. Selecting EE_DATA[6:7] == 01b and EE_DATA[5] = 0 disables boot FLASH/ ROM selection. PowerPro does not respond to 0xFFF0_0100 and above.	EE_DATA[6:7] 00 = 8-bit 01 = 16-bit 10 = 32-bit 11 = 64-bit	EE_B0_CTRL[WIDTH]

156

12. JTAG Interface

The Joint Test Action Group (JTAG) created the Boundary-Scan testing standard (documented in the IEEE 1149.1 Standard) for testing printed circuit boards (PCBs). The boundary-scan approach involves designing boundary-scan circuitry into the integrated circuit. PCBs populated with 1149.1 compliant devices can be tested for connectivity, correct device orientation, correct device location, and device identification.

All the pins on compliant devices can be controlled and observed using (typically) five pins that are routed to the board edge connector. Board designers can develop a standard test for all 1149.1 compliant devices regardless of device manufacturer, package type, technology, or device speed.

This chapter outlines the JTAG functionality of the PowerPro. The topics addressed in this chapter include:

- "Interface Description" on page 158
- "JTAG Signals" on page 158
- "TAP Controller" on page 160

12.1 Overview

PowerPro provides a Joint Action Group (JTAG) Interface for boundary scan testing. The JTAG Interface IEEE 1149.1 compliant and implements the five test port signals required by the IEEE 1149.1 specification. For more information on JTAG operation, refer to the *IEEE 1149.1 Boundary Scan Specification*.

12.2 Interface Description

The JTAG Interface consists of a the following:

- Test Access Port interface
- Test Access Port (TAP) controller
- Instruction register
- Boundary Scan register
- Bypass register
- Idcode register

Each of these areas are described in detail in the following sections

12.3 JTAG Signals

PowerPro has dedicated JTAG signals. Table 28 lists the signals and describes their functionality.

Table 28: Test Signals

Pin Name	Pin Type	Description
JT_TCK	Input (LVTTL)	Test Clock : JTAG signal. Used to clock state information and data into and out of the device during boundary scan.
JT_TMS	Input (LVTTL) (Internal pull-up)	Test Mode Select : JTAG signal. Used to control the state of the Test Access Port controller
JT_TDI	Input (LVTTL) (Internal pull-up)	Test Data Input : JTAG signal. Used in conjunction with TCK to shift data and instructions into the Test Access Port (TAP) in a serial bit stream.
JT_TDO	Tristate output	Test Data Output : JTAG signal. Used in conjunction with TCK to shift data and instructions into the Test Access Port (TAP) in a serial bit stream.

Table 28: Test Signals

Pin Name	Pin Type	Description
JT_TRST ^a _	Input (LVTTL) (Schmitt trigger) (Internal pull-up)	Test Reset : JTAG signal. Asynchronous reset for the JTAG controller. This pin must be asserted during the power-up reset sequence to ensure that the Boundary Scan Register elements are configured for normal system operation. During normal operation of the device (when JTAG is not operational) this signal must be pulled low.
TEST_ON	Input (Internal pull-down)	Test Enable : Enables manufacturing test. During normal operation of the device (when JTAG is not operational) this signal must be pulled low.
BIDIR_CTRL	Input	Bi-directional Control : Manufacturing test pin.During normal operation of the device (when JTAG is not operational) this signal must be pulled low.

a. In order to ensure that the signal is pulled low when PowerPro is in normal operation, the signal can be connected to the PORESET_ signal.

12.3.1 JTAG Registers

PowerPro supports the mandatory JTAG registers. These registers include:

- Instruction register
- Boundary Scan register
- Bypass register
- Idcode register

The following sub-sections describe each of the JTAG registers.

12.3.1.1 Instruction Register

The 8-bit JTAG instruction register is a instruction and status register. As TAP controller instructions are scanned through the TDI input, the TAP controller status bits are scanned out through the TDO output.

12.3.1.2 Boundary Register

The PowerPro JTAG Interface has a chain of registers dedicated to boundary scan operation. These registers are not shared with any other functional registers of the PowerPro.

The boundary scan register chain includes registers controlling the direction of input and output drivers as well as the registers reflecting the signal value received or driven.

The JTAG controller must be reset to ensure that the Boundary Scan Register allows PowerPro to operate in system mode. The JTAG controller can be reset asynchronously with the assertion of JT_TRST_.

12.3.1.3 Bypass Register

The Bypass register is a single scan register used to bypass the boundary scan latches of PowerPro during boundary scan operations involving components other than PowerPro.

12.3.1.4 Idcode Register

The Idcode register contains device specific information. For example, the device manufacturer, part number, revision, and other device specific information is coded into this register.

12.4 TAP Controller

PowerPro has a standard JTAG TAP controller which controls instruction and data scan operations. The JT_TMS signal controls the state transitions of the TAP controller.

13. Signals and Pinout

This chapter outlines signals and signal descriptions of the PowerPro. The topics addressed in this chapter include:

- "Processor Bus Signals" on page 162
- "Memory Signals" on page 166
- "Miscellaneous Signals" on page 169
- "Test Signals" on page 171
- "Pin Information" on page 173

13.1 Overview

PowerPro uses 263 signals (excluding power and ground pins). The pin count for each functional blocks consists of the following:

Processor Bus signals: 133

• Memory signals: 107

Miscellaneous signals: 17

Test signals: 6

When several functions are multiplexed onto one pin, the pin takes the name of the primary function. A primary function is defined as the function that the pin takes by default.

The GPIO Interface is inactive by default when the GPIO signals are multiplexed with system functionality.

Table 29 defines the different types of signal classification.

Table 29: Signal Type Definitions

Signal type	Signal type definition
Input	Standard input only signal.
Output	Standard output only signal.
Tristate output	Standard tristate output only signal.
Open drain	Open drain output that allows multiple devices to share as a wire-OR
Tristate bidirectional	Tristate input/output signal.
Bidirectional open drain	Open drain input/output which allows multiple devices to share as a wire or when it is used as output.

13.2 Processor Bus Signals

This section describes the PowerPro Processor Bus (PB) signal grouping. These signals are used to interface to the MPC8260, PPC 740, PPC 750, PPC 7400 and PPC 603e. Signals in this group are 3.3V LVTTL compatible. This interface is not 5V tolerant.

Table 30 summarizes the PB Interface signals. All primary operations are in bold. Signals with electrical characteristics different from the remainder of the group are placed at the end of Table 30.

Table 30: PB Signals

Pin Name	Pin Type	Description
PB_CLK	Input	Processor Bus Clock : All devices intended to interface with the bus processor side of the PowerPro must be synchronized to this clock. The PB_CLK can operate up to 100 MHz.
PORESET_	Input Buffer Type: TTL (Internal pull-down)	Power-on reset: Resets PowerPro.
HRESET_	Tristate bidirectional Buffer Type: CMOS	Processor Bus Reset : Resets all circuits on the PowerPro. The HRESET_ signal is a processor (60x) bus signal. This signal is used to perform a power-on hard reset of the devices connected to the processor bus.

Table 30: PB Signals

Pin Name	Pin Type	Description
PB_TS_	Input Buffer Type: TTL	Transfer Start : Indicates the beginning of a new address bus tenure.
PB_A[0:31]	Tristate bidirectional PB_A[0:7] Buffer Type: CMOS PB_A[8:23] Buffer Type: CMOS PB_A[24:32] Buffer Type: TTL	Address Bus: Address for the current bus cycle. PB_A[0:7] is driven during MPC8260 Master Configuration Cycles. At all other times the signal is an input.
PB_AP[0:3] Multiplexed with: PB_BR[2:3] PB_BG[2:3] GPIO[0:3]	Tristate bidirectional Buffer Type: CMOS	 Address Parity: The processor address bus master drives this signal to indicate the parity of the address bus. If parity checking is not being used, then the PowerPro can be used as a four master arbiter on the PowerPC bus. Refer to "Multiplexed Processor Bus Signals" on page 183 for more programming information. General Purpose I/O.
PB_TT[0:4]	Input Buffer Type: TTL	Transfer Type : The bus master drives these pins to specify the type of the transaction.
PB_TBST_	Input Buffer Type: TTL	Transfer Burst : The bus master asserts this pin to indicate that the current transaction is a burst transaction
PB_TSIZ[0:3]	Input Buffer Type: TTL	Transfer Size : Indicates the number of bytes to be transferred during a bus cycle.
PB_AACK_	Tristate bidirectional Buffer Type: CMOS	Address Acknowledge: A processor bus slave asserts this signal to indicate that it identified the address tenure. Assertion of this signal terminates the address tenure.
PB_ARTRY_	Tristate bidirectional Buffer Type: CMOS	Address Retry: Assertion of this signal indicates that the bus transaction should be retried by the processor bus master.

Table 30: PB Signals

Pin Name	Pin Type	Description
PB_D[0:63]	Tristate bidirectional Buffer Type: CMOS	Data Bus : These 64 pins are the Processor Data lines.
PB_DP[0:7] Multiplexed with: • PB_DBG[2:3]_ • EE_A[28:23] • GPIO[4:11]	Tristate bidirectional Buffer Type: CMOS	 Data Parity: The processor data bus slave drives on reads, master drives on write to indicate the parity of the data bus. Processor Bus Data Bus Grant: Enables the third and fourth channels of PowerPro's PowerPC bus arbiter. EEPROM Address: If data parity is not used and GPIO is disabled for these pins, ROM address EE_A[28:23] is enabled. General Purpose I/O
PB_DVAL_	Tristate bidirectional Buffer Type: CMOS	Data Valid : Indicates if the data beat is valid on PB_D[0:63]. Only used in MPC8260 systems for extended cycles.
PB_TA_	Tristate bidirectional Buffer Type: CMOS	Transfer Acknowledge : Indicates that a data beat is valid on the data bus. For single beat transfers, it indicates the termination of the transfer. For burst transfers, it is asserted four times to indicate the transfer of four data beats with the last assertion indicating the termination of the burst transfer.
PB_TEA_	Tristate bidirectional Buffer Type: CMOS	Transfer Error Acknowledge: Indicates a bus error
PB_INT_	Output Buffer Type: CMOS	Processor Bus Interrupt: Interrupt to local processor.
PB_BR[0:1]_ Multiplexed with: • EE_A[28:27]_ • GPIO[12:13]_	Tristate bidirectional Buffer Type: CMOS	 Processor Bus Request: These pins are the first two channels bus request lines of the Processor Bus Interface arbiter. EEPROM Address: If the arbiter and GPIO are both disabled, EE_A[28:27] is enabled. General purpose I/O

Table 30: PB Signals

Pin Name	Pin Type	Description
PB_BG[0:1]_ Multiplexed with: • EE_A[26:25]_ • GPIO[14:15]	Tristate bidirectional Buffer Type: CMOS	 Processor Bus Grant: These pins are the first two channels bus grant lines of the Processor Bus Interface arbiter. EEPROM Address: If the arbiter and GPIO are both disabled, EE_A[26:25] is enabled. General Purpose I/O
PB_DBG[0:1]_ Multiplexed with: • INT[20:21]_ • EE_A[24:23]_ • GPIO[16:17]_	Tristate bidirectional Buffer Type: CMOS	 Processor Bus Data Bus Grant: These pins are the first two channels data bus grant lines of the Processor Bus Interface arbiter. Interrupt Controller Input EEPROM Address: If the arbiter, GPIO, and interrupt [23:24] are all disabled, EE_A[24:23] is enabled. General Purpose I/O

13.3 Memory Signals

This section describes PowerPro signals used to memory interfaces. PowerPro supports SDRAM, EEPROM, FLASH, ROM, and SRAM memory.

Table 31 summarizes all memory signals. All primary operations are in bold. Signals with electrical characteristics different from the remainder of the group are placed at the end of Table 31.

Table 31: Memory Signals

Pin Name	Pin Type	Description
SD_RAS_	Output Buffer Type: CMOS	SDRAM Command Bus: RAS
SD_CAS_	Output Buffer Type: CMOS	SDRAM Command Bus: CAS
SD_WE_	Output Buffer Type: CMOS	SDRAM Command Bus: WE
SD_A[12:0] Multiplexed with: EE_A[12:0]	Output Buffer Type: CMOS	1. SDRAM Address 2. EEPROM Address
SD_BA[1:0] Multiplexed with: EE_A[14:13]	Output Buffer Type: CMOS	1. SDRAM Bank Address 2. EEPROM Address
SD_ECC[0:7] Multiplexed with: SD_DQM[0:7]	Tristate bidirectional Buffer Type: CMOS	 SDRAM ECC Protection: If ECC correction used, there are eight ECC correction bits. SDRAM DQM: If ECC is not being used, these are tied to the SDRAM DQM lines 0-7.
SD_CS[0:3]_ Multiplexed with: GPIO[19:22]	Tristate bidirectional Buffer Type: CMOS	SDRAM Chip Select: Two chip selects per memory DIMM General Purpose I/O
SD_CS[4:7]_ Multiplexed with: INT[16:19]	Tristate bidirectional Buffer Type: CMOS	SDRAM Chip Select: Two chip selects per memory DIMM Interrupt Controller Input

Table 31: Memory Signals

Pin Name	Pin Type	Description
SD_D[0:63]	Tristate bidirectional Buffer Type: CMOS	SDRAM / Peripheral Data Lines
SD_SELECT Multiplexed with: • EE_SELECT • EE_AL[0]/ • GPIO[23]	Tristate bidirectional Buffer Type: CMOS	 SDRAM Bank Select: External FET switch EEPROM Buffer Select EEPROM Address Latch 0: For time-multiplexing the EEPROM address, the first address phase is to be latched qualified with this signal General Purpose I/O
EE_AL1 Multiplexed with: GPIO[24]	Tristate bidirectional Buffer Type: CMOS	1. EEPROM Address Latch 1 : For time-multiplexing the EEPROM address, the second address phase is to be latched qualified with this signal 2. General Purpose I/O.
EE_OE_ Multiplexed with: GPIO[25]	Tristate bidirectional Buffer Type: CMOS	External Memory Output Enable General Purpose I/O
EE_WE_ Multiplexed with: GPIO[26]	Tristate bidirectional Buffer Type: CMOS	External Memory Write Enable General Purpose I/O

Table 31: Memory Signals

Pin Name	Pin Type	Description
EE_RNW Multiplexed with: GPIO[27]	Tristate bidirectional Buffer Type: CMOS	EEPROM Read not Write: Active 1 during an EEPROM read, 0 at all other times. General Purpose I/O
EE_AL2 Multiplexed with: GPIO[28]_	Tristate bidirectional Buffer Type: CMOS	 EEPROM Address Latch 2: For time-multiplexing the EEPROM address, the third address phase is to be latched qualified with this signal. General Purpose I/O
EE_READY Multiplexed with: GPIO[29]	Tristate bidirectional Buffer Type: CMOS	External Memory Ready Input Indicator General Purpose I/O
EE_CS[0:3]_ Multiplexed with: GPIO[30:33]	Tristate bidirectional Buffer Type: CMOS	External Memory Chip Select: One per bank. General Purpose I/O

13.4 Miscellaneous Signals

This section describes PowerPro signals not necessarily dedicated to either the PB interface or memory interfaces. The miscellaneous signals have a variety of electrical capabilities which are indicated in Table 32.

Table 32: Miscellaneous Signals

Pin Name	Pin Type	Description
EE_DATA[0:7] Multiplexed with: • EE_A[23:15] • EE_A[31:24] • EE_A[23:16] • EE_A[15:8] • EE_A[7:0] • INT[0:7] • GPIO[34:41] • PWRUP[0:7]	Tristate bidirectional Buffer Type: CMOS	 ROM Data [0:7] ROM upper (MSB) address bits [23:15] ROM address bits [31:24] (time-multiplexed). ROM address bits [23:16] (time-multiplexed). ROM address bits[15:8] (time-multiplexed). ROM address bits[7:0] (time-multiplexed). Interrupt inputs[0:7] General Purpose I/O Power-Up Options: Only latched during power-on reset
EXT_INT_ Multiplexed with: GPIO[18]	Tristate bidirectional Buffer Type: CMOS	Extra Interrupt Output: Intended to be tied to the MCP pin on a 60x processor. General Purpose I/O
UART0_TX Multiplexed with: INT[8]/ GPIO[42]	Tristate bidirectional Buffer Type: CMOS	Primary UART Transmit Line Interrupt Controller Input General Purpose I/O
UARTO_RX Multiplexed with: • INT[9] • GPIO[43]	Tristate bidirectional Buffer Type: CMOS	Primary UART Receive Line Interrupt Controller Input General Purpose I/O
UART1_TX Multiplexed with: • INT[10] • GPIO[44]	Tristate bidirectional Buffer Type: CMOS	Secondary UART Transmit Line Interrupt Controller Input General Purpose I/O
UART1_RX Multiplexed with: • INT[11] • GPIO[45]	Tristate bidirectional Buffer Type: CMOS	Secondary UART Receive Line Interrupt Controller Input General Purpose I/O

Table 32: Miscellaneous Signals

Pin Name	Pin Type	Description
I2C0_SCLK Multiplexed with: • INT[12] • GPIO[46]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I²C Clock: SDRAM serial presence detect. Interrupt Controller Input General Purpose I/O.
I2C0_SDA Multiplexed with: • INT[13] • GPIO[47]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I I²C Data: SDRAM serial presence detect. Interrupt Controller Input General Purpose I/O.
I2C1_SCLK Multiplexed with: • INT[14] • GPIO[48]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I²C Clock: Boot EEPROM. Interrupt Controller Input General Purpose I/O
I2C1_SDA Multiplexed with: • INT[15] • GPIO[49]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I²C Data: Boot EEPROM. Interrupt Controller Input General Purpose I/O
VDD_CORE	Supply	Core VDD: Nominally 2.5 volts
VDD_IO	Supply	IO VDD: Nominally 3.3 volts
VSS	Supply	Ground
PLL_VDDA	Supply	Analog VDD : Voltage supply pin to the analog circuits in the Phase Locked Loop (nominally 2.5V).
PLL_VSSA	Supply	Analog VSS : Voltage ground pin to the analog circuits in the Phase Locked Loop (nominally 2.5V).
PLL_DVDD	Supply	Digital VDD: Voltage supply pin to the digital circuits in the PB Phase Locked Loop (nominally 2.5V).
PLL_DVSS	Ground	Digital VSS: Ground pin to the digital circuits in the PB Phase Locked Loop.

13.5 Test Signals

This section describes PowerPro signals used to support silicon or board level testing.

Table 33: Test Signals

Pin Name	Pin Type	Description	
JT_TCK	Input Buffer Type: TTL	Test Clock : JTAG signal. Used to clock state information and data into and out of the device during boundary scan.	
JT_TMS	Input Buffer Type: TTL (Internal pull-up)	Test Mode Select : JTAG signal. Used to control the state of the Test Access Port controller	
JT_TDI	Input Buffer Type: TTL (Internal pull-up)	Test Data Input : JTAG signal. Used in conjunction with TCK to shift data and instructions into the Test Access Port (TAP) in a serial bit stream.	
JT_TDO	Tristate output Buffer Type: CMOS 2	Test Data Output : JTAG signal. Used in conjunction with TCK to shift data and instructions into the Test Access Port (TAP) in a serial bit stream.	
JT_TRST ^a _	Input Buffer Type: TTL (Internal pull-up)	Test Reset : JTAG signal. Asynchronous reset for the JTAG controller. This pin must be asserted during the power-up reset sequence to ensure that the Boundary Scan Register elements are configured for normal system operation. During normal operation of the device (when JTAG is not operational) this signal must be pulled low.	
PO_RANGE	Input Buffer Type: TTL (Internal pull-down)	PLL Range: Controls the range of operation for the PowerPro PLL. 0= PLL Range High (50-133 MHz) 1= PLL Range Low (25-66 MHz)	
BIDIR_CTRL	Input Buffer Type: TTL	Bi-directional Control : Manufacturing test pin. During normal operation of the device (when JTAG is not operational) this signal must be pulled low.	

a. In order to ensure that the signal is pulled low when PowerPro is in normal operation, the signal can be connected to the PORESET_ signal.

13.6 Pin Information

The following table shows the PowerPro 376 pin information.

A1. PB_D[4]	G19. SD_D[41]	T19. SD_ECC[4]
A2. PLL_DVDD	G20. VDD_CORE	T20. SD_CS[7]
A3. PB_CLK	G21. SD_D[30]	T21. SD_D[1]
A4. PB_D[2]	G22. SD_D[28]	T22. SD_D[4]
A5. EXT_INT_	H1. PB_D[30]	U1. PB_D[53]
A6. PB_TSIZ[0]	H2. PB_D[28]	U2. PB_D[55]
A7. PB_TT[3]	H3. PB_D[26]	U3. PB_D[58]
A8. JT_TRST_	H4. PB_D[17]	U4. PB_D[62]
A9. I2C1_SCLK	H5. VDD_IO	U5. VSS
A10. UART1_RX	H18. VDD_IO	U18. VSS
A11. UART0_TX	H19. SD_D[33]	U19. SD_CS[1]
A12. EE_DATA[7]	H20. SD_D[29]	U20. SD_CS[4]
A13. EE_DATA[4]	H21. SD_D[26]	U21. SD_CS[6]
A14. EE_DATA[1]	H22. SD_D[24]	U22. SD_D[0]
A15. EE_CS[1]	J1. PB_D[32]	V1. PB_D[56]
A16. EE_READY	J2. PB_D[31]	V2. PB_D[59]
A17. EE_OE_	J3. PB_D[29]	V3. PB_D[63]
A18. SD_D[63]	J4. PB_D[25]	V4. PB_DP[2]
A19. SD_D[59]	J5. VDD_IO	V5. VSS
A20. SD_D[56]	J9. VSS	V6. VSS
A21. SD_D[51]	J10. VSS	V7. VSS
A22. SD_D[47]	J11. VSS	V8. VDD_IO
B1. PB_D[8]	J12. VSS	V9. VDD_IO
B2. PB_D[5]	J13. VSS	V10. VDD_IO
B3. PLL_DVSS	J14. VSS	V11. VDD_IO

B4. PB_ARTRY_	J18. VDD_IO	V12. VDD_IO
B5. PB_D[1]	J19. SD_D[27]	V13. VDD_IO
B6. PB_TSIZ[2]	J20. SD_D[25]	V14. VDD_IO
B7. PB_TBST_	J21. SD_D[23]	V15. VDD_IO
B8. PB_TT[1]	J22. SD_D[22]	V16. VSS
B9. I2C1_SDA	K1. PB_D[35]	V17. VSS
B10. I2C0_SCLK	K2. PB_D[34]	V18. VSS
B11. UART1_TX	K3. PB_D[33]	V19. SD_ECC[5]
B12. EE_DATA[6]	K4. BIDIR_CTRL	V20. SD_CS[0]
B13. EE_DATA[3]	K5. VDD_IO	V21. SD_CS[3]
B14. EE_CS[3]	K9. VSS	V22. SD_CS[5]
B15. EE_CS[0]	K10. VSS	W1. PB_D[60]
B16. EE_WE_	K11. VSS	W2. PB_DP[1]
B17. SD_SELECT	K12. VSS	W3. PB_DP[3]
B18. SD_D[61]	K13. VSS	W4. PB_TA_
B19. SD_D[57]	K14. VSS	W5. JT_TDI
B20. SD_D[52]	K18. VDD_IO	W6. PB_DBG[1]
B21. SD_D[48]	K19. VDD_IO	W7. PB_BR[0]
B22. SD_D[46]	K20. SD_D[21]	W8. PB_A[0]
C1. PB_D[13]	K21. SD_D[20]	W9. PB_A[8]
C2. PB_D[10]	K22. SD_D[19]	W10. NC
C3. PB_D[6]	L1. PB_D[36]	W11. VDD_IO
C4. PLL_VDDA	L2. PB_D[37]	W12. VDD_IO
C5. PB_AACK_	L3. PB_D[38]	W13. VDD_IO
C6. PB_D[0]	L4. VDD_IO	W14. PB_AP[1]
C7. PB_TSIZ[1]	L5. VDD_IO	W15. SD_A[0]
C8. PB_TT[4]	L9. VSS	W16. SD_A[5]

C9. PB_TT[0]	L10. VSS	W17. SD_A[4]
C10. I2C0_SDA	L11. VSS	W18. SD_A[9]
C11. UART0_RX	L12. VSS	W19. SD_ECC[0]
C12. EE_DATA[5]	L13. VSS	W20. SD_ECC[3]
C13. EE_DATA[2]	L14. VSS	W21. SD_ECC[7]
C14. EE_CS[2]	L18. VDD_IO	W22. JT_TDO
C15. EE_AL2	L19. VDD_IO	Y1. PB_D[61]
C16. EE_AL1	L20. SD_D[18]	Y2. PB_DP[4]
C17. SD_D[62]	L21. SD_D[17]	Y3. PB_DVAL_
C18. SD_D[58]	L22. SD_D[16]	Y4. PB_BR[1]
C19. SD_D[54]	M1. PB_D[39]	Y5. PB_DBG[0]
C20. SD_D[49]	M2. PB_D[40]	Y6. PB_A[2]
C21. SD_D[45]	M3. PB_D[41]	Y7. PB_A[5]
C22. SD_D[42]	M4. VDD_IO	Y8. PB_A[9]
D1. JT_TMS	M5. VDD_IO	Y9. PB_A[13]
D2. PB_D[14]	M9. VSS	Y10. PB_A[16]
D3. PB_D[12]	M10. VSS	Y11. PB_A[20]
D4. PB_D[7]	M11. VSS	Y12. PB_A[24]
D5. PLL_VSSA	M12. VSS	Y13. PB_A[27]
D6. PB_D[3]	M13. VSS	Y14. PB_A[31]
D7. HRESET_	M14. VSS	Y15. PB_AP[3]
D8. PB_TSIZ[3]	M18. VDD_IO	Y16. VDD_CORE
D9. PB_TT[2]	M19. VDD_IO	Y17. SD_A[2]
D10. VDD_IO	M20. SD_D[14]	Y18. SD_A[6]
D11. VDD_IO	M21. SD_D[13]	Y19. SD_A[10]
D12. EE_DATA[0]	M22. SD_D[15]	Y20. JT_TCK_
D13. VDD_IO	N1. PB_D[42]	Y21. SD_ECC[2]

D14. EE_RNW	N2. PB_D[43]	Y22. SD_ECC[6]
D15. SD_D[60]	N3. PB_D[44]	AA1. PB_DP[5]
D16. SD_D[53]	N4. VDD_IO	AA2. PB_DP[7]
D17. VDD_CORE	N5. VDD_IO	AA3. PB_INT_
D18. SD_D[55]	N9. VSS	AA4. PB_BG[1]
D19. SD_D[50]	N10. VSS	AA5. PB_A[1]
D20. SD_D[44]	N11. VSS	AA6. PB_A[4]
D21. SD_D[40]	N12. VSS	AA7. PB_A[7]
D22. SD_D[37]	N13. VSS	AA8. PB_A[11]
E1. PB_D[20]	N14. VSS	AA9. PB_A[14]
E2. PB_D[18]	N18. VDD_IO	AA10. PB_A[17]
E3. PB_D[16]	N19. PORESET_	AA11. PB_A[21]
E4. PB_D[11]	N20. SD_D[10]	AA12. PB_A[23]
E5. NC	N21. SD_D[11]	AA13. PB_A[26]
E6. NC	N22. SD_D[12]	AA14. PB_A[29]
E7. VSS	P1. PB_D[45]	AA15. PB_AP[0]
E8. VDD_IO	P2. PB_D[46]	AA16. PO_RANGE
E9. VDD_IO	P3. PB_D[48]	AA17. SD_WE_
E10. VDD_IO	P4. PB_D[49]	AA18. SD_A[3]
E11. VDD_IO	P5. VDD_IO	AA19. SD_A[7]
E12. VDD_IO	P9. VSS	AA20. SD_A[11]
E13. VDD_IO	P10. VSS	AA21. SD_BA[1]
E14. VDD_IO	P11. VSS	AA22. SD_ECC[1]
E15. VDD_IO	P12. VSS	AB1. PB_DP[6]
E16. VSS	P13. VSS	AB2. PB_TEA_
E17. VSS	P14. VSS	AB3. PB_BG[0]
E18. VSS	P18. VDD_IO	AB4. PB_TS_

E19. SD_D[43]	P19. SD_D[2]	AB5. PB_A[3]
E20. SD_D[39]	P20. SD_D[6]	AB6. PB_A[6]
E21. SD_D[36]	P21. SD_D[8]	AB7. PB_A[10]
E22. SD_D[34]	P22. SD_D[9]	AB8. PB_A[12]
F1. PB_D[23]	R1. PB_D[47]	AB9. PB_A[15]
F2. PB_D[21]	R2. VDD_CORE	AB10. PB_A[18]
F3. PB_D[19]	R3. PB_D[51]	AB11. PB_A[19]
F4. PB_D[15]	R4. PB_D[57]	AB12. PB_A[22]
F5. NC	R5. VDD_IO	AB13. PB_A[25]
F18. VSS	R18. VDD_IO	AB14. PB_A[28]
F19. SD_D[38]	R19. SD_CS[2]	AB15. PB_A[30]
F20. SD_D[35]	R20. SD_D[3]	AB16. PB_AP[2]
F21. SD_D[32]	R21. SD_D[5]	AB17. SD_RAS_
F22. SD_D[31]	R22. SD_D[7]	AB18. SD_CAS_
G1. PB_D[27]	T1. PB_D[50]	AB19. SD_A[1]
G2. PB_D[24]	T2. PB_D[52]	AB20. SD_A[8]
G3. PB_D[22]	T3. PB_D[54]	AB21. SD_A[12]
G4. PB_D[9]	T4. PB_DP[0]	AB22. SD_BA[0]
G5. VSS	T5. VSS	
G18. VSS	T18. VSS	

14. Electrical Characteristics

This chapter describes the electrical characteristics of PowerPro. It also details the pin information of the device. The topics addressed in this chapter include:

- "Electrical Characteristics" on page 179
- "Hardware Parameters" on page 180

14.1 Electrical Characteristics

Table 34 specifies the required DC characteristics of all PowerPro signal pins that use CMOS buffers. Refer to "Signals and Pinout" on page 161 for information on the buffer type for each signal.

Table 34: PowerPro PBGA Electrical Characteristics - CMOS Buffer

Symbol	Parameter	Condition	Min	Max	Units
V _{IL}	Input low voltage		0	0.3 x VDD_IO	V
V _{IH}	Input high voltage		0.7 x VDD_IO	VDD_IO	V
I_{OZ}	Tristate leakage Current	V _{OUT} =VDD or VSS	-10	+10	μΑ
V _{OH}	Output high voltage	CMOS		I _{OH} = 24	mA
V _{OL}	Output low voltage	CMOS	I _{OL} = -24		mA
C _{IN}	Input Capacitance			10	pF

Table 35 specifies the required DC characteristics of all PowerPro signal pins that use TTL buffers. Refer to "Signals and Pinout" on page 161 for information on the buffer type for each signal.

Table 35: PowerPro PBGA Electrical Characteristics - TTL Buffer^a

Symbol	Parameter	Condition	Min	Max	Units
V_{IL}	Input low voltage		0.0	0.8	V
V _{IH}	Input high voltage		2.0	VDD_IO	V
L _{IL}	Input leakage Current	No pull-up or pull-down resistance (V _{IN} =VDD or VSS)	- 10	+ 10	μΑ
L _{IL} _PU	L _{IL} _PU Input leakage Current (internal pull-up)	High	- 10	+ 10	μΑ
		Low	-	10 to 70	μΑ
L _{IH} _PD	L _{IH} _PD Input leakage Current (internal pull-down)	High	-	-70 to -10	μΑ
		Low	- 10	+ 10	μΑ

a. All TTL buffer signals are inputs.

14.2 Hardware Parameters

PowerPro's general hardware parameters are described in the following list:

- Package: Surface mount 376 plastic ball grid array
- Core power supply (VDD_CORE): 2.5 V +/- 5% DC
- I/O power supply (VDD IO): 3.3 V +/- 10% DC

14.2.1 Power Consumption

The PowerPro is an I/O limited device and because of this the I/O buffers dominate the power consumption of the device. The following assumptions are made when estimating the power consumption of PowerPro:

- Clock rate of 100MHz
- Data rate is 50MHz (single edge clocking)

14.2.1.1 I/O Power Consumption

Since the SDRAM Interface has the largest number of I/Os switching at any one time, the FLASH/ROM and processor (60x) bus interfaces are ignored. When PowerPro is driving either the SDRAM or the processor (60x) interface, it does not drive the other interface simultaneously; only one interface is driving at any one time.

The SDRAM Interface consists of 14 address bits, four control bits, and up to 72 data/ECC bits. A total of 90 I/Os switch in PowerPro. Because the loading of the SDRAM Interface varies from application to application, a standard load of 50pF is assumed.

A standard loading of 50 pF is above average for most registered DIMM applications

The equation for the power consumption assumes 90 I/Os switching at 50MHz into 50pF. These assumptions output a value of 1.5 W as the total power consumption for PowerPro.

Table 36: Power Consumption Distribution

Parameter	Units
I/O Power Consumption	1.25 W
Core Power Consumption	0.25 W

14.2.2 Operating Conditions

Table 37 lists the recommended operating conditions for PowerPro.

Table 37: Recommended Operating Conditions

Characteristic		Symbol	Recommended Value	Unit
Core supply voltage		VDD_CORE	2.5V +/- 5%	V
PLL supply voltage	(Analog)	PLL_VDDA	2.5V +/- 5%	V
PLL supply voltage	(Digital)	PLL_DVDD	2.5V +/- 5%	V
I/O supply voltage	I/O supply voltage		3.3V +/- 10%	V
Input Voltage	Processor Bus	V _{in}	GND to VDD_IO	V
	Memory Bus	V _{in}	GND to VDD_IO	V
JTAG Signals		V _{in}	GND to VDD_IO	V
Commercial Operation		t _{COM}	0 to +70	°C
Industrial Operation		$t_{ m IND}$	-40 to +85	°C

14.2.2.1 Absolute Maximum Ratings

The following table, Table 38, specifies the absolute maximum ratings of PowerPro.

Table 38: Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
Vdd Core ^{a b}	Core Supply Voltage	-0.5 to 3.6	V
Vdd I/O ^{a c}	I/O Supply Voltage	-0.5 to 5.5	V
PLL_VDDA ^{a b}	PLL Supply Voltage	-0.5 to 3.6	V
Vin ^{a d e}	DC Input Voltage (LVTTL)	-0.5 to Vdd + 5.5	V
Vin ^{a d e}	DC Input Voltage (5 V tolerant LVTTL)	-0.6 to 5.5	V
Tstg	Storage Temperature	-65 to 150	°C

- a. Functional operation at the maximums is not guaranteed. Stress beyond those listed can affect device reliability or cause permanent damage to PowerPro.
- b. Vdd Core/ PLL_VDDA must not exceed Vdd I/O by more than 0.4 V. This includes during power-on reset.
- c. Vdd I/O must not exceed Vdd Core/ PLL_VDDA by more than 1.6 V. This includes during power-on reset.
- d. These limits only apply to overshoot and undershoot. Cell functionality is not implied.
- e. Vin must not exceed Vdd I/O by more than 2.5 V at any time. This includes during power-on reset.

15. Programming Multiplexed Signals

This chapter describes how to program specific features on PowerPro when signals are multiplexed on the same pin. The topics addressed in this chapter include:

- "Multiplexed Processor Bus Signals" on page 183
- "Multiplexed Memory Signals" on page 190
- "Multiplexed Miscellaneous Signals" on page 194

15.1 Overview

PowerPro has a series of signals that are multiplexed on a single pin. In order to enable a feature, and avoid signal contention and schematic errors, the proper feature must be programmed to work. This chapter is designed to aid the system integrator in debugging set-up related issues with PowerPro.

15.2 Multiplexed Processor Bus Signals

This section describes the multiplexed PowerPro Processor Bus (PB) signal grouping. These signals are used to interface to the MPC8260, PPC 740, PPC 750, PPC 7400 and PPC 603e.

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_AP[0:3]	Tristate	PB_AP[0], PB_BR[2], GPIO[0]:
Multiplexed with:	bidirectional Buffer Type:	When using Address Parity, the AP_EN bit in the PB_GEN_CTRL register (see page 209) must be set to 1.
PB_BR[2:3]_PB_BG[2:3]_GPIO[0:3]	CMOS	• When using PowerPro arbiter channel two, the M2_EN bit must be set to 1 in the PB_ARB_CTRL register (see page 214) in order to enable BR[2].
- GHO[0.5]		• When using GPIO[0] as either input or output, the ENABLE[0] bit must be set to 1 in the GPIO_A register (see page 313) and DIR[0] bit must be set either to 1 for input or to 0 for output in the GPIO_A register.
		PB_AP[1], PB_BR[3], GPIO[1]:
		When using Address Parity the AP_EN bit must be set to 1.
		• When using PowerPro arbiter channel three, the M3_EN bit must be set to 1.
		When using GPIO[1] as either input or output, the ENABLE[1] must be set to 1 and the DIR[1] bit must be set either to 1 for input or to 0 for output in the GPIO_A register.
		PB_AP[2], PB_BG[2], GPIO[2]:
		When using Address Parity the AP_EN bit must be set to 1.
		• When using PowerPro arbiter channel two, the M2_EN bit must be set to 1.
		When using GPIO[2] as either input or output, the ENABLE[2] bit must be set to 1 and the DIR[2] bit must be set either to 1 for input or to 0 for output in the GPIO_A register.
		PB_AP[3], PB_BG[3], GPIO[3]:
		When using Address Parity the AP_EN bit must be set to 1.
		• When using PowerPro arbiter channel three the M3_EN bit must be set to 1.
		• When using GPIO[3] as either input or output, the ENABLE[3] bit must be set and the DIR[3] bit must be set either to 1 for input or to 0 for output in the GPIO_A register.
		Note: It is possible to enable all three functions simultaneously. This causes a set-up error. Caution must be used to make sure that only one function is enabled at a time.

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_BR[0:1]_ Multiplexed with: • EE_A[28:27] • GPIO[12:13]_	Tristate bidirectional Buffer Type: CMOS	 PB_BR[0], EE_A[28], GPIO[12]: When the M0_EN bit is set to 1in the PB_ARB_CTRL register (see page 214), PB_BR[0] can only be used as a bus request input. When the M0_EN bit is 0 but the ENABLE[4] bit is set to 1 in the GPIO_B register (see page 313), PB_BR[0] can be used for general input and output. When neither M0_EN nor ENABLE[4] are set then PowerPro drives EE_Address[28] onto pin PB_BR[0]. Note: PB_BR[0] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_BR[0] is required, PB_BR[0] should not be connected; it should be left floating.
		 PB_BR[1], EE_A[27], GPIO[13]: When the M1_EN bit is set then PB_BR[1] can only be used as a bus request input. When the M1_EN bit is 0 and the ENABLE[5] bit is set to 1 in the GPIO_B register, PB_BR[1] can be used for general input and output. When neither M1_EN nor ENABLE[5] are set to 1, PowerPro drives EE_Address[27] onto pin PB_BR[1]. Note: PB_BR[1] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_BR[1] is required, PB_BR[1] should not be connected; it should be left floating.

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_BG[0:1]_ Multiplexed with: • EE_A[26:25] • GPIO[14:15]	Tristate bidirectional Buffer Type: CMOS	 PB_BG[0], EE_A[26], GPIO[14] When the M0_EN bit is set to 1 in the PB_GEN_CTRL register (see page 209), PB_BG[0] acts as a bus grant signal. When the M0_EN bit is set to 0 but the ENABLE[6] bit is set to 1 in the GPIO_B register (see page 313), PB_BG[0] acts as a GPIO pin and can be used for general input and output. When neither the M0_EN bit nor the ENABLE[6]bit are set, PowerPro drives EE_Address[26] onto pin PB_BG[0]. Note: PB_BG[0] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_BG[0] is required, PB_BG[0] should not be connected; it should be left floating.
		 PB_BG[1], EE_A[25], GPIO[15] When the M1_EN bit is set t 1, PB_BG[1] acts as a bus grant signal. When the M1_EN bit is set to 0 but the ENABLE[7] bit is set to 1 in the GPIO_B register, PB_BG[1] acts as a GPIO pin and can be used for general input and output. When neither the M1_EN bit nor the ENABLE[7] bit are set, PowerPro drives EE_Address[25] onto pin PB_BG[1]. Note: PB_BG[1] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_BG[1] is required, PB_BG[1] should not be connected; it should be left floating.

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_DBG[0:1]_ Multiplexed with: • INT[20:21]_ • EE_A[24:23]_ • GPIO[16:17]_	Tristate bidirectional Buffer Type: CMOS	 PB_DBG[0], INT[20], GPIO[16], EE_A[24]: When the M0_EN bit is set to 1 in the PB_GEN_CTRL register (see page 209), PB_DBG[0] can only be used as a bus grant output. When IE[20] is set to 1 in the If INT_ENABLE register (see page 280), PB_DBG[0] is used as an interrupt input line. When neither M0_EN nor IE[20] are set to 1, the ENABLE[0] bit can be set to 1 in the in the GPIO_C register (see page 313) to enable general purpose input output on PB_DBG[0]. When neither the M0_EN bit, the IE[20] bit nor the ENABLE[0] bit are set, PowerPro drives PB_DBG[0] with EE_Address[24]. Note: PB_DBG[0] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_DBG[0] is required, PB_DBG[0] should not be connected; it should be left floating. PB_DBG[1], INT[21], GPIO[17], EE_A[23]:
		 When the M1_EN bit is set to 1, PB_DBG[1] can only be used as a bus grant output. When the IE[21] bit is set to 1, PB_DBG[1] is used as an interrupt input line. When neither M1_EN nor IE[21] are set to 1, the ENABLE[1] bit in the GPIO_C register can be set to 1 to enable general purpose input output on PB_DBG[1]. When neither the M1_EN bit, the IE[21]bit nor the ENABLE[1] bit are set to 1, PowerPro drives PB_DBG[1] with EE_Address[23]. Note: PB_DBG[1] is driven even if no ENABLE bits in the EE_Bx_CTRL registers (see page 247) are set. Therefore when no functionality from PB_DBG[1] is required, PB_DBG[1] should not be connected; it should be left floating.
PB_DP[0] Multiplexed with: • PB_DBG[2]_ • EE_A[23] • GPIO[4]	Tristate bidirectional Buffer Type: CMOS	 If PB_ARB_CTRL.M2 is enabled, then PB_DP[0] functions as PB_DBG[2]. • When the M2 bit is not enabled in the PB_ARB_CTRL register but the DP_EN bit is enabled in the PB_GEN_CTRL register, then PB_DP[0] functions as data parity pin 0. Note: The PARITY bit in the PB_GEN_CTRL determines odd or even data parity. • When neither the M2 bit nor the DP_EN bit is enabled, PB_DP[0] can be used as a GPIO pin. Note: EE_A[23] is not available on this pin (this is a device erratum).

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_DP[1] Multiplexed with: • PB_DBG[3]_ • EE_A[24] • GPIO[5]	Tristate bidirectional Buffer Type: CMOS	 PB_DP[1], PB_DBG[3], EE_A[24], GPIO[5]: When the M3 bit is enabled in the If PB_ARB_CTRL register, PB_DP[1] functions as PB_DBG[3]. When the M3 bit is not enabled but the DP_EN bit in the PB_GEN_CTRL register is enabled, PB_DP[1] functions as data parity pin 1. Note: The PARITY bit in the PB_GEN_CTRL determines odd or even data parity. When neither the M3 bit nor the DP_EN bit is enabled, PB_DP[1] can be used as a GPIO pin. Note: EE_A[24] is not available on this pin (this is a device erratum).

Table 39: Processor Bus Multiplexed Signals

Pin Name	Pin Type	Programming
PB_DP[2] Multiplexed with: • EE_A[28] • GPIO[6]	Tristate bidirectional Buffer Type: CMOS	 When the DP_EN bit has been set to 1 in the PB_GEN_CTRL register, PB_DP[2:7] functions as data parity pins. When the DP_EN bit has not been set to 0, then PB_DP[2:7] can be used individually as GPIO pins. When the PB_DP[2:7] signals are not used as either GPIO or data parity pines then EE_A[28:23] is driven from the DB_DP[2:7] pines.
PB_DP[3] Multiplexed with: • EE_A[27] • GPIO[7]	Tristate bidirectional Buffer Type: CMOS	pins, then EE_A[28:23] is driven from the PB_DP[2:7] pins. Note: Tying the PB_DP[2:7] pins to VSS or VDD when the signals are not being used as GPIO or data parity pins is not recommended.
PB_DP[4] Multiplexed with: • EE_A[26] • GPIO[8]	Tristate bidirectional Buffer Type: CMOS	
PB_DP[5 Multiplexed with: • EE_A[25] • GPIO[9]	Tristate bidirectional Buffer Type: CMOS	
PB_DP[6] Multiplexed with: • EE_A[24] • GPIO[10]	Tristate bidirectional Buffer Type: CMOS	
PB_DP[7] Multiplexed with: • EE_A[23] • GPIO[11]	Tristate bidirectional Buffer Type: CMOS	

15.3 Multiplexed Memory Signals

This section describes PowerPro multiplexed signals used to memory interfaces. PowerPro supports SDRAM, EEPROM, FLASH, ROM, and SRAM memory.

Table 40: Memory Multiplexed Signals

Pin Name	Pin Type	Programming
SD_A[12:0] Multiplexed with: EE_A[12:0]	Output Buffer Type: CMOS	 SD_A[0:12], EE_A[0:12]: When an SDRAM address phase is active, PowerPro drives SD_A[0:12] with the SDRAM address. When no SDRAM address phase is active and an EE_Address phase is active, PowerPro drives SD_A[0:12] with EE_Address[0:12].
SD_BA[1:0] Multiplexed with: EE_A[14:13]	Output Buffer Type: CMOS	 SD_BA[0:1], EE_A[13:14]: When an SDRAM address phase is active, PowerPro drives SD_BA[0:1] with the SDRAM bank address. When no SDRAM address phase is active and an EE_Address phase is active, PowerPro drives SD_BA[0:1] with EE_Address[13:14].

Table 40: Memory Multiplexed Signals

Pin Name	Pin Type	Programming
SD_CS[0:3]_	Tristate	SD_CS[0], GPIO[19]:
Multiplexed with:	bidirectional Buffer Type:	• When the ENABLE bit is set to 1 in the SD_B0_ADDR register (see page 233), SD_CS[0] operates as a SDRAM chip select.
GPIO[19:22]	CMOS	• When the ENABLE bit is not set to 1 and the ENABLE[3] bit is set to 1 in the GPIO_C register (see page 247), SD_CS[0] can be set to enable general purpose input output.
		SD_CS[1], GPIO[20]:
		When the ENABLE bit is set to 1 in the SD_B0_ADDR register, SD_CS[1] operates as a SDRAM chip select.
		When the ENABLE bit is set to 0 and the ENABLE[4] bit is set to 1 in the GPIO_C register, SD_CS[1] can be set to enable general purpose input output.
		SD_CS[2], GPIO[21]:
		• When the ENABLE bit is set to 1 in the SD_B1_ADDR register, SD_CS[2] operates as a SDRAM chip select.
		When the ENABLE bit is set to 0 in the SD_B0_ADDR register and ENABLE[5] is set to 1 in the GPIO_C register, SD_CS[2] can be set to enable general purpose input output.
		Note: The ENABLE bit in the SD_B0_ADDR register must be cleared, not the ENABLE bit in the SD_B1_ADDR register. This is a device erratum.
		SD_CS[3], GPIO[22]:
		When the ENABLE bit is set to 1 in the SD_B1_ADDR register, SD_CS[2] operates as a SDRAM chip select.
		• When the ENABLE bit is set to 0 in the SD_B0_ADDR register and the ENABLE[5] is set, then SD_CS[2] will provide the functionality of a general purpose input output.
		Note: The ENABLE bit in the SD_B0_ADDR register must be cleared, not the ENABLE bit in the SD_B1_ADDR register. This is a device erratum.

Table 40: Memory Multiplexed Signals

Pin Name	Pin Type	Programming
SD_CS[4:7]_ Multiplexed with: INT[16:19]	Tristate bidirectional Buffer Type: CMOS	 SD_CS[4], INT[16]: When the ENABLE bit is set 1 in the SD_B2_ADDR register (see page 233), SD_CS[4] operates as a SDRAM chip select. When the IE[16] bit is set to 1 in the INT_ENABLE register (see page 280) and the ENABLE bit is set to 0 in the SD_B2_ADDR register, SD_CS[4] operates as an interrupt input line
		SD_CS[5], INT[17]: • When the ENABLE bit is set 1 in the SD_B2_ADDR register, SD_CS[5] operates as a SDRAM chip select.
		When the IE[17] bit is set to 1 in the INT_ENABLE register and the ENABLE bit is set to 0 in the SD_B2_ADDR register, SD_CS[5] operates as an interrupt input line.
		 SD_CS[6], INT[18]: When the ENABLE bit is set 1 in the SD_B3_ADDR register, SD_CS[6] operates as a SDRAM chip select. When the IE[18] bit is set to 1 in the INT_ENABLE register and the ENABLE bit is set to 0 in the SD_B3_ADDR register, SD_CS[6] operates as an interrupt input line.
		 SD_CS[7], INT[19]: When the ENABLE bit is set 1 in the SD_B3_ADDR register, SD_CS[7] operates as a SDRAM chip select. When the IE[19] bit is set to 1 in the INT_ENABLE register and the ENABLE bit is set to 0 in the SD_B3_ADDR register, SD_CS[7] operates as an interrupt input line.
SD_ECC[0:7] Multiplexed with: SD_DQM[0:7]	Tristate bidirectional Buffer Type: CMOS	 SD_ECC[0:7], SD_DQM[0:7]: When the DQM_EN bit is set to 1 in the SD_TIMING register (see page 225), SD_ECC[0:7] are used as SDRAM byte enable lines. When the DQM_EN bit is set to 0, SD_ECC[0:7] are used as SDRAM ECC syndrome bits. Whether the DQM_EN bit is set or not, SD_ECC[0:7] are used as EE_DATA byte enable lines when the PORT bit is set in the EE_Bx_CTRL register (page 247).

Table 40: Memory Multiplexed Signals

Pin Name	Pin Type	Programming
SD_SELECT Multiplexed with: • EE_SELECT • EE_AL[0] • GPIO[23]	Tristate bidirectional Buffer Type: CMOS	 SD_SELECT, EE_SELECT, EE_AL[0], GPIO[23]: When the ENABLE[7] bit is set to 1 in the GPIO_C register (see page 247), SD_SELECT can be set to enable general purpose input output. When the ENABLE[7] bit is set to 0 in the GPIO_C register, SD_SELECT is used as a EE_ADDRESS de-multiplex pin (EE_SELECT) and can be used as a SD_D multiplexer select line. When used as a SD_D multiplex select line, SD_SELECT is high during data phases of SDRAM accesses. Refer to "SD_SELECT Signal" on page 94 for more information.
EE_AL1_ Multiplexed with: GPIO[24]	Tristate bidirectional Buffer Type: CMOS	 EE_AL[1], GPIO[24]: When the ENABLE[0] bit is set to 1 in the GPIO_D register (see page 247), EE_AL[1] is used as an GPIO pin. When the ENABLE[0] bit is set to 0 in the GPIO_D register, EE_AL[1] is used as an EE_Address latch line.
EE_AL2 Multiplexed with: GPIO[28]_	Tristate bidirectional Buffer Type: CMOS	 EE_AL[2], GPIO[28]: When the ENABLE[3] bit is set to 1 in the GPIO_D register, EE_AL[2] is used as an GPIO pin. When the ENABLE[3] bit is set to 0 in the GPIO_D register, EE_AL[2] is used as an EE_Address latch line.
EE_CS[0:3]_ Multiplexed with: GPIO[30:33]	Tristate bidirectional Buffer Type: CMOS	 EE_CS[0:3], GPIO[30:33]: When the ENABLE[6:7] bits are set in the GPIO_D register and the ENABLE[0:1] bits are set in the GPIO_E register (see page 247), EE_CS[0:3] is a GPIO port. When the two registers are not set, EE_CS[0:3] is used for EE_ADDRESS chip selection.
EE_OE_ Multiplexed with: GPIO[25]	Tristate bidirectional Buffer Type: CMOS	 EE_OE, GPIO[25]: When the ENABLE[1] bit is set to 1 in the GPIO_D register, EE_OE is used as an GPIO pin. When the ENABLE[1] bit is set to 0 in the GPIO_D register, EE_OE is used as an EE_Address output enable line. Note: EE_OE is active low and is driven low when a read data phase is in progress.
EE_READY Multiplexed with: GPIO[29]	Tristate bidirectional Buffer Type: CMOS	 EE_READY, GPIO[29]: If GPIO_DoENABLE[5] is set, then EE_READY is used as an GPIO pin. If GPIO_DoENABLE[5] is not set, then EE_READY is used as an EE_Address data ready input line.

Table 40: Memory Multiplexed Signals

Pin Name	Pin Type	Programming
EE_RNW Multiplexed with: GPIO[27]	Tristate bidirectional Buffer Type: CMOS	 EE_RNW, GPIO[27]: When the ENABLE[3] bit is set to 1 in the GPIO_D register, EE_RNW is used as an GPIO pin. When the ENABLE[3] bit is set to 0 in the GPIO_D register, EE_RNW is used as an EE_Address Read Not Write line. Note: When PowerPro is performing a write, this line is driven low by PowerPro. When PowerPro is performing a read, this line is driven high by PowerPro.
EE_WE_ Multiplexed with: GPIO[26]	Tristate bidirectional Buffer Type: CMOS	 EE_WE, GPIO[26]: When the ENABLE[2] bit is set to 1 in the GPIO_D register EE_WE is used as an GPIO pin. When the ENABLE[3] bit is set to 0 in the GPIO_D register, EE_WE is used as an EE_Address Write Enable line. Note: PowerPro drives this line low whenever a write transaction to one of the EE_Bx banks is performed.

15.4 Multiplexed Miscellaneous Signals

This section describes multiplexed PowerPro signals not necessarily dedicated to either the PB interface or memory interfaces.

Pin Name	Pin Type	Programming
EE_DATA[0] Multiplexed with: • EE_A[22] • EE_A[31] • EE_A[31] • EE_A[23] • EE_A[15] • EE_A[7] • INT[0] • GPIO[34] • PWRUP[0] EE_DATA[1] Multiplexed with: • EE_A[21] • EE_A[30] • EE_A[22] • EE_A[14] • EE_A[6]	Tristate bidirectional Buffer Type: CMOS Tristate bidirectional Buffer Type: CMOS	 EE_DATA, as an input, can be a FLASH/ROM data input, GPIO input, an interrupt input line or a power-up option pin. What differentiates the function of EE_DATA as in input is the way INT_MSTATUS[0:7], GPIO_E[2:7], GPIO_F[0:1] are configured and if PORESET is being asserted or not. When any of the ENABLE[2:7] bits in the GPIO_E register and the ENABLE[0:1] bits in the GPIO_F register are set to 1, the corresponding EE_DATA pin becomes a GPIO pin. All pins can be activated individually Note: Once one pin has been made GPIO, EE_DATA cannot be used for FLASH/ROM data pins. It is possible to program EE_DATA for GPIO and FLASH/ROM data pins. Make sure that PowerPro is not configured to use the EE-DATA pins as both GPIO signals and FLASH/ROM data signals. INT_STATUS[0:7] are always updated with the value on EE_DATA[0:7] pins (regardless of the setting in the ENABLE bit). What makes INT_STATUS[0:7] effective as an interrupt input pin is the INT_MSTATUS mask pins. If EE_DATA is desired to be used as in interrupt input pin, then the user must program the INT_MSTATUS bits appropriately. EE_DATA[0:7]'s primary use is as FLASH/ROM data pins. No special action by the user is required to use EE_DATA[0:7] as FLASH/ROM data pins.
• EE_A[6] • INT[1] • GPIO[35] • PWRUP[1] EE_DATA[2] Multiplexed with: • EE_A[20] • EE_A[29] • EE_A[21] • EE_A[13] • EE_A[5] • INT[2] • GPIO[36]	Tristate bidirectional Buffer Type: CMOS	 data pins. When PORESET is sampled going from asserted to de-asserted (low to high transition), PowerPro latches power-up options from the EE_DATA pins. Refer to EE_DATA[0:7] can also be output pins. EE_DATA can be used as FLASH/ROM data pins (default setting) or FLASH/ROM address (time multiplexed) or as GPIO output pins. Note: Once one pin has been made GPIO, EE_DATA cannot be used for FLASH/ROM data pins. It is possible to program EE_DATA for GPIO and FLASH/ROM data pins. Make sure that PowerPro is not configured to use the EE-DATA pins as both GPIO signals and FLASH/ROM data signals. To configure one or more EE_DATA pins as GPIO, program the ENABLE[2:7] bits in the GPIO_E register or the ENABLE[0:1] bits in the GPIO_F register to the appropriate value.
• PWRUP[2] EE_DATA[3] Multiplexed with: • EE_A[19] • EE_A[28] • EE_A[20]	Tristate bidirectional Buffer Type: CMOS	
PowerPra [132] Man 80A5000 MA001_10 • INT[3]	nal	195

Pin Name	Pin Type	Programming
EXT_INT_ Multiplexed with: GPIO[18]	Tristate bidirectional Buffer Type: CMOS	 EXT_INT, GPIO[18]: When the ENABLE[2] bit is set to 1 in the GPIO_C register (see page 247), EXT_INT is used as an GPIO pin. When the ENABLE[2] bit is set to 0 in the GPIO_C register, EXT_INT is used as an external interrupt driver. Refer to Table 102 on page 283 to review the IGTYPE bit in the Interrupt Controller Cycle Generation register.
I2C0_SDA Multiplexed with: • INT[13] • GPIO[47]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I2C0_SDA, INT[13], GPIO[47]: When the SSRC[13] bit is set to 0 in the INT_SOFTSRC register (see page 292), it is possible to use I2C0_SDA as an external interrupt source pin. When the ENABLE[7] bit is set to 1 in the GPIO_F register, I2C0_SDA is used as a bi-directional GPIO pin. When neither SSRC[13] nor ENABLE[7] are set, I2C0_SDA can be used as a I2C SDA pin.
I2C1_SDA Multiplexed with: • INT[15] • GPIO[49]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I2C1_SDA, INT[15], GPIO[49]: When the SSRC[15] bit is set to 0 in the INT_SOFTSRC register, it is possible to use I2C1_SDA as an external interrupt source pin. When the ENABLE[1] bit is set to 1 in the GPIO_G register (see page 247), I2C1_SDA is used as a bi-directional GPIO pin. When neither SSRC[15] nor ENABLE[1] are set, I2C1_SDA can be used as a I2C SDA pin.
I2C0_SCLK Multiplexed with: • INT[12] • GPIO[46]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I2C0_SCLK, INT[12], GPIO[46]: When the SSRC[12] bit is set to 0 in the INT_SOFTSRC register, it is possible to use I2C0_SCLK as an external interrupt source pin. When the ENABLE[6] bit is set to 1 in the GPIO_F register (see page 247), I2C0_SCLK is used as a bi-directional GPIO pin. When neither SSRC[12] nor ENABLE[6] are set, I2C_SCLK can be used as a I2C SCLK pin.
I2C1_SCLK Multiplexed with: • INT[14] • GPIO[48]	Bidirectional open drain (5V tolerant) Buffer Type: CMOS	 I2C1_SCLK, INT[14], GPIO[48]: When the SSRC[14] bit is set to 0 in the INT_SOFTSRC register, it is possible to use I2C1_SCLK as an external interrupt source pin. When the ENABLE[0] bit is set to 1 in the GPIO_G register, I2C1_SCLK is used as a bi-directional GPIO pin. When neither SSRC[14] nor ENABLE[0] are set, I2C_SCLK can be used as a I2C SCLK pin.

Pin Name	Pin Type	Programming
UARTO_RX Multiplexed with: • INT[9] • GPIO[43]	Tristate bidirectional Buffer Type: CMOS	 UARTO_RX, INT[9], GPIO[43]: UARTO_RX is either an input pin (RX line or external interrupt) or a bidirectional GPIO pin. This function is determined by the ENABLE[3] bit in the GPIO_F register and the SSRC[9] bit in the INT_SOFTSRC register. When the SSRC[9] bit is set to 0, it is possible to use this pin as a source for external interrupts. When the ENABLE[3] bit is set to 1 in the GPIO_F register, then this pin is a GPIO pin and INT_MSTATUS[9] should be cleared to prevent unwanted interrupts from occurring.
UARTO_TX Multiplexed with: • INT[8] • GPIO[42]	Tristate bidirectional Buffer Type: CMOS	 UARTO_TX, INT[8], GPIO[42]: When the ENABLE[2] bit is set in the GPIO_F register, this pin is used as a GPIO pin or as an external interrupt source pin. If this pin is being used as an interrupt input, the DIR[2] bit must be set (input) in the GPIO_F register and the INT_MSTATUS[8] bit should also be set in the Interrupt Controller Masked Status register (page 280). When the ENABLE[2] bit is set to 0 in the GPIO_F register, this pin is used as a UART TX line and is driven at all times. Note: If this pin is being used as a GPIO pin, then INT_MSTATUS[8] should be cleared to prevent unwanted interrupts from occurring.
UART1_RX Multiplexed with: • INT[11] • GPIO[45]	Tristate bidirectional Buffer Type: CMOS	 UART1_RX, INT[11], GPIO[45]: UART1_RX is either an input pin (RX line or external interrupt) or a bidirectional GPIO pin. This function is determined by the ENABLE[5] bit in the GPIO_F register and the SSRC[11] bit in the INT_SOFTSRC register. When the SSRC[11] is set to 0, it is possible to use this pin as a source for external interrupts. When the ENABLE[5] bit is set to 1, this pin is a GPIO pin and INT_STATUS[11] should be cleared to prevent unwanted interrupts from occurring.
UART1_TX Multiplexed with: • INT[10] • GPIO[44]	Tristate bidirectional Buffer Type: CMOS	 UART1_TX, INT[10], GPIO[44]: When the ENABLE[4] bit is set in the GPIO_F register, this pin is used as a GPIO pin or as an external interrupt source pin. If this pin is being used as an interrupt input, the DIR[4] bit must be set (input) in the GPIO_F register and the INT_MSTATUS[10] bit should also be set in the Interrupt Controller Masked Status register (page 280). When the ENABLE[4] bit is set to 0 in the GPIO_F register, this pin is used as a UART TX line and is driven at all times. Note: When this pin is used as a GPIO pin, the INT_MSTATUS[10] bit should be cleared to prevent unwanted interrupts from occurring.

	_		_	
15. Progr	ommina	Multin	اميرما	Cianal
13 Progr	amming	VIIIIIII	nexea	SIGHAL

198

16. Registers

This chapter outlines the registers of the PowerPro. The topics addressed in this chapter include:

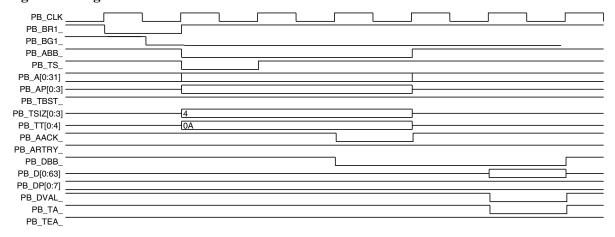
- "Register Access" on page 199
- "Register Reset" on page 201
- "Register Descriptions" on page 201

16.1 Overview

PowerPro has a 512byte register space designed to control behavior and monitor status.

16.2 Register Access

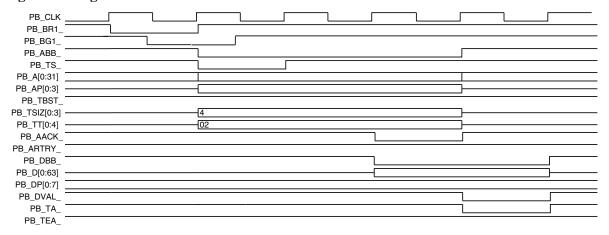
PowerPro registers are accessible by external masters through the PB Interface. Most registers are 32-bit registers, however, UART registers are 8-bit. Writes are byte enabled. All bytes are returned on reads. The PowerPro supports only single beat register accesses.



Register writes to "write 1 to set/clear" status bits may not be reflected by an immediate register read.

16.2.1 Register Reads

Figure 38 shows a single 32-bit read access. The cycle is performed from an external master and the processor (60x) bus frequency is 100Mhz.


Figure 38: Register Read

16.2.2 Register Writes

Figure 39 shows a single 32-bit write access. The cycle is performed from an external master and the processor (60x) bus frequency is 100Mhz.

Figure 39: Register Write

16.2.3 Register Image

PowerPro internal registers are accessed through an image specified by the Processor Bus Base Address (PB_REG_ADDR) register (see page 208). When an address matches the programmed address in PB_REG_ADDR, and the Transfer Type is supported, PowerPro registers are accessed.

The default value of PB_REG_ADDR is 0xFFFF_FE00 to 0xFFFF_FFFF and is specified at reset. However, the value can be programmed to relocate the registers elsewhere in the memory map. The value of PB_REG_ADDR can also be altered by a power-up configuration option.

Register access transactions are limited to a maximum of 8 bytes. The selected bytes are changed during writes. All bytes are returned on reads.

Refer to "Data Alignment" on page 42 for more information on setting the register access size from 4 bytes (default) to 8 bytes.

Bursting to the registers is not supported.

16.2.3.1 Termination

When a register access exceeds 8 bytes, or the external master attempts to burst to the registers, the PB Slave asserts Processor Bus Transfer Error Acknowledge (PB_TEA_). This signal indicates a bus error and terminates the transaction.

16.2.3.2 SDRAM Memory Images

SDRAM memory images route memory mapped transactions to SDRAM. These images never assert PB_ARTRY_. Any valid processor (60x) bus transaction is supported, including MPC8260 extended cycles.

16.2.3.3 FLASH/ROM Memory Images

FLASH/ROM memory images route memory mapped transactions to EEPROM, Flash, SRAM and the peripheral bus. Any valid processor (60x) bus cycle can be mapped to any size of EEPROM device, with PowerPro buffering the cycle information and performing multiple FLASH/ROM transactions as required.

When enabled, PB_ARTRY_ can be asserted by PowerPro during reads or writes when the FLASH/ROM Interface is busy processing a slow cycle.

16.3 Register Reset

The register space contains a single reset domain: the Processor Bus Interface registers.

Registers are configured after reset through the Configuration Master or Configuration Slave configuration cycle. Refer to "Power-up" on page 151 for more information.

16.4 Register Descriptions

The PowerPro register space can be divided into the following groups:

- Processor Bus
- SDRAM

- FLASH/ROM / SRAM / Peripheral
- Error Handling
- Watchdog Timer
- General Purpose Timer
- Interrupt Controller
- UART
- General Purpose I/O (GPIO)

These groupings are shown in Table 41. The register map shows the offsets of all registers when accessed by the Processor Bus Register Image (PB_REG_BADDR) register.

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
Processor B	Processor Bus Registers		
0x000	PB_REG_ADDR	PB Base Address for registers (Can be altered through Power-up)	page 208
0x004	PB_GEN_CTRL	PB General Control and Configuration	page 209
0x008	PB_ARB_CTRL	PB Arbiter Control	page 214
0x00C	PB_ERR_ATTR	PB Error Log - Attributes	page 217
0x010	PB_ERR_ADDR	PB Error Log - Address	page 220
0x014	PB_AM	PB Address Match - Address	page 221
0x018	PB_AM_MASK	PB Address Match - Mask	page 222
0x01C	VERSION_REG	PowerPro Version Register	page 223
SDRAM Re	gisters		
0x020	SD_REFRESH	SDRAM Refresh interval	page 224
0x024	SD_TIMING	SDRAM Timing Adjustment	page 225
0x028	PLL_FB_TUNE	PLL Feedback Tuning	page 232
0x032-03C	PowerPro Reserved		-
0x040	SD_B0_ADDR	SDRAM Bank 0 Base Address	page 233
0x044	SD_B0_MASK	SDRAM Bank 0 Base Address Compare Mask	page 235

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
0x048	SD_B0_CTRL	SDRAM Bank 0 Control	page 237
0x04C	PowerPro Reserved		-
0x050	SD_B1_ADDR	SDRAM Bank 1 Base Address	page 233
0x054	SD_B1_MASK	SDRAM Bank 1 Base Address Compare Mask	page 235
0x058	SD_B1_CTRL	SDRAM Bank 1 Control	page 237
0x05C	PowerPro Reserved		-
0x060	SD_B2_ADDR	SDRAM Bank 2 Base Address	page 233
0x064	SD_B2_MASK	SDRAM Bank 2 Base Address Compare Mask	page 235
0x068	SD_B2_CTRL	SDRAM Bank 2 Control	page 237
0x06C	PowerPro Reserved		-
0x070	SD_B3_ADDR	SDRAM Bank 3 Base Address	page 233
0x074	SD_B3_MASK	SDRAM Bank 3 Base Address Compare Mask	page 235
0x078	SD_B3_CTRL	SDRAM Bank 3 Control	page 237
0x07C	PowerPro Reserved		-
FLASH/RO	M Registers		
0x080	EE_B0_ADDR	ROM Bank 0 Base Address	page 242
0x084	EE_B0_MASK	ROM Bank 0 Base Address Compare Mask	page 245
0x088	EE_B0_CTRL	ROM Bank 0 Timing and Control	page 247
0x08C	PowerPro Reserved		-
0x090	EE_B1_ADDR	ROM Bank 1 Base Address	page 242
0x094	EE_B1_MASK	ROM Bank 1 Base Address Compare Mask	page 245
0x098	EE_B1_CTRL	ROM Bank 1 Timing and Control	page 247
0x09C	PowerPro Reserved		-
0x0A0	EE_B2_ADDR	ROM Bank 2 Base Address	page 242
0x0A4	EE_B2_MASK	ROM Bank 2 Base Address Compare Mask	page 245
0x0A8	EE_B2_CTRL	ROM Bank 2 Timing and Control	page 247

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
0x0AC	PowerPro Reserved		-
0x0B0	EE_B3_ADDR	ROM Bank 3 Base Address	page 242
0x0B4	EE_B3_MASK	ROM Bank 3 Base Address Compare Mask	page 245
0x0B8	EE_B3_CTRL	ROM Bank 3 Timing and Control	page 247
0x0BC	PowerPro Reserved		-
0x0C0	I2C0_CSR	I ² C Interface #0 (primary) Control and Status	page 255
0x0C4	I2C1_CSR	I ² C Interface #1 (secondary) Control and Status	page 255
0x0C8-0EC	PowerPro Reserved		-
Watchdog Ti	imer Registers		-
0x0F0	WD_CTRL	Watchdog Timer Control	page 257
0x0F4	WD_TIMEOUT	Watchdog Timer Time-out Value	page 258
0x0F8	WD_COUNT	Watchdog Timer Current Count	page 260
0x0FC	WD_BUS	Bus Watchdog Timer	page 261
General Pur	pose Timer Registers		
0x100	GPT0_COUNT	GPT 0 Timer Base Count	page 262
0x104	GPT0_CAPTURE	GPT 0 Capture Events	page 263
0x108	GPT1_COUNT	GPT 1 Timer Base Count	page 271
0x10C	GPT0_INT	GPT 0 Timer Capture / Compare Interrupt Control	page 265
0x110	GPT0_ISTATUS	GPT 0 Timer Capture / Compare Interrupt Status	page 266
0x114	GPT1_CAPTURE	GPT 1 Capture Events	page 272
0x118	GPT1_INT	GPT 1 Interrupt Control	page 274
0x11C	GPT1_ISTATUS	GPT 1 Interrupt Status	page 275
0x120	GPT0_T0	GPT 0 Timer Capture Trigger 0	page 267
0x124	GPT0_T1	GPT 0 Timer Capture Trigger 1	page 267
0x128	GPT0_T2	GPT 0 Timer Capture Trigger 2	page 267
0x12C	GPT0_T3	GPT 0 Timer Capture Trigger 3	page 267

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
0x130	GPT1_T0	GPT 1 Timer Capture Trigger 0	page 276
0x134	GPT1_T1	GPT 1 Timer Capture Trigger 1	page 276
0x138	GPT1_T2	GPT 1 Timer Capture Trigger 2	page 276
0x13C	GPT1_T3	GPT 1 Timer Capture Trigger 3	page 276
0x140	GPT0_C0	GPT 0 Timer Compare 0	page 268
0x144	GPT0_C1	GPT 0 Timer Compare 1	page 268
0x148	GPT0_C2	GPT 0 Timer Compare 2	page 268
0x14C	GPT0_C3	GPT 0 Timer Compare 3	page 268
0x150-15C	GPT1_C0	GPT 1 Timer Compare 0	page 277
0x154	GPT1_C1	GPT 1 Timer Compare 1	page 277
0x158	GPT1_C2	GPT 1 Timer Compare 2	page 277
0x15C	GPT1_C3	GPT 1 Timer Compare 3	page 277
0x160	GPT0_M0	GPT 0 Timer Compare Mask 0	page 269
0x164	GPT0_M1	GPT 0 Timer Compare Mask 1	page 269
0x168	GPT0_M2	GPT 0 Timer Compare Mask 2	page 269
0x16C	GPT0_M3	GPT 0 Timer Compare Mask 3	page 269
0x170	GPT1_M0	GPT 1 Timer Compare Mask 0	page 278
0x174	GPT1_M1	GPT 1 Timer Compare Mask 1	page 278
0x178	GPT1_M2	GPT 1 Timer Compare Mask 2	page 278
0x17C	GPT1_M3	GPT 1 Timer Compare Mask 3	page 278
Interrupt Co	ontroller Registers		-
0x180	INT_STATUS	Interrupt Status	page 279
0x184	INT_MSTATUS	Interrupt Masked Status	page 280
0x188	INT_ENABLE	Interrupt Enable	page 280
0x18C	INT_GENERATE	Interrupt Generation Type	page 283
0x190	INT_POLARITY	Interrupt Polarity	page 284

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
0x194	INT_TRIGGER	Interrupt Trigger Type	page 285
0x198	INT_VBADDR	Interrupt Vector Base Address	page 286
0x19C	INT_VINC	Interrupt Vector Increment	page 287
0x1A0	INT_VECTOR	Interrupt Vector Address	page 289
0x1A4	INT_SOFTSET	Interrupt Software Set	page 291
0x1A8	INT_SOFTSRC	Interrupt Controller Software Source	
0x1AC	PowerPro Reserved		-
UART Regi	sters		
0x1B0	UART0_Rx_Tx	UARTO Receive / Transmit Data	page 293
0x1B1	UART0_IER	UART0 Interrupt Enable	page 296
0x1B2	UARTO_ISTAT_ FIFO	UART0 Interrupt Status / FIFO Control	page 299
0x1B3	UART0_LCR	UARTO Line Control	page 304
0x1B4	UART0_MCR	UART0 Modem Control	page 307
0x1B5	UART0_LSR	UART0 Line Status	page 308
0x1B6	UART0_MSR	UART0 Modem Status	page 311
0x1B7	UART0_SCR	UART0 Scratchpad	page 312
0x1B8	PowerPro Reserved		
0x1C0	UART1_Rx_Tx	UART1 Receive / Transmit Data	page 293
0x1C1	UART1_IER	UART1 Interrupt Enable	page 296
0x1C2	UART1_ISTAT_ FIFO	UART1 Interrupt Status / FIFO Control	page 299
0x1C3	UART1_LCR	UART1 Line Control	page 304
0x1C4	UART1_MCR	UART1 Modem Control	page 307
0x1C5	UART1_LSR	UART1 Line Status	page 308
0x1C6	UART1_MSR	UART1 Modem Status	page 311
0x1C7	UART1_SCR	UART1 Scratchpad	page 312
	1	L	

Table 41: PowerPro Register Map

Offset (HEX)	Register Mnemonic	Register Name	Page
0x1C8-1DC	PowerPro Reserved		-
General Pur	pose I/O Registers		
0x1E0	GPIO_A	GPIO - Enable, Mask, Direction, Data [0:7]	page 313
0x1E4	GPIO_B	GPIO - Enable, Mask, Direction, Data [8:15]	page 313
0x1E8	GPIO_C	GPIO - Enable, Mask, Direction, Data [16:23]	page 313
0x1EC	GPIO_D	GPIO - Enable, Mask, Direction, Data [24:31]	page 313
0x1F0	GPIO_E	GPIO - Enable, Mask, Direction, Data [32:39]	page 313
0x1F4	GPIO_F	GPIO - Enable, Mask, Direction, Data [40:47]	page 313
0x1F8	GPIO_G	GPIO - Enable, Mask, Direction, Data [48:49]	page 313
0x1FC-	PowerPro Reserved		-

The following table describes the abbreviations used in the register descriptions.

Abbreviation	Description
HRESET_	Processor Bus Reset
R/W	Read/Write
R	Read Only
R/Write 1 to Clear	Read/Write 1 to Clear
Write 1 to Set	Read 0/Write 1 to Set (Writing a 1 triggers an event)
0	Reset value is 0.
1	Reset value is 1.
PWRUP	Register bit can be loaded as a power-up option.
PowerPro Reserved	Do not write - Read back is undefined.
Reserved	Do not write - Read back undefined.

16.4.1 PB Register Base Address

PowerPro registers occupy a 512 byte portion of the processor (60x) bus memory map. The base address of the 512 byte portion is defined by this register. By default, after reset the registers occupy 0xFFFF_FE00 to 0xFFFF_FFFF. If PowerPro is being used as a MPC8260 configuration slave, then this register can be relocated using a configuration word. Most applications will not use this feature and will have this register reset to 0xFFFF_FE00.

The actual memory address of any register is simply the BA field (this register) + register offset. This register can be automatically loaded from a power-up configuration option. Refer to 11. "Reset, Clock and Power-up Options" on page 141 for more information.

Table 42: PB Register Base Address

Register Name: PB_REG_ADDR							Register	Offset: 000
	Function							
Bits	0	0 1 2 3 4 5 6 7						
0-7		BA[0:7]						
8-15		BA[8:15]						
16-23	BA[16:22] Reserved							
24-31		Reserved						

PB_REG_ADDR Description

Name	Туре	Reset By	Reset State	Function
BA[0:22]	R/W	HRESET_, PWRUP	all 1	PowerPro memory mapped register base address.

16.4.2 Processor Bus General Control

Reserved

TEA_AP

DP_GEN

This register controls a variety of PowerPro processor (60x) bus functionality.

Table 43: Processor Bus General Control Register

Ke	Register Name: PB_GEN_CTRL							Register	Offset: 004
		Function							
	Bits	0	1	2	3	4	5	6	7
	0-7	ECC_ TEST	Reserved PLL_EN						
	8-15				Rese	erved			

TEA_EN

WATCH_

TA

ARTRY_E

N

WATCH_

DVAL

DP_EN

WATCH_

TEA

AP_EN

WATCH_

AACK

PARITY

PB_GEN_CTRL Description

Reserved

16-23

24-31

Name	Туре	Reset By	Reset State	Function
ECC_TEST	R/W	HRESET_	0	Allows testing of ECC function. 0 = normal operation 1 = all write data masked. Writes to D[0:7] are mapped to the eight ECC check bits.
PLL_EN	R	PWRUP	n/a	Internal PLL enabled or disabled. 0 = PLL enabled 1 = PLL disabled
TEA_EN	R/W	HRESET_	0	Suppress PB_TEA_ generation 0 = PowerPro does not assert PB_TEA_ 1 = PowerPro asserts PB_TEA_ as required.
ARTRY_EN	R/W	HRESET_	0	Address retry enable 0=PB Slave never asserts PB_ARTRY_ 1=PB Slave asserts PB_ARTRY_ as required

PB_GEN_CTRL Description

Name	Туре	Reset By	Reset State	Function
WATCH_TA	R/W	HRESET_	0	Assert PB_TA_ when the watchdog timer expires $0 = Disabled$ $1 = Enabled$
WATCH_DVAL	R/W	HRESET_	0	Assert PB_DVAL_ when the watchdog timer expires $0 = Disabled$ $1 = Enabled$
WATCH_TEA	R/W	HRESET_	0	Assert PB_TEA_ when the watchdog timer expires $0 = Disabled$ $1 = Enabled$
WATCH_AACK	R/W	HRESET_	0	Assert PB_AACK_ when the watchdog timer expires $0 = Disabled$ $1 = Enabled$
DP_GEN	R/W	HRESET_	0	Enables generation of data parity 0 = Disabled, cleared independent of DP_EN. 1 = Enabled, set when DP_EN set
TEA_AP	R/W	HRESET_	0	Assert PB_TEA_ on Address Parity Errors $0 = Disabled$ $1 = Enabled$
DP_EN	R/W	HRESET_	0	Data Parity Enable 0 = Data parity checking disabled 1 = Data parity checking enabled
AP_EN	R/W	HRESET_	0	Address Parity Enable 0 = Address parity checking disabled 1 = Address parity checking enabled
PARITY	R/W	HRESET_	0	Parity 0 = Odd Parity, 1 = Even Parity

ECC_TEST: This bit enables PB_D[0:7] to be written to the SD_D[64:71] (ECC bits). This bit allows the system to debug ECC operation by allowing a new ECC syndrome to be written directly into the SDRAM ECC bits bypassing PowerPro syndrome generation. To ensure proper function, a processor write of one to seven bytes should be executed. When PowerPro writes words which are less than eight bytes, PowerPro executes a read-modify-write to SDRAM. Since only the syndrome bits are being updated, all other SDRAM data bits are simply written back to SDRAM. No updates occur to any bits other than the ECC syndrome bits.

WATCH_TA: This bit enables the assertion of PB_TA_ when the watchdog timer expires. If a transaction type that does not include a data phase occurs and no slave asserts PB_AACK and the watchdog timer subsequently expires, then (since PB_TT defined a non-data phase transaction) PB_TA_ is not be asserted even if this bit is set. Refer to "Processor Bus WatchDog Timer" on page 47.

WATCH_DVAL: This bit enables the assertion of PB_DVAL_ when the watchdog timer expires. If a transaction type that does not include a data phase occurs and no slave asserts PB_AACK and the watchdog timer subsequently expires, then (since PB_TT defined a non-data phase transaction) PB_DVAL_ is not be asserted even if this bit is set.

WATCH_TEA: This bit enables the assertion of PB_TEA_ when the watchdog timer expires. Since PB_TEA_ causes a machine check exception to occur, this bit should be used to debug the system in non-mission critical mode.

WATCH_AACK: This bit enables the assertion of PB_AACK when the watchdog timer expires.

DP_GEN: This bit enables the generation of data parity. It is automatically set whenever DP_EN is set. DP_GEN can be subsequently cleared by writing a zero to it and data parity generation on PowerPro is disabled.

TEA_AP: When this bit is set PowerPro asserts PB_TEA_ on address parity errors.

TEA_EN: The TEA_EN bit only controls whether a TEA_ is generated on improper register accesses. However the watchdog, ECC errors, and parity errors still generate TEAs, regardless of the setting of the TEA_EN bit in PB_GEN_CTRL.

ARTRY_EN: This bit controls the assertion of PB_ARTRY_ during transactions. When ARTRY_EN is set, the PB Slave Interface retries a processor (60x) bus master under the following conditions:

FLASH/ROM read when the transaction will take more than eight clocks

- FLASH/ROM write when the FLASH/ROM is busy
- SDRAM access when there is a pending FLASH/ROM read or write which uses the SDRAM control signals

ARTRY_EN is cleared by default. There is improved processor (60x) bus utilization by setting ARTRY_EN.

Multi-master Systems and PB_ARTRY_

In multi-master PowerPro systems, if PB_ARTRY_EN is enabled-and PowerPro has asserted the PB_ARTRY_ signal to service a transaction and another master attempts another transaction to PowerPro a live lock condition can occur. In order for this situation to occur, one of the masters must be able to internally reorder its own transactions on the processor (60x) bus. This issue does not occur in single master systems.

The following example shows a situation where the live lock issue may occur:

- Processor does a FLASH/ROM read, and PowerPro asserts PB_ARTRY_
 PowerPro now expects the next mastered cycle to be the exact same read
- Another device does a PCI side initiated SDRAM read, but the processor has
 this address in its cache and asserts PB_ARTRY_ in order for the processor to
 update the SDRAM.
- 3. Processor changes its transaction order internally to do the SDRAM write before it gets the original FLASH/ROM read data back (see step 1)

The internal reordering of transactions by the processor is the key criteria, once all the other criteria are met, that causes the live lock.

4. A live lock occurs in the system because PowerPro is asserting PB_ARTRY_ (its waiting for the processor to do a read) but the processor is trying to do a write to update the SDRAM before the other device that initiated a PCI side SDRAM read gets its data. When this situations occurs the processor cannot complete the SDRAM write because PowerPro is asserting PB_ARTRY_.

DP_EN: If this bit is cleared, PowerPro does not check the parity pins for the proper parity value. PowerPro drives data parity on read cycles when DP_GEN is set. Both Data and Address Parity checking is disabled by default. If the external parity pins are disabled (parity not connected), then these pins become read-only values of 0.

If channel two or three of the PB arbiter is enabled, through the M3_EN bit or the M2_EN bit in the PB_ARB_CTRL register, the AP_EN,DP_EN,DP_DEN bits are automatically cleared.

16.4.3 Processor Bus Arbiter Control

When the PB Interface arbitration control register is enabled, PowerPro controls the parameters of the processor bus arbiter. If address or data parity is being used, the arbiter is limited to two channels. If address and data parity are not used in the system, the arbiter can control four channels. If any of the four arbiter channels are disabled, the pins these channels would have used can be accessed through the GPIO mechanism.

Table 44: Processor Bus Arbiter Control Register

Register Name: PB_ARB_CTRL							Register	Offset: 008	
		Function							
Bits	0 1 2 3				4	5	6	7	
0-7		Reserved							
8-15		Rese	erved		M3_EN	M2_EN	M1_EN	M0_EN	
16-23	Reserved				M3_PRI	M2_PRI	M1_PRI	M0_PRI	
24-31		Reserved TS_1				PARK	BM_1	PARK	

MODE

PB_ARB_CTRL Description

Name	Туре	Reset By	Reset State	Function
Mx_EN	R	HRESET_	PWRUP	External Master x Enable 0 = External requests ignored 1 = External requests recognized
Mx_PRI	R/W	HRESET_	0	External Master x Priority Level 0 = Low Priority 1 = High Priority
TS_DLY	R/W	HRESET_	0	Controls when arbiter samples requests 0 = sample clock after TS_ 1 = sample 2 clocks after TS_

PB_ARB_CTRL Description

Name	Туре	Reset By	Reset State	Function
7400_MODE	R	HRESET_	1	7400 Mode Enable 0=Disabled 1=Enabled
PARK	R/W	HRESET_	0	Bus Park Mode 0 = Park on last bus master 1 = Park on specific master
BM_PARK	R/W	HRESET_	0	Bus Master to be Parked $00 = \text{External Master 0}$ $01 = \text{External Master 1}$ $10 = \text{External Master 2}$ $11 = \text{External Master 3}$

Mx_EN: When set, the arbiter recognizes address bus requests for this processor (60x) bus master. When cleared, the arbiter ignores address bus requests from this master.

Mx_PRI: Determines the arbitration priority for external masters.

TS_DLY: When set, the PB arbiter samples incoming requests two clocks after a TS_ signal is received. When cleared, the arbiter samples requests one clock after a TS_ signal is received. The default state is 0.

7400_MODE: When enabled, the PB arbiter qualifies bus grants before issuing a grant to a PB Master. When disabled, the PB arbiter issues a grant to a PB Master and it is expected that the PB Master receiving the grant qualifies the grant. Refer to "PB Arbiter Qualifies Bus Grants" on page 51 for more information.

PARK: When set, the arbiter parks the address bus on the processor (60x) bus master programmed in the BM_PARK field. When cleared, the arbiter parks the address bus on the last processor (60x) bus master to be granted the bus.

BM_PARK: Identifies the master to be parked (see Table 45):

Table 45: Parked Bus Master

BM_PARK [1:0]	Parked PB Master	External Pins
00	M0	PB_BR[0]_/PB_BG[0]_
01	M1	PB_BR[1]_/PB_BG[1]_
10	M2	PB_BR[2_]/PB_BG[2]_
11	M3	PB_BR[3]_/PB_BG[3]_

16.4.4 Processor Bus Error Attribute

The processor bus interface logs errors when PowerPro detects either a parity error, ECC error or an invalid PowerPro access. This register is provided to help the system determine what error has occurred. Then, in conjunction with the PB_ERR_ADDR register, the system can determine exactly which transaction caused the error.

Table 46: Processor Bus Error Attribute Register

Register Name: PB_ERR_ATTR Register Offset: 00C

		Function							
Bits	0	1	2	3	4	5	6	7	
0-7	REG	DPAR	ECC_UC	ECC_CE	APAR	Reserved	MES	ES	
8-15		Reserved							
16-23			TT_ERR			Reserved			
24-31		SIZ_	ERR			Rese	erved		

PB_ERR_ATTR Description

Name	Туре	Reset By	Reset State	Function
REG	R	HRESET_	0	Register Invalid Access occurred and is logged
DPAR	R/Write 1 to Clear	HRESET_	0	PB Data Parity Error occurred and is logged
ECC_UC	R/Write 1 to Clear	HRESET_	0	ECC Uncorrectable Error occurred and is logged
ECC_CE	R/Write 1 to Clear	HRESET_	0	ECC Correctable Error occurred and is logged
APAR	R/Write 1 to Clear	HRESET_	0	Address parity error occurred and is logged
MES	R/Write 1 to Clear	HRESET_	0	Multiple Error Status 1 = a second error occurred before the first error could be cleared.

PB ERR ATTR Description

Name	Туре	Reset By	Reset State	Function
ES	R/Write 1 to Clear	HRESET_	0	Error Status $0 = \text{no error currently logged}$ $1 = \text{error currently logged}$ Write 1 to clear all status bits in this register.
TT_ERR[0:4]	R	HRESET_	0	Processor bus Transaction Type Error Log
SIZ_ERR[0:3]	R	HRESET_	0	Processor bus SIZ field Error Log

ES: When the ES bit is set, it means an error has been logged and the contents of the TT_ERR, SIZ_ERR and PB_ERR_ADDR are valid. Information in the log cannot be changed while ES is set unless a higher priority error occurs. The ECC_UC and APAR bits are set independent of ES. Clearing ES by writing a 1 allows the error log registers to capture future errors.

ECC_UC errors and APAR errors are always captured

If ES is clear and the PB address match interrupt is set, TT_ERR, SIZ_ERR, PB_ERR_ADDR contain information on the transaction which triggered the PB match address interrupt. This information is overwritten by a genuine processor (60x) bus error. This address logging and address match mechanism is useful as a system level debugging tool.

If the ES bit is set (an error has occurred but not been cleared) and a ECC_UC or APAR error occurs, the error attributes registers (including PB_ERR_ADDR) is overridden with the transaction characteristics of the transaction which caused the ECC_UC or APAR error (MES is still be set). Also ECC_UC and APAR errors have the highest priority of any error. For example, if a data parity error and an ECC_UC error where to occur at the same time, the ECC_UC error is captured and not the DPAR error.

APAR: This bit logs an address parity error. ECC_UC and APAR errors have the highest priority of any error. The ECC_UC and APAR bits are set independent of ES. Clearing ES by writing 1 allows the error log registers to capture future errors, however, ECC_UC and APAR are always captured.

ECC_CE: This bit enables the system designed to track errors that have occurred and been corrected.

MES: Determines if multiple errors occur. The processor bus error logs are not be overwritten when MES is set to 1. Clearing ES also clears MES

16.4.5 Processor Bus Address Error Log

The processor bus interface logs errors when PowerPro detects: parity error, ECC errors or illegal register accesses causing PB_TEA_ to be asserted..

Table 47: Processor Bus Address Error Log

Register Name: PB_ERR_ADDR Register Offset: 010

	Function								
Bits	0	0 1 2 3 4 5 6							
0-7		A							
8-15	A								
16-23	A								
24-31		A							

PB_ERR_ADDR Description

Name	Туре	Reset By	Reset State	Function
A[0:31]	R	HRESET_	0	Processor address error log

A: The address of a processor bus transaction that generates an error condition is logged in this register. This register is cleared when the ES bit in the PB_ERR_ATTR register is cleared.

16.4.6 Processor Bus Address Match

The PB_AM_ADDR register provides system debugging capabilities to PowerPro. If a processor (60x) transaction (not necessarily claimed by the PowerPro) matches the Address Match Address field, and is qualified by the Address Match Mask field in the PM_AM_ADDR register, then the event can generate an address match interrupt. The event can also be captured in the general purpose timer count value.

Table 48: Processor Bus Address Match

Register	Name: PB_A	M_ADDR					Register	Offset: 014	
	Function								
Bits	0	0 1 2 3 4 5 6 7							
0-7		A							
8-15		A							
16-23		A							
24-31					A	•			

PB_AM_ADDR Description

Name	Туре	Reset By	Reset State	Function
A[0:31]	R/W	HRESET_	0	Address Match Address

The register M field qualifies the address provided, enabling a range of addresses to be matched. The address bit will be compared if the corresponding mask bit is set. If the mask bit is masked (cleared), that address bit is ignored and, therefore, always match.

For example, for transactions that match the address range 0x5590_3000 - 0x5590_3FFF the following values are programmed:

- $PB_AM_ADDR.A[0:31] = 0x5590_3000$
- PM_AM_ADDR.M[0:31] = 0xFFFF_F000

16.4.7 Processor Bus Address Match Mask

The PB_AM_MASK register provides system debugging capabilities to PowerPro. If a processor (60x) transaction (not necessarily claimed by the PowerPro) matches the Address Match Address field, and is qualified by the Address Match Mask field in the PM_AM_ADDR register, then the event can generate an address match interrupt. The event can also be captured in the general purpose timer count value.

Table 49: Processor Bus Address Match Mask

Register	Name: PB_A	M_MASK					Register	Offset: 018	
	Function								
Bits	0	0 1 2 3 4 5 6 7							
0-7		M							
8-15		M							
16-23		M							
24-31				n l	М				

PB_AM_MASK Description

Name	Туре	Reset By	Reset State	Function
M[0:31]	R/W	HRESET_	0xFFFF_ FFFF	Address Match Mask

The register M field qualifies the address provided, enabling a range of addresses to be matched. The address bit will be compared if the corresponding mask bit is set. If the mask bit is masked (cleared), that address bit is ignored and, therefore, always match.

For example, for transactions that match the address range 0x5590_3000 - 0x5590_3FFF the following values are programmed:

- $PB_AM_ADDR.A[0:31] = 0x5590_3000$
- $PM_AM_ADDR.M[0:31] = 0xFFFF_F000$

16.4.8 PowerPro Version

This register is the version number of the PowerPro device. By reading this register the system knows what version of PowerPro is in the system.

Table 50: PowerPro Version

Register Name: VERSION_REG	Register Offset: 01C
----------------------------	----------------------

		Function						
Bits	0	0 1 2 3 4 5 6 7						
0-7		V						
8-15				7	V			
16-23		V						
24-31				7	V			

VERSION_REG Description

Name	Туре	Reset By	Reset State	Function
V[0:31]	R	HRESET_	0x0000_ 0002	PowerPro version register

16.4.9 SDRAM Refresh Interval

The refresh interval is determined by the PB_CLK frequency, and the refresh interval of the memory devices used in the system. If different memory devices are used in different banks, a refresh time appropriate to the worst case device must be programmed..

Worst case device means the device requiring the most frequent refresh interval.

Table 51: SDRAM Refresh Interval

Register	Name: SD_R	REFRESH					Register	Offset: 020
Bits	0	1	2	3	4	5	6	7
0-7				Rese	erved			
8-15				Rese	erved			
16-23		Т						
24-31				,	Γ			

SD_REFRESH Description

Name	Туре	Reset By	Reset State	Function
T[0:15]	R/W	HRESET_	0x061A	SDRAM Refresh interval (in units of processor (60x) bus clocks)

T: Determines the refresh interval for SDRAM in units of processor bus clocks (PB_CLKs). The programmed number of clocks are counted, and at the end of the interval a REFRESH command is sent to all SDRAM banks. The register must be set to an appropriate interval for the memory attached to PowerPro and the PB_CLK frequency the system is using.

There is a minimum refresh interval for SDRAM. In the SD_REFRESH register the minimum refresh interval is T[0:15] = 0x0040. SD_REFRESH[24] is automatically set to 1 if T[0:15] is less than or equal to 0x003F.

16.4.10 SDRAM Timing Parameters

This register contains settings global to all four SDRAM banks.

Table 52: SDRAM Timing Parameters

Register 1	Name: SD_T	IMING					Register	Offset: 024
				Fun	ction			
-			_			_	_	_

Bits	0	1	2	3	4	5	6	7	
0-7	ENABLE	DQM_EN	Reserved	CL	Reserved	EX_DPs	TU	NE	
8-15		Reserved				T_RC			
16-23		Reserved							
24-31		Reserved							

SD_TIMING Description

Name	Туре	Reset By	Reset State	Function
ENABLE	R/W	HRESET_	0	Enables SDRAM access. Setting to a 1 causes a reset sequence to be sent to all SDRAMs enabled and configured. All SDRAM parameters must be correctly set before enabling this bit.
DQM_EN	R/W	HRESET_	0	Data Quality Mask enable/ECC Global enable 1 = DQM enabled and ECC globally disabled. This setting overrides the individual bank settings for ECC (refer to the ECC_EN bit in the SDRAM_Bx_CTRL on page page 237). With this setting ECC[0:7] pins are used as DQM pins. 0= DQM disabled and ECC globally enabled, but may be individually disabled per bank. ECC[0:7] pins are used for ECC correction. DQM[0-7] connected to DQM0 - all byte writes (ECC or non-ECC) are done using read-modify- write. ECC can be individually enabled per bank Note: Either DQM or ECC can be enabled but they cannot both be enabled. If ECC is disabled, connect the PowerPro DQM to the DQM of the SDRAM. If ECC is enabled, connect the PowerPro ECC pins to the DQ[64:71].

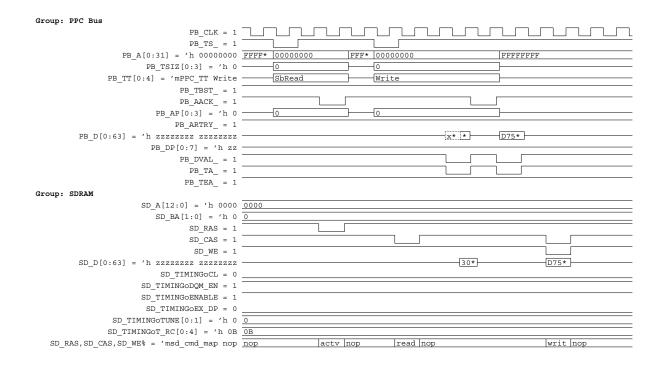
SD_TIMING Description

Name	Туре	Reset By	Reset State	Function
CL	R/W	HRESET_	0	CAS Latency $0 = 2 \text{ PB_CLKs}$ $1 = 3 \text{ PB_CLKs}$
EX_DP	R/W	HRESET_	0	External datapath. When set, the SDRAM data bus is connected directly to the processor (60x) data bus. In this case, PowerPro only drives DVAL/TA, not D[0:63]. Note: When EX_DP is set to 1, the TUNE bits are set to 00.
TUNE[0:1]	R/W	HRESET_	00	PowerPC to SDRAM datapath tune bits. 00 = no pipelined stage 01 = one pipelined stage on the output data path 10 = one pipeline stage on the input data path 11 = two pipeline stages, one on the input path and one on the output path Note: When EX_DP is set to 1, the TUNE bits are set to 00.
T_RC	R/W	HRESET_	0x0F	t _{RC} SDRAM timing parameter

ENABLE: By default, all four SDRAM banks are disabled (not able to be accessed). For all attached memory banks, SD_Bx_ADDR, SD_Bx_MASK, and SD_Bx_CTRL need to be set appropriate to the type of memory installed. Then, the ENABLE bit in this register is to be set to a one, which will cause a reset sequence (consisting of a precharge-all, eight refresh cycles, a mode register set, and eight more refresh cycles) to be sent to all attached and enabled SDRAM banks. Individual SDRAM banks cannot be enabled or disabled once this bit is set.

TUNE: The highest system performance is a result of the least amount of latency between the processor (60x) bus requesting memory and that request being filled. However, a heavily loaded and fast system is not able to meet timing criteria without pipeline stages inserted in the datapath. The TUNE bits controls the number of pipeline stages inserted in the datapath.

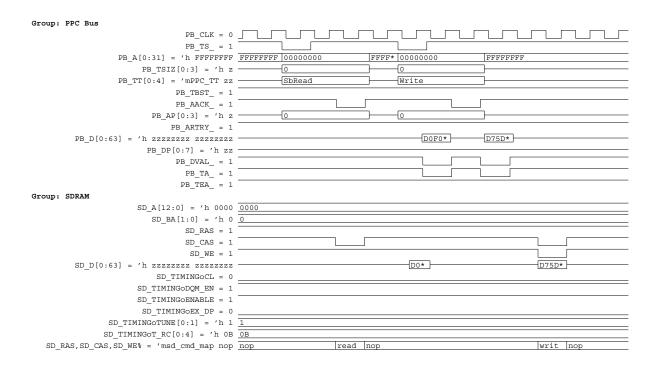
TUNE bits only effect the read data path - not the write data path.


When ECC correction is enabled on any bank, two pipeline stages are inserted in the data path by default. If ECC correction is not used on any memory bank, then the following settings are available:

• TUNE 00 = no pipeline stages.

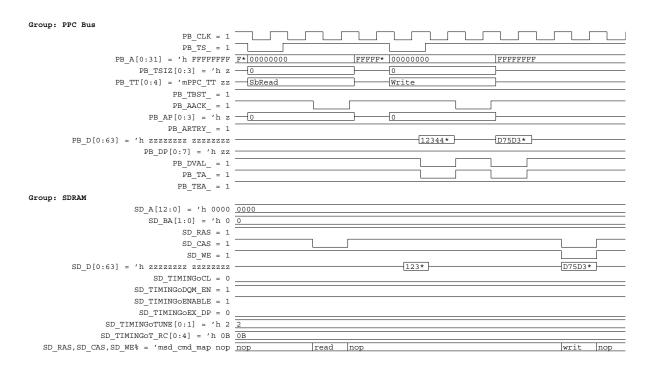
If $EX_DP = 0$, then data flows from SDRAM to the processor (60x) bus through the PowerPro in the same clock, with PowerPro acting as a simple data buffer. If $EX_DP = 1$, then it is assumed that the SDRAM data bus is connected directly to the processor (60x) data bus; in this case PowerPro drives $PB_DVAL_$ and $PB_TA_$ but not $PB_D[0:63]$.

Figure 40 shows SD_D is driven by the SDRAM on one clock and PB_D is sampled by a PowerPC master on the next clock. With write transactions, PowerPro samples PB_D on one clock and drives SD_D to the SDRAM on the next clock. TUNE never effects the write data path to SDRAM.


Figure 40: Datapath TUNE bits set to 00

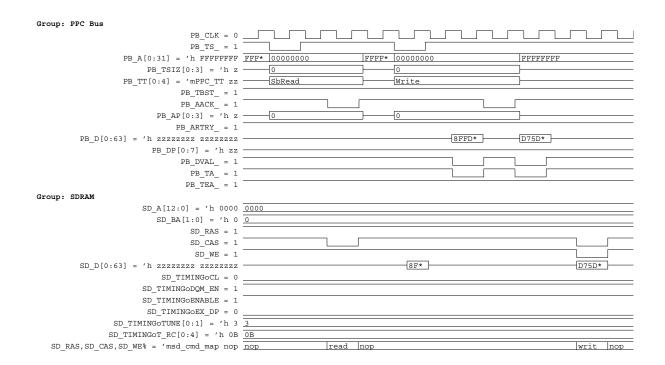
• TUNE 01 = one piplined stage on the output data path.

Figure 41 shows that on SDRAM reads, the SDRAM drives SD_D on one clock and the processor (60x) bus master can sample PD_D two clocks later. This is one clock later than in the case where TUNE=00.On SDRAM writes, PowerPro samples PB_D on one clock and drives SD_D to the SDRAM on the next clock.


Figure 41: Datapath TUNE bits set to 01

• TUNE 10 = one pipeline stage on the input data path.

Figure 42 shows SDRAM reads and writes work the same as when TUNE=01.


Figure 42: Datapath TUNE bits set to 10

• TUNE 11 = two pipeline stages, one on the input path and one on the output path.

Figure 43 shows two pipeline stages, one on the input path and one on the output path for both reads and writes.

Figure 43: Datapath TUNE bits set to 11

When ECC correction is enabled on any bank, two pipeline stages are inserted in the data path by default. The TUNE bits are programmed to 11 in most applications.

EX_DP: External Datapath. When set, PowerPro does not drive the processor (60x) data bus. When this bit is set, ECC correction and processor (60x) data parity are not available.

When EX_DP is set to 1, the TUNE bits are set to 00.

T_RC: SDRAM t_{RC} timing parameter; largest of all memory banks connected.

16.4.11 PLL Feedback Tuning

This register is for internal use only and must not be programmed.

Table 53: PLL Feedback Tuning

Register 1	Name: PLL_	_FB_TUNE					Register	Offset: 028
	Function							
Bits	0	1	2	3	4	5	6	7
0-7		FB_TUNE				Reserved		
8-15		Reserved						
16-23	Reserved							
24-31				Rese	erved			

SD_REFRESH Description

Name	Туре	Reset By	Reset State	Function
FB_TUNE[0:2]	R/W	HRESET_	100	Tunes the feedback loop of the PLL

16.4.12 SDRAM Memory Bank x Address

Table 54: SDRAM Memory Bank x Address

Register Name: SD_Bx_ADDR	Register Offset: 040/050/060/070
---------------------------	----------------------------------

	Function							
Bits	0	0 1 2 3 4 5 6						7
0-7	A							
8-15	A							
16-23	Reserved							
24-31	Reserved ENABLI					ENABLE		

SD_Bx_ADDR Description

Name	Туре	Reset By	Reset State	Function
A[0:15]	R/W	HRESET_	0000/ 0800/ 1000/ 1800	Base address of SDRAM DIMM #0/1/2/3. The base address of a bank is qualified by the mask to determine if a given address is within range.
ENABLE	R/W	HRESET_	0	Bank (DIMM) Enable 0 = slot vacant 1 = slot filled with SDRAM module

The four available SDRAM banks are mapped to the processor (60x) bus address space through the Address (A) field. This field indicates the memory space base address and the Mask (M) field, in the SD_Bx_MASK register, indicates the memory block size. Note that this requires that the memory space allocated be aligned with the size of the memory attached. For example a 128 Mbyte DIMM can only be mapped to addresses on a 128 Mbyte boundary.

The M field specifies which bits of the base address are used in the comparison, and which are ignored. A mask bit setting of 1 indicates that the corresponding bit is used in the comparison, while a mask bit setting of 0 indicates that the corresponding bit is not used (masked) in the address comparison.

For example, if a 64 Mbyte memory is attached to SDRAM bank #0 mapping this physical memory into the processor (60x) bus address space (64 MByte aligned) of 0x3400_0000 - 0x37FF_FFFF requires the following settings:

- $SD_B0_ADDR[0:15] = 0x3400$
- SD_B0_MASK[0:15] = 0xFC00: indicates a 64 MByte block size

16.4.13 SDRAM Memory Bank x Address Mask

Table 55: SDRAM Memory Bank x Address Mask

Register Name: SD_Bx_MASK	Register Offset: 044/054/064/074
---------------------------	----------------------------------

	Function							
Bits	0	0 1 2 3 4 5 6						
0-7	М							
8-15	М							
16-23	Reserved							
24-31	Reserved							

SD_Bx_MASK Description

Name	Туре	Reset By	Reset State	Function
M[0:15]	R/W	HRESET_	0xFFF8	Mask to qualify bank address. Only bits selected in the mask are used for the address compare.

The four available SDRAM banks are mapped to the 60x address space through the Address (A) field which indicates the memory space base address and the Mask (M) field, in the SD_Bx_MASK register, indicates the memory block size. Note that this requires that the memory space allocated be aligned with the size of the memory attached. For example a 128 Mbyte DIMM can only be mapped to addresses on a 128 Mbyte boundary.

The M field specifies which bits of the base address are used in the comparison, and which are ignored. A mask bit setting of 1 indicates that the corresponding bit is used in the comparison, while a mask bit setting of 0 indicates that the corresponding bit is not used (masked) in the address comparison.

For example, if a 16 Mbyte memory is attached to SDRAM bank #2, mapping this physical memory into the processor (60x) bus address space (16 Mbyte aligned) of 0x5900_0000 - 0x59FF_FFFF requires the following settings:

- $SD_B2_ADDR[0:15] = 0x5900$
- SD_B2_MASK[1:12] = 0xFF00 (indicates a 16 Mbyte block size)

The settings represented in Table 56 are examples. They do not form a comprehensive list of all possible settings.

Table 56: Memory Map to Processor (60x) Bus Address Space

M[0:15]	Memory Size
0x8000	2 Gbyte
0xC000	1 Gbyte
0xE000	512 Mbyte
0xF000	256 Mbyte
0xF800	128 Mbyte
0xFC00	64 Mbyte
0xFE00	32 Mbyte
0xFF00	16 Mbyte
0xFFFF	64 kbyte

16.4.14 SDRAM Memory Bank *x* **Control and Status**

This register controls a variety of PowerPro SDRAM functionality.

Table 57: SDRAM Memory Bank *x* **Control and Status**

Register Name: SD_Bx_CTRL	Register Offset: 048/058/068/078
---------------------------	----------------------------------

	Function							
Bits	0	1	2	3	4	5	6	7
0-7	ECC_EN	ECC_CE	BUF NBANK			A_MODE[0:2]		
8-15	T_RCD	Reserved	T_	RP	Reserved		T_RAS[0:2]	
16-23		BMG	T[0:3]		Rese	erved	ECC_CO	ECC_UC
24-31	ECC_CO							

SD_Bx_CTRL Description

Name	Туре	Reset By	Reset State	Function
ECC_EN	R/W	HRESET_	0	ECC Checking and Correction $0 = ECC \text{ not used.}$ $1 = ECC \text{ correction used.}$
ECC_CE	R/W	HRESET_	0	ECC Correction Mode 0 = Correctable errors are not corrected. 1 = Correctable errors are corrected.
BUF	R/W	HRESET_	0	Buffered (registered) SDRAM DIMM select 1 = Buffered DIMM used in this bank. 0 = Unbuffered DIMM used in this bank.
NBANK	R/W	HRESET_	11	Number of banks / chip selects $00 = 1 \text{ physical bank, } 2 \text{ logical banks}$ $01 = 1 \text{ physical bank, } 4 \text{ logical banks}$ $10 = 2 \text{ physical banks, } 2 \text{ logical banks}$ $11 = 2 \text{ physical banks, } 4 \text{ logical banks}$

SD_Bx_CTRL Description

			_	
Name	Туре	Reset By	Reset State	Function
Name	Туре	Бу	State	Function
A_MODE	R/W	HRESET_	000	Addressing Mapping Mode: (see "SDRAM
				Interface" on page 75)
				000 = Mode 0 - 8 column bits
				001 = Mode 1 - 9 column bits
				010 = Mode 2 - 10 column bits
				011 = Mode 3 - 11 column bits
				100 = Mode 4 - 12 column bits
				others = reserved.
T_RCD	R/W	HRESET_	0	ACTV to READ/WRITE delay
				0 = 2 clk
				1 = 3 clk
T_RP[0:1]	R/W	HRESET_	01	PRE to ACTV delay
				00 = reserved
				01 = 2 clk
				10 = 3 clk
				11 = 4 clk.
T_RAS[0:2]	R/W	HRESET_	001	ACTV to PRE delay
				000 = reserved
				001 = 5 clk
				010 = 6 clk
				011 = 7 clk
				100 = 8 clk
				1xx = reserved.
BMGT[0:3]	R/W	HRESET_	0000	Bank Management, one bit per bank
				0 = bank left open until miss or refresh
				1 = bank always closed after access
ECC_CO	R/Write 1 to Clear	HRESET_	0	ECC Correctable Error Occurred Flag, byte lane 8 (ECC Lane)
				0 = no correctable error has occurred in this bit
				1 = correctable error occurred in this bit

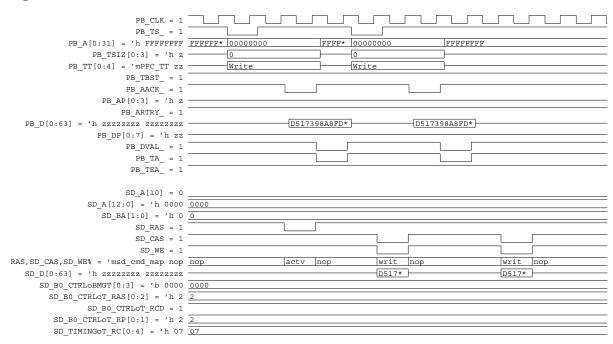
SD_Bx_CTRL Description

Name	Туре	Reset By	Reset State	Function
ECC_UC	R/Write 1 to Clear	HRESET_	0	ECC Uncorrectable Error Flag 0 = no uncorrectable error has occurred. 1 = uncorrectable error occurred. Write 1 to clear.
ECC_CO[0:7]	R/Write 1 to Clear	HRESET_	0	ECC Correctable Error Occurred Flag, byte lane 0-7 0 = no correctable error has occurred in this byte lane. 1 = correctable error occurred in this byte lane.

BUF: This bit is set to a 1 if a registered SDRAM DIMM is used, and 0 if an unregistered DIMM is used. A registered SDRAM DIMM contains a register on the control and address lines to reduce loading and enhance the timing margins for high speed operation.

NBANK: Two chip selects are provided for each SDRAM bank. This bit is to be set to 11 if both chip selects are to be used (DUAL bank DIMM), or a 00 if a single chip select is to be used (SINGLE bank DIMM).

A_MODE: Defines the mapping between processor (60x) bus address and SD_A[0:15], SD_B[0:1], and CS[0:1]. For more information, refer to "SDRAM Interface" on page 75.


T_RCD, **T_RP**, **T_RAS**: These bits control timing to optimize SDRAM performance. These timings are specified as number of processor bus clocks (PB_CLKs). To determine the correct setting, consult the SDRAM data sheet and follow these steps:

- 1. Determine the SDRAM timing numbers in ns.
- 2. Divide the PB_CLK clock period
- 3. Round-up the number to the next integer number of PB_CLK periods

For example, if T_xx is specified as 17 ns and the PB_CLK period is 10 ns, the correct setting of T_xx is two PB_CLKs.

BMGT: There is one bank management bit per bank. When the BMGT bit is set to 0, the memory bank is left open until there is an access miss or a refresh (see Figure 44).

Figure 44: BMGT Bit Set to 0

When the BMGT bit is set to 1, the memory bank is always closed after an access (see Figure 45).

Figure 45: BMGT Bit Set to 1

The following list shows the relationship between the individual BMGT bits and banks:

- BMGT[0] refers to Bank 3
- BMGT[1] refers to Bank 2
- BMGT[2] refers to Bank 1
- BMGT[3] refers to Bank 0

ECC_xx: When the DQM_EN field, in the SD_TIMING register, is not set and an ECC DIMM is used in the memory bank, ECC correction can be enabled. When ECC correction is enabled, the ECC_UC bit, in the SD_Bx_CTRL register, indicates if an uncorrectable error occurred. The ECC_CO[0:7] field indicates if a correctable error occurred and if correctable error occurred, the field indicates which byte lane has the error.

When the bank is in ECC mode and the ECC_CE bit is enabled, any single bit correctable errors are corrected before they are passed through. When the ECC_CE bit is disabled single bit correctable errors are logged, but the uncorrected (invalid) data is returned. Writing a 1 to the affected ECC_CO bit clears the bit.

The ECC pins must be connected to PowerPro in order to enable ECC protection.

16.4.15 ROM Memory Bank x Address

Table 58: ROM Memory Bank x Address

Register Name: EE_Bx_ADDR Register Offset: 080/090/0A0/

		Function							
Bits	0	1	2	3	4	5	6	7	
0-7		A							
8-15		A							
16-23		A							
24-31		Reserved MUX ENABLE							

EE_Bx_ADDR Description

Name	Туре	Reset By	Reset State	Function
A[0:23]	R/W	HRESET_	see Table 59	FLASH/ROM Bank x Base Address. Qualified by EE_Bx_MASK.

EE_Bx_ADDR Description

Name	Туре	Reset By	Reset State	Function
MUX[29:30]	R/W	HRESET_, PWRUP	see Table 60	FLASH/ROM address multiplexing Determines where the FLASH/ROM address appears: 00 = EE_A[14:0] appears on {SD_BA[1:0], SD_A[12:0]}, while EE_A[22:15] appears on EE_DATA[0:7]. 01 = EE_A[29:15] appears on {SD_BA[1:0], SD_A[12:0]}, where EE_A[11:0], where
				SD_A[12:0]} when EE_AL1 is high. When EE_AL1 is low, EE_A[14:0] appears on {SD_BA[1:0], SD_A[12:0]}.
				10 = EE_A[14:0] appears on {SD_BA[1:0], SD_A[12:0]} when EE_AL1 and EE_AL2 are low. EE_A[14:0] also appears on {SD_BA[1:0], SD_A[12:0]} when EE_AL2 is high; EE_A[29:15] appears on {SD_BA[1:0], SD_A[12:0]} when EE_AL2 is high.
				11 = Same as '10' setting, with the addition that EE_A[23:16] appears on EE_DATA[7:0] when EE_AL2 is high. Also EE_A[14:0] appears on {SD_BA[1:0], SD_A[12:0]} when EE_SELECT is high.
ENABLE	R/W	HRESET_,	see	Bank Enable
		PWRUP	Table 61	0 = slot vacant
				1 = slot filled with ROM-like device
				Note: The EE_B0_ADDR is enabled by default after reset.

Table 59 shows the reset states for the A field in the EE_Bx_ADDR registers.

Table 59: Reset state of the A field in all EE_Bx_ADDR Registers

Register	A field Reset State
EE_B0_ADDR	0xFFF001
EE_B1_ADDR	0xFFFFFF
EE_B2_ADDR	0xFFFFFF
EE_B3_ADDR	0xFFFFFF

Table 60 shows the reset states for the MUX field in the EE_Bx_ADDR registers.

Table 60: Reset state of the MUX field in all EE_Bx_ADDR Registers

Register	A field Reset State
EE_B0_ADDR	0xFFF001
EE_B1_ADDR	0x3
EE_B2_ADDR	0x3
EE_B3_ADDR	0x3

Table 60 shows the reset states for the EN field in the EE_Bx_ADDR registers

Table 61: Reset state of the EN field in all EE_Bx_ADDR Registers

Register	A field Reset State
EE_B0_ADDR	0xFFF001
EE_B1_ADDR	0x0
EE_B2_ADDR	0x0
EE_B3_ADDR	0x0

The four available FLASH/ROM banks are mapped to the processor (60x) bus address space through the A field in the EE_Bx_ADDR register and the Mask field of the EE_Bx_MASK register. The A field indicates the memory space base address. The M field indicates the memory block size.

PowerPro requires that the memory space allocated be aligned with the size of the memory attached. For example, a 128 Mbyte DIMM can only be mapped to addresses on a 128 Mbyte boundary.

The M field specifies which bits of the base address are used in the comparison, and which are ignored. A mask bit setting of '1' indicates that the corresponding bit is used in the comparison, while a mask bit setting of '0' indicates that the corresponding bit is not used (it is masked) in the address comparison.

For example, if a 4 Mbyte memory is attached to FLASH/ROM bank 0. In order to map this physical memory into the processor (60x) bus address space (4 Mbyte aligned) of 0x1230_0000 - 0x123F_FFFF, the following settings must be used:

- $EE_B0_ADDR[0:23] = 0x123000$
- EE_B0_MASK[0:23] = 0xFFF000 (indicates a 1Mbyte block size)

16.4.16 ROM Memory Bank x Address Mask

Table 62: ROM Memory Bank x Address Mask

Register Name: EE_Bx_MASK	Register Offset: 084/094/0A4/0B4
---------------------------	----------------------------------

	Function									
Bits	0	0 1 2 3 4 5 6 7								
0-7		M								
8-15		М								
16-23		M								
24-31				Rese	erved					

EE_Bx_MASK Description

Name	Туре	Reset By	Reset State	Function
M[0:23]	R/W	HRESET_	see Table 63	FLASH/ROM address mask Used to qualify EE_Bx_ADDR.

Table 63 shows the reset states for the M field in the EE_Bx_MASK registers.

Table 63: Reset state of the M Field in all EE_Bx_MASK Registers

Register	A Field Reset State
EE_B0_MASK	0xFFF000
EE_B1_MASK	0xFFFFFF
EE_B2_MASK	0xFFFFFF
EE_B3_MASK	0xFFFFFF

The four available FLASH/ROM banks are mapped to the processor (60x) bus address space through the A field in the EE_Bx_ADDR register and the Mask field in the EE_Bx_MASK register. The A field indicates the memory space base address. The M field indicates the memory block size.

This design requires that the memory space allocated be aligned with the size of the memory attached. For example, a 128 Mbyte DIMM can only be mapped to addresses on a 128 Mbyte boundary. The M field specifies which bits of the base address are used in the comparison, and which are ignored. A mask bit setting of 1 indicates that the corresponding bit is used in the comparison, while a mask bit setting of 0 indicates that the corresponding bit is not used (it is masked) in the address comparison.

For example, if a 1 Mbyte memory is attached to ROM bank 0. In order to map this physical memory into the processor (60x) bus address space (1 Mbyte aligned) of 0x1230_0000 - 0x123F_FFFF, the following settings must be used:

- $EE_B0_ADDR[0:23] = 0x123000$
- EE_B0_MASK[0:23] = 0xFFF000 (indicates a 1Mbyte block size)

16.4.17 ROM Memory Bank *x* **Control**

PowerPro provides access to FLASH/ROM banks. Each of the FLASH/ROM banks has a general purpose chip select machine controlling READ, WRITE, OE, WE, and CS outputs. PowerPro can control any type of ROM, EEPROM, FLASH, SRAM or SRAM/ROM-like device through the settings in the EE_Bx_CTRL register.

The EE_B0_CTRL register is involved in the PowerPro's power-up options. Refer to "System Boot" on page 152 for more information.

Table 64: ROM Memory Bank x Control

Register Name: EE_Bx_CTRL Register Offset: 088/098/0A	.8/0B8
---	--------

	Function							
Bits	0	1	2	3	4	5	6	7
0-7	BM	FWE	WAIT					
8-15	CS	ON	OEON WEON PORT WEOFF					WEOFF
16-23	THRD					TH	WR	
24-31	FWT				RE	ARE	WII	OTH

EE_Bx_CTRL Description

Name	Туре	Reset By	Reset State	Function
ВМ	R/W	HRESET_	see Table 65	Burst Mode 0 = Burst mode disable 1 = Burst mode enable
FWE	R/W	HRESET_	see Table 66	Flash Write Enable
WAIT[0:5]	R/W	HRESET_	see Table 67	With BM=0, WAIT = wait states on all non-burst transfers. Number of clocks from address valid to the deassertion of CS_ is 1+WAIT With BM=1, WAIT = next wait Note: WAIT has a minimum value of 2

EE_B*x*_CTRL Description

Name	Туре	Reset By	Reset State	Function
CSON[0:1]	R/W	HRESET_	see Table 68	Chip select ON timing; with respect to address valid. 00 = CS_ valid with address valid. 01 = CS_ valid 1 clock after address valid. 10 = CS_ valid 2 clocks after address valid. 11 = CS_ valid 3 clocks after address valid.
OEON[0:1]	R/W	HRESET_	see Table 69	Output Enable ON Timing, measured with respect to CS_ assertion. 00 = OE_ valid with chip select valid. 01 = OE_ valid one clock after chip select valid. 10 = OE_ valid two clocks after chip select valid. 11 = OE_ valid three clocks after chip select valid.
WEON[0:1]	R/W	HRESET_	see Table 70	Write Enable ON timing, measured with respect to CS_ assertion. 00 = WE_ valid with chip select valid. 01 = WE_ valid 1 clock after chip select valid. 10 = WE_ valid 2 clocks after chip select valid. 11 = WE_ valid 3 clocks after chip select valid.
PORT	R/W	HRESET_	see Table 71	FLASH/ROM data port 0 = use dedicated 8-bit port 1 = use SDRAM data bus
WEOFF	R/W	HRESET_	see Table 72	Write Enable OFF timing, measured with respect to EE_CS_ de-assertion. 0 = EE_WE_ de-asserts with chip select de-assertion. 1 = EE_WE_ de-asserts 1 clock prior to chip select de-assertion.
THRD[0:3]	R/W	HRESET_	see Table 73	Transfer hold on reads Number of cycles that CS_ and related signals are held at the end of a read cycle; also the minimum time before the next access can occur following a read.

EE_Bx_CTRL Description

Name	Туре	Reset By	Reset State	Function
THWR[0:3]	R/W	HRESET_	see Table 74	Transfer hold on writes Number of cycles that CS_ and related signals are held at the end of a write cycle; also the minimum time before the next access can occur following a write.
FWT[0:3]	R/W	HRESET_	see Table 75	First Wait (BM = 1) Initial wait states on subsequent accesses of all burst transfers. The number of cycles from address valid to the next address valid including the time for latching the ROM/Perhipheral address is 1+FWT for the first access to a bursting device.
RE	R/W	HRESET_	see Table 76	Ready Enable 0 = Throttling through READY input is disabled. 1 = Throttling through READY input is enabled.
ARE	R/W	HRESET_	see Table 77	Asynchronous Ready 0 = READY input is synchronous (data sampled 1 clock after READY input is sampled). 1 = READY input is asychronous (data sampled 3 clocks after READY input is sampled).
WIDTH[0:1]	R/W	HRESET_	see Table 78	Bank width 00 = 8-bit (only option if PORT = 0). 01 = 16-bit 10 = 32-bit 11 = 64-bit

BM: The BM bit activates burst mode. In order for the burst mode to work effectively the following steps must be completed:

- 1. RE bit, in the EE_Bx_CTRL register, must be set to 1.
- 2. If the PORT bit, in the EE_Bx_CTRL register, is set to 0, the MUX bit, in the EE_Bx_ADDR register (see page 242), must be set to 0. If the PORT bit is set to 1, the MUX bit can be either 0 or 1.
- 3. BM must be set to 1

For more information on attaching and configuring FLASH/ROM devices to PowerPro. refer to "FLASH/ROM Interface" on page 53.

Table 65 shows the reset states for the BM field in the EE_Bx_CTRL registers.

Table 65: Reset state of the BM Field in all EE_Bx_CTRL Registers

Register	BM Field Reset State
EE_B0_CTRL	0
EE_B1_CTRL	0
EE_B2_CTRL	0
EE_B3_CTRL	0

Table 66 shows the reset states for the FWE field in the EE_Bx_CTRL registers.

Table 66: Reset state of the FWE Field in all EE_Bx_CTRL Registers

Register	FWE Field Reset State
EE_B0_CTRL	0
EE_B1_CTRL	0
EE_B2_CTRL	0
EE_B3_CTRL	0

Table 67 shows the reset states for the WAIT field in the EE_Bx_CTRL registers.

Table 67: Reset state of the WAIT Field in all EE_Bx_CTRL Registers

Register	WAIT Field Reset State
EE_B0_CTRL	0x010100
EE_B1_CTRL	0x000000
EE_B2_CTRL	0x000000
EE_B3_CTRL	0x000000

Table 68 shows the reset states for the CSON field in the EE_Bx_CTRL registers.

Table 68: Reset state of the CSON Field in all EE_Bx_CTRL Registers

Register	CSON field Reset State
EE_B0_CTRL	0x01
EE_B1_CTRL	0x00
EE_B2_CTRL	0x00
EE_B3_CTRL	0x00

Table 69 shows the reset states for the OEON field in the EE_Bx_CTRL registers.

Table 69: Reset state of the OEON Field in all EE_Bx_CTRL Registers

Register	OEON field Reset State
EE_B0_CTRL	0x10
EE_B1_CTRL	0x00
EE_B2_CTRL	0x00
EE_B3_CTRL	0x00

Table 70 shows the reset states for the WEON field in the EE_Bx_CTRL registers.

Table 70: Reset state of the WEON Field in all EE_Bx_CTRL Registers

Register	WEON Field Reset State
EE_B0_CTRL	0x01
EE_B1_CTRL	0x00
EE_B2_CTRL	0x00
EE_B3_CTRL	0x00

Table 71 shows the reset states for the PORT field in the EE_Bx_CTRL registers.

Table 71: Reset state of the PORT Field in all EE_Bx_CTRL Registers

Register	PORT Field Reset State
EE_B0_CTRL	Power-up option
EE_B1_CTRL	0
EE_B2_CTRL	0
EE_B3_CTRL	0

Table 72 shows the reset states for the WEOFF field in the EE_Bx_CTRL registers.

Table 72: Reset state of the WEOFF field in all EE_Bx_CTRL Registers

Register	WEOFF Field Reset State
EE_B0_CTRL	0x1
EE_B1_CTRL	0x0
EE_B2_CTRL	0x0
EE_B3_CTRL	0x0

Table 73 shows the reset states for the THRD field in the EE_Bx_CTRL registers.

Table 73: Reset state of the THRD field in all EE_Bx_CTRL Registers

Register	THRD Field Reset State
EE_B0_CTRL	0x0100
EE_B1_CTRL	0x0000
EE_B2_CTRL	0x0000
EE_B3_CTRL	0x0000

Table 74 shows the reset states for the THWR field in the EE_Bx_CTRL registers.

Table 74: Reset state of the THWR field in all EE_Bx_CTRL Registers

Register	THWR Field Reset State
EE_B0_CTRL	0x0100
EE_B1_CTRL	0x0000
EE_B2_CTRL	0x0000
EE_B3_CTRL	0x0000

Table 75 shows the reset states for the FWT field in the EE_Bx_CTRL registers.

Table 75: Reset state of the FWT field in all EE_Bx_CTRL Registers

Register	FWT Field Reset State
EE_B0_CTRL	0x1011
EE_B1_CTRL	0x000
EE_B2_CTRL	0x000
EE_B3_CTRL	0x000

Table 76 shows the reset states for the RE field in the EE_Bx_CTRL registers.

Table 76: Reset state of the RE field in all EE_Bx_CTRL Registers

Register	RE Field Reset State
EE_B0_CTRL	Power-up option
EE_B1_CTRL	0
EE_B2_CTRL	0
EE_B3_CTRL	0

Table 76 shows the reset states for the ARE field in the EE_Bx_CTRL registers.

Table 77: Reset state of the ARE field in all EE_Bx_CTRL Registers

Register	ARE Field Reset State
EE_B0_CTRL	0
EE_B1_CTRL	0
EE_B2_CTRL	0
EE_B3_CTRL	0

Table 76 shows the reset states for the WIDTH field in the EE_Bx_CTRL registers.

Table 78: Reset state of the WIDTH field in all EE_Bx_CTRL Registers

Register	WIDTH Field Reset State
EE_B0_CTRL	Power-up option
EE_B1_CTRL	0x00
EE_B2_CTRL	0x00
EE_B3_CTRL	0x00

16.4.18 I²C Control an Status

This register supports the PowerPro I²C Interface..

DEV_CODE

ERR

Table 79: I2C*x***_CSR**

Register 1	Name: I2Cx_	_CSR				R	legister Offse	et: 0C0, 0C4
				Fun	ction			
Bits	0	1	2	3	4	5	6	7
0-7	ADDR							
8-15		DATA						

CS

Reserved

RW

I2Cx_CSR Description

ACT

16-23

24-31

Name	Туре	Reset By	Reset State	Function
ADDR[0:7]	R/W	HRESET_	0	Specifies I ² C device to be addressed.
DATA[0:7]	R/W	HRESET_	0	Specifies the required data for a write. Holds the data at the end of a read
DEV_CODE [0:3]	R/W	HRESET_	0b1010	Device Select. I ² C 4-bit device code.
CS[2:0]	R/W	HRESET_	0	Chip Select.
RW	R/W	HRESET_	0	0 = read 1 = write.
ACT	R	HRESET_	0	I^2C Interface active 0 = not active 1 = active
ERR	R/W1clr	HRESET_	0	Error 0 = no error, 1 = error condition.

ACT: A I²C bus cycle is initiated by writing to this register. Software must wait for the ACT bit to be 0 before starting a new I²C bus cycle. When the ACT bit is 1, writes to this register have no effect, and the DATA field is undefined.

The ACT bit is set due to the following reasons:

- 1. The I²C Interface is busy servicing a read or a write as a result of a write to this register.
- 2. The I²C Interface is busy loading registers at the end of reset

ERR: This bit is set if PowerPro is unable to complete a requested EEPROM read or write. This bit is valid when ACT is low. This bit must be cleared before attempting another EEPROM access.

16.4.19 Watchdog Timer Control

The watchdog timer provides fault catching in real time operating systems.

Table 80: Watchdog Timer Control

Register	Name: WD_CTRL Register Offset: 01						Offset: 0F0	
		Function						
Bits	0	1	1 2 3 4 5 6 7					7
0-7	ENABLE		Reserved					
8-15		Reserved						
16-23	Reserved							
24-31		Reserved WD_RST						

WD_CTRL Description

Name	Туре	Reset By	Reset State	Function
ENABLE	R/W	HRESET_	0	Watchdog timer enable.
WD_RST	Write 1 to Set	HRESET_	0	Watchdog timer count reset. Resets the watchdog count back to WD_TIMEOUT.

When watchdog timer is enabled, the timer counts down from the Watchdog Timer Initial Value (WDT) in the WD_TIMEOUT register (see Table 81 on page 258). The timer counts down from the value in the WDT field to 0. If the counter reaches 0, a watchdog time-out interrupt is asserted. The WD_RST bit resets the watchdog timer to the value in the WDT field when a 1 is written to the bit.

At a 100 MHz (10 ns) clock period, the 32-bit watchdog timer has about 42 seconds as a maximum setting. Reading the Current Watchdog Timer Count (WDC) in the Watchdog Timer Count (WD_COUNT) register returns the current value of the watchdog timer.

The watchdog timer is reset be setting WD_RST to 1.

When the watchdog timer functionality is not required, this counter can be used as a general purpose timer

16.4.20 Watchdog Timer Timeout

The watchdog timer provides fault catching in real time operating systems.

Table 81: Watchdog Timer Timeout

Register 1	Name: WD_'	ГІМЕОЦТ					Register	Offset: 0F4
		Function						
Bits	0	0 1 2 3				5	6	7
0-7		WDT						
8-15	WDT							
16-23	WDT							
24-31	WDT							

WD_TIMEOUT Description

Name	Туре	Reset By	Reset State	Function
WDT[0:31]	R/W	HRESET_	0	Watchdog timer initial value. The watchdog timer counts down from this value to zero. If it reaches zero, a interrupt is asserted.

When watchdog timer is enabled, the timer counts down from the Watchdog Timer Initial Value (WDT) in the WD_TIMEOUT register (see Table 81 on page 258). The timer counts down from the value in the WDT field to 0. If the counter reaches 0, a watchdog time-out interrupt is asserted. The WD_RST bit resets the watchdog timer to the value in the WDT field when a 1 is written to the bit.

At a 100 MHz (10 ns) clock period, the 32-bit watchdog timer has about 42 seconds as a maximum setting. Reading the Current Watchdog Timer Count (WDC) in the Watchdog Timer Count (WD_COUNT) register returns the current value of the watchdog timer.

Any of the following actions reload the watchdog timer:

- setting ENABLE to 1
- setting WD_RST to 1
- writing to WDT reloads the watchdog timer to the original WDT value

When the watchdog timer functionality is not required, this counter can be used as a general purpose timer

16.4.21 Watchdog Timer Count

Table 82: Watchdog Timer Count

Register Name: WD_COUNT	Register Offset: 0F8
-------------------------	----------------------

				Fun	ction			
Bits	0 1 2 3 4 5 6							7
0-7				W	DC			
8-15	WDC							
16-23		WDC						
24-31				W	DC			

WD_COUNT Description

Name	Туре	Reset By	Reset State	Function
WDC[0:31]	R	HRESET_/ WD_RST	The value of the WDT field in the WD_TIMEOUT register (see Table 81 on page 258)	Current watchdog timer count. If the count reaches zero and the watchdog timer is enabled, a interrupt is generated.

16.4.22 Bus Watchdog Timer

Table 83: Bus Watchdog Timer

Register Name: WD_BUS Register Offset: 0F0

	Function								
Bits	0	0 1 2 3 4 5 6 7							
0-7		COUNT							
8-15		COUNT							
16-23		COUNT							
24-31				COI	JNT				

WD_BUS Description

Name	Туре	Reset By	Reset State	Function
COUNT[0:31]	R/W	PB_RST / WD_RST	0xFFFF_FFFF	Programmable value

COUNT: When the internal PPC bus counter reaches the value programmed in COUNT, the signals PB_TA_, PB_AACK_, PB_TEA_, and PB_DVAL_ are asserted (if they are enable).

Do not write less than 4 bytes into this register.

16.4.23 General Purpose Timer 0 Base Count

The general purpose system timer is a free running 32-bit counter.

Table 84: General Purpose Timer 0 Base Count

Register Name: GPT0_COUNT							Register	Offset: 100
	Function							
Bits	0	1	2	3	4	5	6	7
0-7				GF	TC			
8-15				GF	TC			
16-23		GPTC						
24-31				GF	TC			

GPT0_COUNT Description

Name	Туре	Reset By	Reset State	Function
GPTC[0:31]	R/W	HRESET_	0	Base count which all general purpose timer functions work from.

GPTC: This field has the current value of the counter. The counter increments once per system clock. All GPT functions are based-on this reference count. Writing to GPTC resets the counter to the new value. There is no start or stop mechanism on the counter; it is continuously running.

16.4.24 General Purpose Timer 0 Capture Events

PowerPro has four capture time registers. The time of the free running counter GPT_COUNT.GPTC is copied into the appropriate capture register if an enabled capture event occurs. The four capture registers are GPT_TTO - GPT_TT3.

Table 85: General Purpose Timer 0 Capture Events

Register Name: GPT0_CAPTURE	Register Offset: 104
-----------------------------	----------------------

		Function								
Bits	0	1	2	3	4	5	6	7		
0-7		SE	VT		Reserved					
8-15		SD_	_AM			Rese	erved			
16-23		EE_	_AM			Rese	erved			
24-31		PB_	_AM			Rese	erved			

GPT0_CAPTURE Description

Name	Туре	Reset By	Reset State	Function
SEVT[0:3]	R/W	HRESET_	0	Software Capture Event. When a 1 is written to the bit location corresponding with a capture timer, an event is generated which implements the event timer. Programming a 1 captures the current value of GPT_COUNT into the corresponding capture timer register.
SD_AM[0:3]	R/W	HRESET_	0	SDRAM Bank Address Match Capture Enable. Activity on each of the four available SDRAM banks can be captured in the four corresponding capture timers. 0 = SDRAM bank activity is not captured. 1 = SDRAM bank activity time is captured.

GPT0_CAPTURE Description

Name	Туре	Reset By	Reset State	Function
EE_AM[0:3]	R/W	HRESET_	0	FLASH/ROM Bank Address Match Capture Enable. Activity on each of the four available FLASH/ ROM banks can be captured in the four corresponding capture timers. 0 = FLASH/ROM bank activity is not captured. 1 = FLASH/ROM bank activity time is captured.
PB_AM[0:3]	R/W	HRESET_	0	Processor (60x) bus address match capture enable. If this bit is set, and a transaction happens on the processor (60x) bus which matches PB_AM_ADDR qualified with PB_AM_MASK, the time of that occurrence is captured in the corresponding capture register.

There are different types of capture events which cause the GPTC value to be copied into the capture register. The different types of capture events are as follows:

- A software capture event, which is caused by setting one or more of SEVT[0:3] bits to one.
- Activity on one of the four SDRAM banks combined with SD_AM[0:3] bits being set. For example, to capture the timer time that the last activity occurred on SDRAM bank #2, set SD_AM[2] to 1.
- Activity on one of the four FLASH/ROM banks combined with EE_AM[0:3] bits being set.
- A match on the processor (60x) bus address match register, combined with PB_AM[0:3] bits being set.

A match on this register does not necessarily require that the matched address lie within address space normally claimed by PowerPro

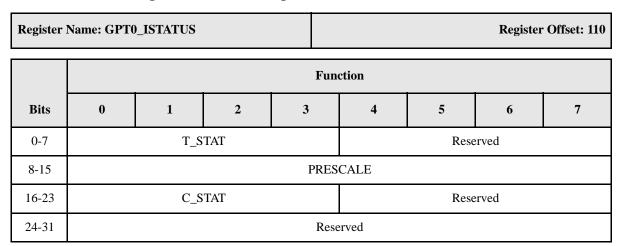
16.4.25 General Purpose Timer 0 Interrupt Control

General purpose timer triggers or compare events can be mapped to cause an interrupt to occur. If the corresponding event occurs (a timer trigger event or compare match) and the interrupt enable bit is set, and interrupt for that event is be generated.

Table 86: General Purpose Timer 0 Interrupt Control

Register Name: GPT0_INT	Register Offset: 10C
-------------------------	----------------------

Bits	Function									
Dits	0	1	2	3	4	5	6	7		
0-7		T_1	IEN		Reserved					
8-15		Reserved								
16-23		C_1	IEN			Rese	erved			
24-31				Rese	erved					


GPT0_INT Description

Name	Туре	Reset By	Reset State	Function
T_IEN[0:3]	R/W	HRESET_	0	GPT Trigger Interrupt Enable 0 = Interrupt disabled for GPT Trigger 1 = Interrupt enabled for GPT Trigger
C_IEN[0:3]	R/W	HRESET_	0	GPT Compare Interrupt Enabled 0 = Interrupt disabled for GPT Compare 1 = Interrupt enabled for GPT Compare

16.4.26 General Purpose Timer 0 Interrupt Status

The status of trigger and compare events are stored here. When a trigger or capture event occurs, the corresponding bit is set to 1. The bit remains at one until cleared by having a 1 written to it.

Table 87: General Purpose Timer 0 Interrupt Status

GPT0_ISTATUS Description

Name	Туре	Reset By	Reset State	Function
T_STAT[0:3]	R/Write 1 to Clear	HRESET_	0	Trigger status 0 = No trigger has occurred 1 = Trigger occurred
PRESCALE [0:7]	R/Write 1 to Clear	HRESET_	0	Defines the GPT clock prescale value
C_STAT[0:3]	R/Write 1 to Clear	HRESET_	0	Compare status $0 = \text{Compare match has not occurred}$ $1 = \text{Compare match has occurred}$

16.4.27 General Purpose Timer 0 Trigger x

The Four trigger registers capture the time a trigger event occurs. The trigger register stores the time that the general purpose timer was at when the corresponding trigger occurred. Trigger events are enabled or disabled through the GPT_CAPTURE register (see page 263)..

Table 88: General Purpose Timer 0 Trigger x

Register Name: GPT0_Tx	Register Offset: 120/124/128/12C
------------------------	----------------------------------

	Function									
Bits	0	0 1 2 3 4 5 6 7								
0-7		TT								
8-15		TT								
16-23		TT								
24-31				Т	Т					

GPT0_Tx Description

Name	Туре	Reset By	Reset State	Function
TT[0:31]	R	HRESET_	0	General purpose timer trigger time. The time that the last trigger event occurred is stored in this register.

16.4.28 General Purpose Timer 0 Compare x

The four compare registers compare against the current value of the GPTC[0:31] field in the GPT_COUNT register. If the current value of the general purpose timer counter matches the compare value of GPT_CTx.CT[0:31], a compare event is generated. The compare event is logged in CSTAT bit in the GPT_ISTATUS. If C_IEN enabled in the CPT_INT register, an interrupt is also generated.

Table 89: General Purpose Timer 0 Compare x

Register	Name: GPT(0_Cx				Register	Offset: 140/1	144/148/14C			
	Function										
Bits	0	0 1 2 3 4 5 6 7									
0-7		CT									
8-15		CT									
16-23				C	CT						

CT

GPT0_Cx Description

24-31

Name	Туре	Reset By	Reset State	Function
CT[0:31]	R/W	HRESET_	0xFFFF	General purpose timer compare value. This value is compared against the current GPT value. A match triggers the compare GPT event.

CT: The CT field is qualified with the compare mask. When a corresponding mask bit is clear, that bit is used in the CT field. If it is set, the bit is ignored and assumed to always to match.

For example, to receive notification every time the counter passes to $0xxx3_0000$ (x is any value) the following settings are program:

- $CT[0:31] = 0x0003_0000$
- $CM[0:31] = 0xFFF3_0000$

A match occurs when the counter reaches 0x0003_0000, 0x0007_0000, 0x000A_0000, etc. For example, the time 0x0003_1000 does not match.

16.4.29 General Purpose Timer 0 Compare Mask x

The four compare registers compare against the current value of the GPTC[0:31] field in the GPT_COUNT register. If the current value of the general purpose timer counter matches the compare value of GPT_CTx.CT[0:31], a compare event is generated. The compare event is logged in CSTAT bit in the GPT_ISTATUS. If C_IEN enabled in the CPT_INT register, an interrupt is also generated.

Table 90: General Purpose Timer 0 Compare Mask x

Register N	Name: GPT()_Mx				Register	Offset: 160/1	164/168/16C		
				Fun	ction					
Bits	0	0 1 2 3 4 5 6								
0-7				C	M					
8-15		СМ								
16-23		СМ								
24-31				C	M					

GPT0_Mx Description

Name	Туре	Reset By	Reset State	Function
CM[0:31]	R/W	HRESET_	0	General purpose timer compare mask.

The four compare registers compare against the current value of the GPTC[0:31] field in the GPT_COUNT register. If the current value of the general purpose timer counter matches the compare value of GPT_CTx.CT[0:31], a compare event is generated. The compare event is logged in CSTAT bit in the GPT_ISTATUS. If C_IEN enabled in the CPT_INT register, an interrupt is also generated.

CT: The CT field is qualified with the compare mask. When a corresponding mask bit is clear, that bit is used in the CT field. If it is set, the bit is ignored and assumed to always to match.

For example, to receive notification every time the counter passes to 0xxx3_0000 (x is any value) the following settings are program:

- $CT[0:31] = 0x0003_0000$
- $CM[0:31] = 0xFFF3_0000$

A match occurs when the counter reaches 0x0003_0000, 0x0007_0000, 0x000A_0000, etc. For example, the time 0x0003_1000 does not match

16.4.30 General Purpose Timer 1 Base Count

The general purpose system timer is a free running 32-bit counter.

Table 91: General Purpose Timer 1 Base Count

Register	Name: GPT1	1_COUNT					Register	Offset: 108		
		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7				GF	TC					
8-15		GPTC								
16-23		GPTC								
24-31				GF	TC					

GPT1_COUNT Description

Name	Туре	Reset By	Reset State	Function
GPTC[0:31]	R/W	HRESET_	0	Base count which all general purpose timer functions work from.

GPTC: This field has the current value of the counter. The counter increments once per system clock. All GPT functions are based-on this reference count. Writing to GPTC resets the counter to the new value. There is no start or stop mechanism on the counter; it is continuously running.

16.4.31 General Purpose Timer 1 Capture Events

PowerPro has four capture time registers. The time of the free running counter GPT_COUNT.GPTC is copied into the appropriate capture register if an enabled capture event occurs. The four capture registers are GPT_TT0 - GPT_TT3.

Table 92: General Purpose Timer 1 Capture Events

Register Name: GPT1_CAPTURE	Register Offset: 114
-----------------------------	----------------------

				Fun	ction			
Bits	0	1	2	3	4	5	6	7
0-7		SE	VT			Rese	erved	
8-15		SD_	_AM			Rese	erved	
16-23		EE_	_AM			Rese	erved	
24-31		PB_	AM			Rese	erved	

GPT1_CAPTURE Description

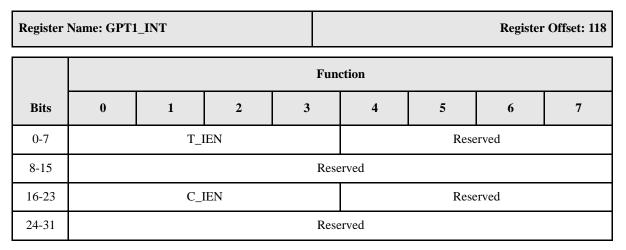
Name	Туре	Reset By	Reset State	Function
SEVT[0:3]	R/W	HRESET_	0	Software Capture Event. When a 1 is written to the bit location corresponding with a capture timer, an event is generated which implements the event timer. Programming a 1 captures the current value of GPT_COUNT into the corresponding capture timer register.
SD_AM[0:3]	R/W	HRESET_	0	SDRAM Bank Address Match Capture Enable. Activity on each of the four available SDRAM banks can be captured in the four corresponding capture timers. 0 = SDRAM bank activity is not captured. 1 = SDRAM bank activity time is captured.

GPT1_CAPTURE Description

Name	Туре	Reset By	Reset State	Function
EE_AM[0:3]	R/W	HRESET_	0	FLASH/ROM Bank Address Match Capture Enable. Activity on each of the four available FLASH/ ROM banks can be captured in the four corresponding capture timers. 0 = FLASH/ROM bank activity is not captured. 1 = FLASH/ROM bank activity time is captured.
PB_AM[0:3]	R/W	HRESET_	0	Processor (60x) bus address match capture enable. If this bit is set, and a transaction happens on the processor (60x) bus which matches PB_AM_ADDR qualified with PB_AM_MASK, the time of that occurrence is captured in the corresponding capture register.

There are different types of capture events which cause the GPTC value to be copied into the capture register. The different types of capture events are as follows:

- A software capture event, which is caused by setting one or more of SEVT[0:3] bits to one.
- Activity on one of the four SDRAM banks combined with SD_AM[0:3] bits being set. For example, to capture the timer time that the last activity occurred on SDRAM bank #2, set SD_AM[2] to 1.
- Activity on one of the four FLASH/ROM banks combined with EE_AM[0:3] bits being set.
- A match on the processor (60x) bus address match register, combined with PB_AM[0:3] bits being set.



A match on this register does not necessarily require that the matched address lie within address space normally claimed by PowerPro

16.4.32 General Purpose Timer 1 Interrupt Control

General purpose timer triggers or compare events can be mapped to cause an interrupt to occur. If the corresponding event occurs (a timer trigger event or compare match) and the interrupt enable bit is set, and interrupt for that event is be generated.

Table 93: General Purpose Timer 1 Interrupt Control

GPT1_INT Description

Name	Туре	Reset By	Reset State	Function
T_IEN[0:3]	R/W	HRESET_	0	GPT Trigger Interrupt Enable 0 = Interrupt disabled for GPT Trigger 1 = Interrupt enabled for GPT Trigger
C_IEN[0:3]	R/W	HRESET_	0	GPT Compare Interrupt Enabled 0 = Interrupt disabled for GPT Compare 1 = Interrupt enabled for GPT Compare

16.4.33 General Purpose Timer 1 Interrupt Status

The status of trigger and compare events are stored here. When a trigger or capture event occurs, the corresponding bit is set to 1. The bit remains at one until cleared by having a 1 written to it.

Table 94: General Purpose Timer 1 Interrupt Status

Register	Name: GPT1	1_ISTATUS					Register	Offset: 11C		
		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7	T_STAT Reserved									
8-15		PRESCALE								
16-23		C_S	STAT		Rese	erved				
24-31		Reserved								

GPT1_ISTATUS Description

Name	Туре	Reset By	Reset State	Function
T_STAT[0:3]	R/Write 1 to Clear	HRESET_	0	Trigger status 0 = No trigger has occurred. 1 = Trigger Occurred.
PRESCALE [0:7]	R/Write 1 to Clear	HRESET_	0	Defines the GPT clock prescale value
C_STAT[0:3]	R/Write 1 to Clear	HRESET_	0	Compare status $0 = \text{Compare match has not occurred.}$ $1 = \text{Compare match has occurred.}$

16.4.34 General Purpose Timer 1 Trigger x

The Four trigger registers capture the time a trigger event occurs. The trigger register stores the time that the general purpose timer was at when the corresponding trigger occurred. Trigger events are enabled or disabled through the GPT_CAPTURE register (see page 263).

Table 95: General Purpose Timer 1 Trigger x

Register	Name: GPT1	1_Tx				Register	Offset: 130/1	134/138/13C		
		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7		TT								
8-15		TT								
16-23		TT								
24-31				Т	T					

GPT1_Tx Description

Name	Туре	Reset By	Reset State	Function
TT[0:31]	R	HRESET_	0	General purpose timer trigger time. The time that the last trigger event occurred is stored in this register.

16.4.35 General Purpose Timer1 Compare x

The four compare registers compare against the current value of the GPTC[0:31] field in the GPT_COUNT register. If the current value of the general purpose timer counter matches the compare value of GPT_CTx.CT[0:31], a compare event is generated. The compare event is logged in CSTAT bit in the GPT_ISTATUS. If C_IEN enabled in the CPT_INT register, an interrupt is also generated.

Table 96: General Purpose Timer1 Compare x

Register	Name: GPT	1_Cx				Register	Offset: 150/1	154/158/15C		
		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7		CT								
8-15		СТ								
16-23		CT								
24-31				C	CT					

GPT1_Cx Description

Name	Туре	Reset By	Reset State	Function
CT[0:31]	R/W	HRESET_	0xFFFF	General purpose timer compare value. This value is compared against the current GPT value. A match triggers the compare GPT event.

CT: The CT field is qualified with the compare mask. When a corresponding mask bit is clear, that bit is used in the CT field. If it is set, the bit is ignored and assumed to always to match.

For example, to receive notification every time the counter passes to $0xxx3_0000$ (x is any value) the following settings are program:

- $CT[0:31] = 0x0003_0000$
- $CM[0:31] = 0xFFF3_0000$

A match occurs when the counter reaches 0x0003_0000, 0x0007_0000, 0x000A_0000, etc. For example, the time 0x0003_1000 does not match

16.4.36 General Purpose Timer 1 Compare Mask x

The four compare registers compare against the current value of the GPTC[0:31] field in the GPT_COUNT register. If the current value of the general purpose timer counter matches the compare value of GPT_CTx.CT[0:31], a compare event is generated. The compare event is logged in CSTAT bit in the GPT_ISTATUS. If C_IEN enabled in the CPT_INT register, an interrupt is also generated.

Table 97: General Purpose Timer 1 Compare Mask x

Register I	Name: GPT1	l_Mx				Register	Offset: 170/1	174/178/17C	
	Function								
Bits	0	0 1 2 3 4 5 6 7							
0-7		СМ							
8-15		CM							
16-23		CM							
24-31				C	M				

GPT1_Mx Description

Name	Туре	Reset By	Reset State	Function
CM[0:31]	R/W	HRESET_	0	General purpose timer compare mask.

CT: The CT field is qualified with the compare mask. When a corresponding mask bit is clear, that bit is used in the CT field. If it is set, the bit is ignored and assumed to always to match.

For example, to receive notification every time the counter passes to 0xxx3_0000 (x is any value) the following settings are program:

- $CT[0:31] = 0x0003_0000$
- $CM[0:31] = 0xFFF3_0000$

A match occurs when the counter reaches 0x0003_0000, 0x0007_0000, 0x000A_0000, etc. For example, the time 0x0003_1000 does not match

16.4.37 Interrupt Controller Status

PowerPro has a 32-input interrupt controller. A variety of internal and external events are mapped to each bit of the interrupter. For more information refer to "Interrupt Controller" on page 135.

Table 98: Interrupt Controller Status

Register 1	ter Name: INT_STATUS Register Offset: 18									
		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7		STAT								
8-15		STAT								

STAT

STAT

INT_STATUS Description

16-23

24-31

Name	Туре	Reset By	Reset State	Function
STAT[0:31]	R/W1Clr	HRESET_	0	Interrupt status. This status is independent of INT_ENABLE; this register reports the interrupt status regardless of that interrupt being enabled. 0 = interrupt has not occurred 1 = interrupt has occurred Write 1 to clear interrupt.

The status of each of the interrupt channels is reported in two registers: INT_STATUS and INT_MSTATUS. INT_STATUS reports the status of the interrupt sources regardless of INT_ENABLE settings, while INT_MSTATUS masks INT_STATUS with INT_ENABLE to provide masked status results. Writing a 1 to INT_STATUS clears the associated interrupt flag.

16.4.38 Interrupt Controller Masked Status

Table 99: Interrupt Controller Masked Status

	Function							
Bits	0	1	2	3	4	5	6	7
0-7		MSTAT						
8-15		MSTAT						
16-23		MSTAT						
24-31		MSTAT						

INT_MSTATUS Description

Name	Туре	Reset By	Reset State	Function
MSTAT[0:31]	R	HRESET_	0	Masked interrupt status, result of INT_STATUS and INT_ENABLE. 0 = interrupt has not occurred or is masked 1 = interrupt has occurred and is not masked

Table 100: Interrupt Controller Enable

	Function							
Bits	0	1	2	3	4	5	6	7
0-7		IE						
8-15		IE						
16-23		IE						
24-31		IE						

INT_ENABLE Description

Name	Туре	Reset By	Reset State	Function
IE[0:31]	R/W	HRESET_	0x0000	Interrupt Enable 0 = interrupt disabled, generation to the processor is suppressed, but detection is still active. 1 = interrupt enabled. This causes an interrupt to be generated to the processor.

16.4.39 Interrupt Controller Enable

Table 101: Interrupt Controller Enable

Register Name: INT_ENABLE	Register Offset: 188
---------------------------	----------------------

	Function							
Bits	0	1	2	3	4	5	6	7
0-7		IE						
8-15		IE						
16-23	IE							
24-31		IE						

INT_ENABLE Description

Name	Туре	Reset By	Reset State	Function
IE[0:31]	R/W	HRESET_	0x0000	Interrupt Enable 0 = interrupt disabled, generation to the processor is suppressed, but detection is still active. 1 = interrupt enabled. This causes an interrupt to be generated to the processor.

IE: Each of the 32 interrupt sources can be mapped to generate one of two external interrupt outputs. If the corresponding bit in the IE field is set and an interrupt occurs, that interrupt generates either the PB_INT signal or EXT_INT_OUT signal depending on the setting in Interrupt Generation Type (IGTYPE) field in the INT_GENERATE register (see page 283).

When PowerPro is initialized (at power-up) these interrupts can transition. This causes interrupts to be pending during initialization.

16.4.40 Interrupt Controller Cycle Generation Type

Table 102: Interrupt Controller Cycle Generation Type

Register Name: INT_GENERATE	Register Offset: 18C

	Function							
Bits	0	1	2	3	4	5	6	7
0-7		IGTYPE						
8-15		IGTYPE						
16-23	IGTYPE							
24-31		IGTYPE						

INT_GENERATE Description

Name	Туре	Reset By	Reset State	Function
IGTYPE[0:31]	R/W	HRESET_	0x0000	Interrupt Generation type.
				0 = Generate a PB_INT_ signal
				1 = Generate an EXT_INT_ signal

IGTYPE: Each of the 32 interrupt sources can be mapped to generate one of two external interrupt outputs. If the corresponding bit in the Interrupt Enable (IE) field in the INT_ENABLE register is set and an interrupt occurs, that interrupt generates either the PB_INT_ signal or EXT_INT_ signal. The signal generation depends on the setting in Interrupt Generation Type (IGTYPE) field in the INT_GENERATE register (see page 283).

16.4.41 Interrupt Controller Polarity

Each of the 32 interrupt sources can be specified as edge or level sensitive. If the sources are specified as edge sensitive, an interrupt event can be generated on the presence of a positive or negative edge. If the sources are specified as level sensitive, an interrupt event can be continuously generated on the presence of a high or low level.

Interrupts that are generated internal to PowerPro, for example the UARTs, have different polarity and triggering attributes. These different attributes must be accounted for when the IPOL field is programmed.

Table 103: Interrupt Controller Polarity

Register Name: INT_POLARITY							Register	Offset: 190				
		Function										
Bits	0	1	2	3	4	5	6	7				
0-7		IPOL										
8-15				IP	OL							
16-23		IPOL										
24-31				IP	OL							

INT_POLARITY Description

Name	Туре	Reset By	Reset State	Function
IPOL[0:31]	R/W	HRESET_	0xFFFF_	Interrupt Polarity
			FFFF	0 = active low (level sensitive), or negative edge.
				1 = active high (level sensitive), or positive edge.

16.4.42 Interrupt Controller Trigger Type

Each of the 32 interrupt sources can be specified as edge or level sensitive. If the sources are specified as edge sensitive, an interrupt event can be generated on the presence of a positive or negative edge. If the sources are specified as level sensitive, an interrupt event can be continuously generated on the presence of a high or low level.

Interrupts that are generated internal to PowerPro, for example the UARTs, have different polarity and triggering attributes. These different attributes must be accounted for when the ITTYPE field is programmed.

Table 104: Interrupt Controller Trigger Type

Register Name: INT_TRIGGER							Register	Offset: 194				
		Function										
Bits	0	1	2	3	4	5	6	7				
0-7		ITTYPE										
8-15				ITT	YPE							
16-23		ITTYPE										
24-31				ITT	YPE							

INT_TRIGGER Description

Name	Туре	Reset By	Reset State	Function
ITTYPE[0:31]	R/W	HRESET_	0xFFFF_	Interrupt Trigger Type.
			FFFF	0 = level sensitive
				1 = edge sensitive

16.4.43 Interrupt Controller Vector Base Address.

Table 105: Interrupt Controller Vector Base Address

Register Name: INT_VBADDR	Register Offset: 198
---------------------------	----------------------

	Function														
Bits	0	0 1 2 3 4 5 6 7													
0-7		VA													
8-15		VA													
16-23	VA Reserved														
24-31				Rese	erved			Reserved							

INT_VBADDR Description

Name	Туре	Reset By	Reset State	Function
VA[0:18]	R/W	HRESET_	0	Vector Base Address Used for generating the V field in the INT_VECTOR register.

16.4.44 Interrupt Controller Vector Increment

Table 106: Interrupt Controller Vector Increment

Register Name: INT_VINC	Register Offset: 19C
-------------------------	----------------------

	Function										
Bits	0	0 1 2 3 4 5									
0-7	Reserved										
8-15		Reserved									
16-23				Rese	erved						
24-31			Rese	erved			VI	NC			

INT_VINC Description

Name	Туре	Reset By	Reset State	Function
PRI	R/W	HRESET_	0	Priority ordering. 0 = INT 0 is most significant. 1 = INT 31 is most significant.
VINC[0:1]	R/W	HRESET_	0	Vector Increment. The calculated interrupt vector is the vector base address + increment amount * interrupt number. $00 = 0x100 \text{ is space between ISR routines}$ $01 = 0x200 \text{ is space between ISR routines}$ $10 = 0x400 \text{ is space between ISR routines}$ $11 = 0x800 \text{ is space between ISR routines}$

VINC: Dual function of controlling the upper-word register access. Normally, register access is restricted to 4 byte (32-bit) accesses, with anything larger resulting in an error condition which generates TEA (when TEA generation is enabled in the PowerPro). If TEA generation is disabled in PowerPro, an eight byte register read returns the four byte register addressed replicated in the lower and upper word. When VINC[1] = 0 and an eight byte read is performed, the register at offset (PB_REG_ADDR & 0xff8) is returned (32-bit value) replicated in the upper and lower 32-bit words. When VINC[1] = 1 and an eight byte read is performed, the register at offset (PB_REG_ADDR & 0xff8) + 0x004 is returned (32-bit value) replicated in the upper and lower 32-bit words.

For example, an eight byte read to REG_BADDR + 0x198 when VINC[1] = 0 returns {INT_VBADDR, INT_VBADDR}. An eight byte read to REG_BADDR + 0x198 when VINC[1] = 1 returns {INT_VINC, INT_VINC}. The TEA_EN bit, in the PB_GEN_CTRL register, must be 0 in this mode.

16.4.45 Interrupt Controller Incremented Vector Base Address

Table 107: Interrupt Controller Incremented Vector Base Address

	Function									
Bits	0	1	2	3	4	5	6	7		
0-7		V								
8-15				7	V					
16-23		V								
24-31				•	V					

INT_VECTOR Description

Name	Туре	Reset By	Reset State	Function
V[0:31]	R	HRESET_	0	Interrupt vector

This register is provided for software use. It is a constantly regenerated value of the following values:

- INT_VECTOR = {INT_VBADDR[0:18], INT#[0:4], 8h0}
 - Programming: VINC=0b00 and PRI=0
- INT_VECTOR = {INT_VBADDR[0:17], INT#[0:4], 9h0}
 - Programming: VINC=0b01 and PRI=0
- INT_VECTOR = {INT_VBADDR[0:16], INT#[0:4], 10h0}
 - Programming: VINC=0b10 and PRI=0
- INT_VECTOR = {INT_VBADDR[0:15], INT#[0:4], 11h0}
 - Programming: VINC=0b11 and PRI=0
- INT_VECTOR = {INT_VBADDR[0:18], INV_INT#[0:4], 8h0}
 - Programming: VINC=0b00 and PRI=1
- INT_VECTOR = {INT_VBADDR[0:17], INV_INT#[0:4], 9h0}
 - Programming: VINC=0b01 and PRI=1

- INT_VECTOR = {INT_VBADDR[0:16], INV_INT#[0:4], 10h0}
 - Programming: VINC=0b10 and PRI=1
- INT_VECTOR = {INT_VBADDR[0:15], INV_INT#[0:4], 11h0}
- Programming: VINC=0b11 aND PRI=1

The register can be used as a pointer to an interrupt service routine. If the register is used in this way, the set of interrupt service routines must be placed at INT_VBADDR[0:31]. Each interrupt service routine is separated by VINC - 0x100, 0x200, 0x400, or 0x800 in address space. Reading this register is a useful way of finding the code to handle a generic PB_INT signal.

16.4.46 Interrupt Controller Software Set

The INT_SOFTSET register is used as a software debugging tool. Programming a bit to 1 in INT_SOFTSET has the effect as toggling the corresponding interrupt line if the corresponding INT_SOFTSRC bit is set as well. When the INT_SOFTSCR bit is set to zero, the source of the interrupt is not the INT_SOFTSET bit.

Toggling means setting a bit.

Table 108: Interrupt Controller Software Set

Register Name: INT_SOFTSET							Register	Offset: 1A4			
	Function										
Bits	0	1	2	3	4	5	6	7			
0-7				SI	NT						
8-15				SI	NT						
16-23				SI	NT						
24-31				SI	NT						

INT_SOFTSET Description

Name	Туре	Reset By	Reset State	Function
SINT[0:31]	R/W	HRESET_	0	Software Interrupt. Writing a 1 to a bit position has the same effect as toggling the corresponding interrupt line.

16.4.47 Interrupt Controller Software Source

The INT_SOFTSET register is used as a software debugging tool. Programming a bit to 1 in INT_SOFTSET has the effect as toggling the corresponding interrupt line if the corresponding INT_SOFTSRC bit is set as well. When the INT_SOFTSCR bit is set to zero, the source of the interrupt is not the INT_SOFTSET bit.

Table 109: Interrupt Controller Software Source

Register Name: INT_SOFTSRC							Register	Offset: 1A8			
	Function										
Bits	0	0 1 2 3 4 5 6 7									
0-7				Sl	RC						
8-15				Sl	RC						
16-23		SRC									
24-31				Sl	RC						

INT_SOFTSRC Description

Name	Туре	Reset By	Reset State	Function
SRC[0:31]	R/W	HRESET_	0	Interrupt Source bits are reset so that the source of interrupts is not from software. By setting a SRC bit, INT_SOFTSET becomes the source of the interrupt.

16.4.48 UARTx Receive / Transmit Data

Table 110: UARTx Receive / Transmit Data

Register Name: UARTx_RX_TX	Register Offset: 1B0/1C0
----------------------------	--------------------------

	Function									
Bits	0	1	2	3	4	5	6	7		
0-7		D								

UARTx_RBR_THR Description^a

Name	Туре	Reset By	Reset State	Function
D[0:7]	R/W	HRESET_	0	Read: receive data Write: send data

a. In the PowerPro UARTs bit 7 is always the least significant bit; it is the first to be serially transmitted or received. Please refer to "Dual UART Interface" on page 105 for information on UART transmissions.

The UARTx_RX_TX register is located at register offset 1B0/1C0 when the Divisor Latch Access (DLAB) bit in the UARTx Line Control register (see page 304) is set to 0. When the (DLAB) bit is set to 1 and register offset 1B0/1C0 is accessed the UARTx_DLM register is accessed. Refer to Table 113 on page 298 for more information on this register.

When the Divisor Latch Access (DLAB) bit is set, writes to UART offset 0x0 and 0x1 set the baud rate divisor. When the DLAB bit is set to 1, the UARTx_RX_TX and UARTx_IER registers are not accessible. The register space is shared between the UARTx_DLL register and the UARTx_Rx_Tx at offset 1B0 (Table 110 on page 293 and Table 111 on page 295) and the UART1_DLM register and the UARTx_IER register (Table 112 on page 296 and Table 113 on page 298) at offset 1B1.

Writing 1 to the DLAB bit enables the UARTx_DLM or UARTx_DLL (depending on reads and writes) and disables the other registers that share their register offset.

A byte written to this register is transmitted by the UART when the Transmitter Holding (THRE) bit in the UARTx Line Status (LSR) register (see page 308) is set to 0. This setting indicates there is space in the transmitting FIFO. Writing to this register when the THRE bit is set to a 1 causes data loss.

The UART has a 16-byte entry FIFO. If this FIFO is enabled, the THRE bit must be checked to make sure it is set to 0. After the THRE bit is checked the 16-byte writes can be started.

If the Data ready Flag (DR) bit in the LSR register is set, then a read to this register returns the byte of data received. Reads to this register when the DR bit is set to 0 return unpredictable data.

UART registers are only byte-accessible.

16.4.49 UARTx Divisor Latch (DLL)

Table 111: UART*x* **Divisor Latch (DLL)**

Register Name: UARTx_DLL	Register Offset: 1B0/1C0
--------------------------	--------------------------

		Function									
Bits	0	1	2	3	4	5	6	7			
0-7	В										

UARTx_DLL Description

Name	Туре	Reset By	Reset State	Function
B[0:7]	R/W	HRESET_	0	Baud Rate Divisor Latches

The UARTx_DLL register is located at register offset 1B1/1C1 when the Divisor Latch Access (DLAB) bit in the UARTx Line Control register (see page 304) is set to 1. When the DLAB bit is 0 the UARTx_IER register is accessed from this register offset. Refer to Table 112 on page 296 for more information on this register.

The output frequency of the Baud Generator is represented in the following equation:

• (Frequency/ (16 * Baud))-1

Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization to ensure proper operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded.

16.4.50 UART*x* **Interrupt Enable**

Table 112: UART*x* **Interrupt Enable**

Register Name: UARTx_IER	Register Offset: 1B1/1C1

		Function									
Bits	0	1	2	3	4	5	6	7			
0-7			Reserved	ELSI	ETBEI	ERBFI					

UART*x***_IER Description**

Name	Туре	Reset By	Reset State	Function
ELSI	R/W	HRESET_	0	Enable Receiver Line Status Interrupt $0 = \text{Enabled}$ $1 = \text{Disabled}$
ETBEI	R/W	HRESET_	0	Enable Transmitter Holding Register Empty Interrupt $0 = \text{Enabled}$ $1 = \text{Disabled}$
ERBFI	R/W	HRESET_	0	Enable Received Data Available Interrupt $0 = \text{Enabled}$ $1 = \text{Disabled}$

The UARTx_IER register is located at register offset 1B1/1C1 when the Divisor Latch Access (DLAB) bit in the UARTx Line Control register (see page 304) is set to 0. When the (DLAB) bit is set to 1 and register offset 1B1/1C1 is accessed the UARTx_DLM register is accessed. Refer to Table 113 on page 298 for more information on this register.

When the Divisor Latch Access (DLAB) bit is set, writes to UART offset 0x0 and 0x1 set the baud rate divisor. When the DLAB bit is set to 1, the UARTx_RX_TX and UARTx_IER registers are not accessible. The register space is shared between the UARTx_DLM register and the UARTx_Rx_Tx at offset 1B0 (Table 110 on page 293 and Table 111 on page 295) and the UART1_DLM register and the UARTx_IER register (Table 112 on page 296 and Table 113 on page 298) at offset 1B1.

Writing 1 to the DLAB bit enables the UARTx_DLM or UARTx_DLL (depending on reads and writes) and disables the other registers that share their register offset.

This register enables the three types of UART interrupts. Each interrupt can individually activate the interrupt controller. It is possible to totally disable the interrupt system by resetting bits 0 through 2 of the Interrupt Enable Register (IER). Setting bits of the IER register to a logic 1, enables the selected interrupt(s). Disabling an interrupt prevents it from activating the interrupt controller. All other system functions operate in their normal manner, including the setting of the Line Status registers. For more information on PowerPro interrupts, please refer to "Interrupt Controller" on page 135.

UART registers are only byte-accessible.

16.4.51 UARTx Divisor Latch (DLM)

Table 113: UART*x* **Divisor Latch (DLM)**

Register Name: UARTx_DLM	Register Offset: 1B1/1C1
--------------------------	--------------------------

	Function							
Bits	8	9	10	11	12	13	14	15
8-15	В							

UART*x*_**DLM Description**

Name	Туре	Reset By	Reset State	Function
B[8:15]	R/W	HRESET_	0	Baud Rate Divisor Latches

The UARTx_DLM register is located at register offset 1B1/1C1 when the Divisor Latch Access (DLAB) bit in the UARTx Line Control register (see page 304) is set to 1. When the DLAB bit is 0 the UARTx_RX_TX register is accessed from this register offset. Refer to Table 110 on page 293 for more information on this register.

The output frequency of the Baud Generator is represented in the following equation:

• (Frequency/ (16 * Baud))-1

Two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization to ensure proper operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded.

16.4.52 UARTx Interrupt Status / FIFO Control (Read Only)

Table 114: UARTx Interrupt Status / FIFO Control (Read Only)

Register Name: UARTx_ISTAT_FIFO	Register Offset: 1B2/1C2

		Function						
Bits	0	1	2	3	4	5	6	7
0-7	В7	В6	Rese	erved	В3	B2	B1	В0

UART*x***_ISTAT**_**FIFO Description**

Name	Туре	Reset By	Reset State	Function
В7	Read	HRESET_	0	Read: FIFOs enabled Write: Receiver trigger (MSB)
В6	Read	HRESET_	0	Read: FIFOs enabled Write: Receiver trigger (LSB)
В3	Read	HRESET_	0	Read: Interrupt ID bit 2
B2	Read	HRESET_	0	Read: Interrupt ID bit 1 Write: Transmit FIFO reset
B1	Read	HRESET_	0	Read: Interrupt ID bit 0 Write: Receiver FIFO reset
В0	Read	HRESET_	1	Read: 0 if interrupt pending Write: FIFO enable

The UARTx_ISTAT_FIFO register is considered to be interrupt status register for reads and a FIFO control register for writes. Refer to Table 116 for more information on the FIFO control bit information.

The UARTx_ISTAT_FIFO register has different functionality depending on whether the register is read or if it is written. Table 16 on page 107 shows the register in its read only state and its write only state. In the "Registers" on page 199 the register bits are explained first in the right only state (Table 114 on page 299) and then in their write only state (Table 116 on page 302).

In order to provide minimum software overhead during data character transfers, the UART prioritizes interrupts into three levels and records these in the Interrupt

Status/FIFO Control register. The levels of interrupt conditions in order of priority are as follows:

- Receiver Line Status
- Received Data Ready
- Transmitter Holding Register Empty

When the processor accesses the UART*x*_ISTAT_FIFO, the UART stops all interrupts and indicates the highest priority pending interrupt to the interrupt controller. While this interrupt controller access is occurring, the UART records new interrupts, but does not change its current indication until the access is complete.

Table 115 highlights the UART interrupt control functions.

Table 115: Interrupt Control Functions

Interrupt Identification Register		Interrupt Set and Reset Functions					
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control	
0	0	1	-	None	None	-	
1	1	0	Highest	Receiver line status	Overrun error or parity error or framing error or break error	Reading the Line Status register	
1	0	0	Second	Received Data Available	Receiver data available or trigger level reached	Reading the Receiver Buffer register or the FIFO drops below the trigger level	
0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding register empty	Reading the UARTx_ISTAT_ FIFO register (if it is the source of the interrupt) or writing into the Transmitter Holding register	

Bit 0: This bit can be used in a prioritized interrupt environment to indicate whether an interrupt is pending. When bit 0 is a logic 0, an interrupt is pending and the UART*x*_ISTAT_FIFO contents can be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1, no interrupt is pending.

Bit 1: Bits 1 and 2 are used to identify the highest priority interrupt pending.

Bit 2: Bits 1 and 2 are used to identify the highest priority interrupt pending.

Bit 3: In the FIFO mode this bit is set along with bit 2 when a timeout interrupt is pending.

Bit 4: PowerPro Reserved

Bit 5: PowerPro Reserved

Bit 6: Bits 6 and 7 are set when FCR0 = 1

Bit 7: Bits 6 and 7 are set when FCR0 =1

16.4.53 UARTx Interrupt Status / FIFO Control (Write Only)

Table 116: UARTx Interrupt Status / FIFO Control (Write Only)

Register Name: UARTx_ISTAT_FIFO	Register Offset: 1B2/1C2

		Function						
Bits	0	1	2	3	4	5	6	7
0-7	В7	В6	Rese	erved	В3	B2	B1	В0

UART*x*_**ISTAT**_**FIFO Description**

Name	Туре	Reset By	Reset State	Function
В7	R/W	HRESET_	0	Read: FIFOs enabled Write: Receiver trigger (MSB)
В6	R/W	HRESET_	0	Read: FIFOs enabled Write: Receiver trigger (LSB)
В3	R/W	HRESET_	0	Read: Interrupt ID bit 2
B2	R/W	HRESET_	0	Read: Interrupt ID bit 1 Write: Transmit FIFO reset
B1	R/W	HRESET_	0	Read: Interrupt ID bit 0 Write: Receiver FIFO reset
В0	R/W	HRESET_	1	Read: 0 if interrupt pending Write: FIFO enable

The UARTx_ISTAT_FIFO register is considered to be interrupt status register for reads and a FIFO control register for writes. Refer to Table 114 for more information on the interrupt status bit descriptions.

The UARTx_ISTAT_FIFO register has different functionality depending on whether the register is read or if it is written. Table 16 on page 107 shows the register in its read only state and its write only state. In the "Registers" on page 199 the register bits are explained first in the right only state (Table 114 on page 299) and then in their write only state (Table 116 on page 302).

This register is used to enable the FIFOs, clear the FIFOs and set the RCVR FIFO trigger level.

- **Bit 0:** Writing a 1 to FCR0 enables both the XMIT and RCVR FIFOs. Resetting FCR0 clears all bytes in both FIFOs.
- **Bit 1:** Writing a 1 to FCR1 clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing.
- **Bit 2:** Writing a 1 to FCR2 clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing.
- **Bit 3:** PowerPro reserved (write)
- Bit 4: PowerPro reserved
- Bit 5: PowerPro reserved
- **Bit 6:** FCR6 and FCR7 are used to set the trigger level for the RCVR FIFO interrupt.
- Bit 7: FCR6 and FCR7 are used to set the trigger level for the RCVR FIFO interrupt

16.4.54 UARTx Line Control

The UARTx_LCR specifies the format of the asynchronous data communications exchange and sets the Divisor Latch Access bit. The contents of the UARTx_LCR can also read. The read capability simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

UART registers are only byte-accessible.l

Table 117: UART*x* **Line Control**

Register Name: UARTx_LCR	Register Offset: 1B3/1C3

		Function						
Bits	0	1	2	3	4	5	6	7
0-7	DLAB	SB	SP	EPS	PEN	STB	WI	EN

UART*x***_LCR Description**

Name	Туре	Reset By	Reset State	Function
DLAB	R/W	HRESET_	0	Divisor Latch Access Bit
SB	R/W	HRESET_	0	Set Break
SP	R/W	HRESET_	0	Stick Parity
EPS	R/W	HRESET_	0	Even Parity Select
PEN	R/W	HRESET_	0	Parity Enable
STB	R/W	HRESET_	0	Number of Stop Bits
WLEN[0:1]	R/W	HRESET_	0	Word Length Bits

WLEN[0:1]: These two bits specify the number of bits in each transmitted or received serial character. The encoding for the WLEN bits is shown in Table 118.

Table 118: WLEN Coding

WLEN[0]	WLEN[1]	Character Length		
0	0	5 bits		

Table 118: WLEN Coding

WLEN[0]	WLEN[1]	Character Length
0	1	6 bits
1	0	7 bits
1	1	8 bits

STB: This bit specifies the number of Stop bits transmitted and received in each serial character. If the STB bit is a logic 0, one Stop bit is generated in the transmitted data. If the STB bit is a logic 1 when a 5-bit word length is selected through bits 0 and 1, one and a half Stop bits are generated. If the STB bit is a logic 1 when either a 6-, 7-, or 8-bit word length is selected, two Stop bits are generated. The receiver checks the first Stop-bit only, regardless of the number of Stop bits selected.

PEN: This bit is the Parity Enable bit. When the PEN bit is a logic 1, a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and Stop bit of the serial data. The Parity bit is used to produce an even or odd number of 1s when the data word bits and the Parity bit are added.

EPS: This bit is the Even Parity Select bit. When the PEN bit is a logic 1 and the EPS bit is a logic 0, an odd number of logic 1s is transmitted or checked in the data word bits and Parity bit. When the PEN bit is a logic 1 and the EPS bit is a logic 1, an even number of logic 1s is transmitted or checked.

SP: This bit is the Stick Parity bit. When the PEN bit, the EPS bit and the SP bit are logic 1, the Parity bit is transmitted and checked as a logic 0. If the PEN bit and the SP bit are 1 and the EPS bit is a logic 0 then the Parity bit is transmitted and checked as a logic 1.

If the SP bit is a logic 0 Stick Parity is disabled.

SB: This bit is the Break Control bit. It causes a break condition to be transmitted to the receiving UART. When it is set to a logic 1, the serial output (SOUT) is forced to the Spacing (logic 0) state. The break is disabled by setting the SB bit to a logic 0.

DLAB: This bit is the Divisor Latch Access Bit (DLAB). It must be set high (logic 1) to access the Divisor Latches of the Baud Generator during a Read or Write operation. It must be set low (logic 0) to access the UARTx_RX_TX and UARTx_IER registers.

When the Divisor Latch Access (DLAB) bit is set, writes to UART offset 0x0 and 0x1 set the baud rate divisor. When the DLAB bit is set to 1, the UARTx_RX_TX and UARTx_IER registers are not accessible. The register space is shared between the UART0_DLL register and the UARTx_Rx_Tx at offset 1B0 (Table 110 on page 293 and Table 111 on page 295) and the UART1_DLM register and the UARTx_IER register (Table 112 on page 296 and Table 113 on page 298) at offset 1B1.

Writing 1 to the DLAB bit enables the UARTx_DLM or UARTx_DLL (depending on reads and writes) and disables the other registers that share their register offset.

16.4.55 UARTx Modem Control

The UARTx_MCR register is not supported by PowerPro.

Table 119: UART*x* **Modem Control**

Register Name: UARTx_MCR	Register Offset: 1B4/1C4
--------------------------	--------------------------

		Function						
Bits	0	1	2	3	4	5	6	7
0-7								

UARTx_MCR Description

Name	Туре	Reset By	Reset State	Function

16.4.56 UARTx Line Status

This register provides status information to the processor concerning the data transfer.

The UARTx_LSR register is intended for read operations only. Writing to this register is not recommended. The bits in this register cannot be written to in FIFO mode.

Table 120: UART*x* **Line Status**

Register Name: UARTx_LSR	Register Offset: 1B5/1C5
--------------------------	--------------------------

		Function						
Bits	0	1	2	3	4	5	6	7
0-7	ERF	ТЕМТ	THRE	BI	FE	PE	OE	DR

UART*x*_LSR Description

Name	Туре	Reset By	Reset State	Function
ERF	Read	HRESET_	0	Error In Receiver FIFO
TEMT	Read	HRESET_	1	Transmitter Empty
THRE	Read	HRESET_	1	Transmitter Holding Register
BI	Read	HRESET_	0	Break Interrupt
FE	Read	HRESET_	0	Framing Error
PE	Read	HRESET_	0	Parity Error
OE	Read	HRESET_	0	Overrun Error
DR	Read	HRESET_	0	Data Ready

DR: This bit is the receiver Data Ready (DR) indicator. The DR bit is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register or the FIFO. The DR bit is reset to a logic 0 by reading all of the data in the UARTx_RX_TX register or the FIFO.

OE: This bit is the Overrun Error (OE) indicator. The OE bit indicates that data in the Receiver Buffer Register was not read by the processor before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is set to a logic 1 upon detection of an overrun condition and reset whenever the processor reads the contents of the Line Status Register. If the FIFO mode data continues to fill the FIFO beyond the trigger level, an overrun error occurs only after the FIFO is full and the next character has been completely received in the shift register. OE is indicated to the processor as soon as it happens. The character in the shift register is overwritten, but it is not transferred to the FIFO.

PE: This bit is the Parity Error (PE) indicator. The PE bit indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity select bit. The PE bit is set to a logic 1 upon detection of a parity error and is reset to a logic 0 whenever the processor reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the processor when its associated character is at the top of the FIFO.

FE: This bit is the Framing Error (FE) indicator. The FE bit indicates that the received character did not have a valid Stop bit. The FE bit is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a logic 0 bit (Spacing level). The FE indicator is reset whenever the processor reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the processor when its associated character is at the top of the FIFO. The UART attempts to resynchronize after a framing error. To do this the UART assumes that the framing error was due to the next start bit, so it samples this start bit twice and then takes in the data.

BI: This bit is the Break Interrupt (BI) indicator. The BI bit is set to a logic 1 whenever the received data input is held in the Spacing (logic 0) state for longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits). The BI indicator is reset whenever the interrupt controller reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the processor when its associated character is at the top of the FIFO. When break occurs only one zero character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking state and receives the next valid start bit.

Bits 1 through 4 are error conditions that produce a Receiver Line interrupt whenever any of the corresponding conditions are detected and the interrupt is enabled.

THRE: This bit is the Transmitter Holding Register Empty (THRE) indicator. The THRE bit indicates that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the interrupt controller when the Transmit Holding register Empty Interrupt enable is set high. The THRE bit is set to a logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift register. The bit is reset to logic 0 concurrently with the loading of the Transmitter Holding register by the interrupt controller. In the FIFO mode The THRE bit is set when the XMIT FIFO is empty; it is cleared when at least 1 byte is written to the XMIT FIFO.

TEMT: This bit is the Transmitter Empty (TEMT) indicator. The TEMT bit is set to a logic 1 whenever the UARTx_RX_TX register is empty. It is reset to a logic 0 whenever the UARTx_RX_TX register contains a data character. In the FIFO mode this bit is set to 1 whenever the transmitter FIFO is empty.

ERF: The ERF bit is set when there is at least one parity error, framing error or break indication in the FIFO. The ERF bit is cleared when the processor reads the LSR register, if there are no subsequent errors in the FIFO.

UART registers are only byte-accessible.

16.4.57 UARTx Modem Status

The UARTx_MSR register is not supported by PowerPro.

Table 121: UART*x* **Modem Status**

Register Name: UARTx_MSR	Register Offset: 1B6/1C6
	Function

		Function							
Bits	0	1	2	3	4	5	6	7	
0-7									

UARTx_MSR Description


Name	Туре	Reset By	Reset State	Function

16.4.58 UARTx Scratchpad

This register is an 8-byte read/write scratch register (memory). It performs no function, and doe not control the UART. It is intended to be used to hold temporary data.

UART registers are only byte-accessible.

Table 122: UARTx Scratchpad Register

	Function							
Bits	0	1	2	3	4	5	6	7
0-7	SR							

UARTx_SCR Description

Name	Туре	Reset By	Reset State	Function
SR[0:7]	R/W	HRESET_	0	Scratchpad Register

16.4.59 General Purpose I/O

GPIO functionality is multiplexed with many other functions on PowerPro. Critical PowerPro pins are multiplexed with GPIO capability. Care must be taken when pins are programmed as GPIO pins. There is a potential to create contention in PowerPro that can cause the device to fail or to require excess power.

Table 123: General Purpose I/O

	Register Offset: 1E0/1E4/1E8/1EC/
Register Name: GPIO_x	1F0/1F4/1F8

		Function								
Bits	0	0 1 2 3 4 5 6 7								
0-7		ENABLE								
8-15		MASK								
16-23		DIR								
24-31				DA	TA					

GPIO_ x Description

Name	Туре	Reset By	Reset State	Function
ENABLE[0:7]	R/W	HRESET_	0	GPIO Enable 0 = disable corresponding GPIO port 1 = enable corresponding GPIO port
MASK[0:7]	R/W	HRESET_	0	GPIO Mask 1 = enable corresponding GPIO write 0 = mask corresponding GPIO write

GPIO_ x Description

Name	Туре	Reset By	Reset State	Function
DIR[0:7]	R/W	HRESET_	(see Table 124)	GPIO Direction 1 = corresponding GPIO port is input (read) 0 = corresponding GPIO port is output (write)
DATA[0:7]	R/W	HRESET_	0	GPIO data DIR = 0 Holds read data from GPIO port. Writes have no effect. DIR = 1 Holds write data output to GPIO port. Reads return the data that is being output on the corresponding GPIO port.

Table 124 shows the reset states for the DIR field in the GPIO_x registers.

Table 124: Reset state of the DIR field in all GPIO_x registers

Register	DIR Field Reset State
GPIO_A	0xFF
GPIO_B	0xFF
GPIO_C	0xFF
GPIO_D	0xFF
GPIO_E	0xFF
GPIO_F	0xFF
GPIO_G	0xC0

PowerPro has general purpose I/O capability. Although all pins on the device have a primary purpose, in many instances these pins are required for their primary purpose. For example, a system may not need two UARTS or two I2C ports. These pins, when not being used for their primary purpose, are assigned to the General Purpose I/O pool. All pins capable of GPIO are mapped in a GPIO register.

Refer to "Electrical Characteristics" on page 179for information on GPIO mapping.

ENABLE: This bit enables the use of the GPIO port.

DIR: This bit controls if the signal is an output or an input.

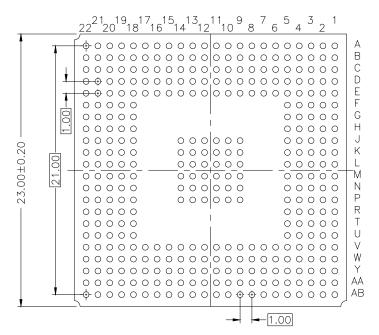
DATA: This field controls the value the pin has when it is an output. Reading from the data port returns the value the pin currently assumes. If the pin is an input, the input value is returned. If the pin is configured as an output, the value output on the pin is returned.

MASK: The Write Mask bit sets the pins bit-wise without affecting other pins in the same register. If the write mask value is 0, the ENABLE, DIR, and DATA values are ignored. If the write mask value is 1, then the ENABLE, DIR, and DATA values are written. The write mask has no effect on reads.

Reading from a GPIO port, even if that port is not enabled, returns the value on the pin at the time the read command was executed.

Software can control any low to medium speed device by using the GPIO and the general purpose timers. For example, the GPIO port and general purpose timers can control I²C ports and RAMs. They can control any other devices are low to medium speed with non-time critical protocols.

A. Packaging Information


This chapter outlines packaging (mechanical) information for PowerPro. The topics addressed in this chapter include:

- "Packaging Information" on page 317
- "Thermal Characteristics" on page 319

A.1 Packaging Information

The PowerPro device is offered in a 376 PBGA package, with a measurement of 23mm x 23mm and a 1 mm ball pitch.

Figure 46: 376 PBGA - Bottom View

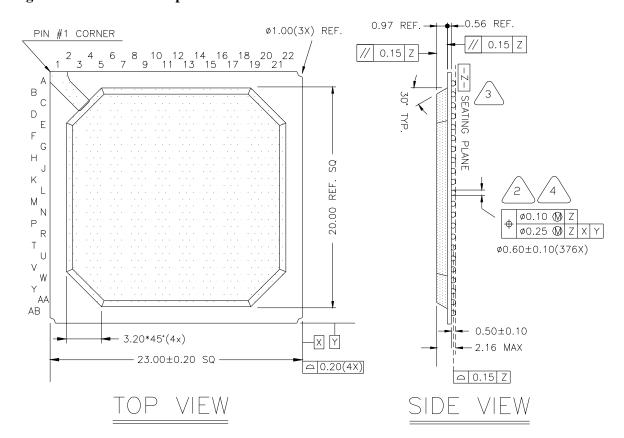


Figure 47: 376 PBGA - Top and Side View

A.1.0.1 Package Notes

- 1. All dimensions conform to ANSI Y14.5-1994. The dimensions are in millimeters (mm).
- 2. The dimension is measured at the maximum solder ball diameter parallel to the primary datum Z.
- 3. The primary datum Z and the seating plane are defined by the spherical crowns of the solder balls.
- 4. Pad size is 0.40mm diameter. It is recommended that PCBs have the same pad size.

A.2 Thermal Characteristics

The thermal performance of PowerPro package is represented by the following parameters:

1. θ_{IA} , Thermal resistance from junction to ambient

$$\theta_{JA} = (T_J - T_A) / P$$

Where,

T_J is the junction temperature

T_A is the ambient temperature

P is the power dissipation

 θ_{JA} represents the resistance to the heat flows from the chip to ambient air. It is an index of heat dissipation capability. Lower θ_{JA} means better thermal performance.

2. ψ_{JT} , Thermal characterization parameter from junction-to-top center

$$\psi_{JT} = (T_J - T_T) / P$$

Where T_T is the temperature of the top-center of the package

 ψ_{JT} is used to estimate junction temperature by measuring T_T in actual environment.

3. 3. θ_{JC} , Thermal resistance from junction to case

$$\theta_{JC} = (T_J - T_C) / P$$

Where.

T_C is the case temperature

 θ_{JC} is a measure of package internal thermal resistance from chip to package exterior.

The value is dependent upon package material and package geometry.

 θ_{JA} , θ_{JC} and ψ_{JT} simulation are carried out to show the thermal performance of the PowerPro.

The thermal characteristic estimates for the 376 package are based on the parameters in Table 125.

Table 125: Thermal Estimate Parameters

Package Conditions					
Package type	PBGA 376L				
Package size	23 x 23 x 2.03 mm ³				
Pitch	1.0 mm				
Pad size	260 x 263 mil ²				
Chip size	210 x 213 mil ²				
Substrate (layers)	4 L				
Substrate thickness	0.56 mm				
PCB Condition	s (JEDEC JESD51-7)				
PCB Layers	4L				
PCB dimensions	101.6 x 114.3 mm				
PCB thickness	1.6 mm				

Table 126 shows the thermal estimates and the thermal characterization parameters from junction-to-top center (Ψ_{JT}) and the thermal resistance from junction to case for the 376 PBGA package. •.

Table 126: 376 PBGA Package Performance

	Theta ja (C/W)			
0 m/s	1 m/s	2 m/s	Psi _{jt} (C/W)	Theta jc (C/W)
22.8	21.0	19.3	0.50	9.70

B. Ordering Information

This appendix discusses PowerPro's ordering information.

B.1 Ordering Information

Table 127: Ordering Information

Part Number	Description	Frequency	Voltage (IO/ CORE)	Temperature	Package	Diameter (mm)
CA91L750-100IL	PowerPro	100MHz	3.3/2.5	-40° to 85°C	376 PBGA	23 x 23 x 1.00

B. Ordering Information

C. Timing

This chapter outlines the timing information and requirements of PowerPro. The topic addressed in this chapter is:

• "Reset Timing" on page 324

C.1 Overview

This chapter describes the timing information for the PowerPro device and contains complete AC timing information for PowerPro. All timing numbers are measured assuming a 30pF load on the bus. Input set-up and hold requirements are listed, as well as output set-up and hold timings.

A desired configuration must have all signals analyzed on the processor (60x) bus and the SDRAM bus. Different configurations have different critical signals. For example, the number and type of processors and memory in a system

C.2 Reset Timing

Table 128 shows the input, output, and hold times for critical timing signals on PowerPro.

Table 128: Reset, and Clock Timing Parameters

Timing Parameter	Description	Minimum	Maximum	Units
Reset Timing				
t ₁₀₀	Hreset pulse width	500		ns
t ₁₀₁	Clock frequency stable before release of power-up reset	0		ns
t ₁₀₂	PLL lock time	150	400	us
t ₁₀₃	Power On Reset pulse width	5	5	clocks
t ₁₀₄	Release of Power Up options after negation of PORESET.	1	2	clocks
t ₁₂₀	PB_CLK period	10	40	ns
	PB_CLK frequency	25	100	MHz
t ₁₂₁	PB_CLK high time	4		ns
t ₁₂₂	PB_CLK low time	4		ns
t ₁₂₃	PB_CLK slew rate	2		V/ns
t ₁₂₄	PB_CLK cycle to cycle jitter		150	ps

Figure 48 shows the timing information for PowerPro when the device is configured as a power-up slave. In this timing diagram there is no power-up master on the processor (60x) bus.

Figure 48: Power-up Reset: PowerPro Configured as a Power-up Slave

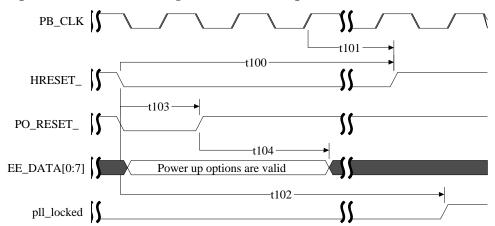
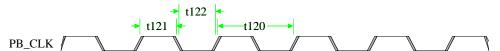



Figure 49 shows the clocking timing for the PB_CLK signal.

Figure 49: Clocking

C.3 Processor Bus Timing

The timing for the Processor (60x) bus has been separated into the following distinct categories:

- Parameter signals
- Control signals
- Arbitration signals

Table 129 shows the signals on the processor (60x) bus that give the parameters for the transaction on the bus.

Table 129: Processor (60x) Bus Timing - Parameter Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
PB_A	1.0	5.5	2.4	0.5	ns
PB_AP	1.0	4.9	2.9	0.5	ns
PB_TSIZ	1.0	NA	2.5	0.5	ns
PB_TT	1.0	NA	2.7	0.5	ns
PB_TBST_	1.0	NA	2.7	0.5	ns
PB_D	1.0	5.6	2.1	0.5	ns
PB_DP	1.0	5.8	2.8	0.5	ns

Table 130 shows the signals on the processor (60x) bus that control the truncation on the bus.

Table 130: Processor (60x) Bus Timing - Control Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
PB_TS	1.0	N/A	2.5	0.5	ns
PB_TA_	1.0	5.1	2.6	0.5	ns
PB_DVAL_	1.0	5.1	2.9	0.5	ns
PB_TEA_	1.0	5.0	2.6	0.5	ns
PB_AACK_	1.0	5.0	2.5	0.5	ns
PB_ARTRY_	1.0	6.1	2.8	0.5	ns

Table 131 shows the signals on the processor (60x) bus that controls the arbitration for the bus.

Table 131: Processor (60x) Bus Timing - Arbitration Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
PB_BR_	1.0	4.9	2.9	0.5	ns
PB_BG_	1.0	4.9	2.6	0.5	ns
PB_DBG_	1.0	5.0	2.6	0.5	ns

C.4 FLASH/ROM Timing

Table 132 shows the critical timing signals on the FLASH/ROM Interface.

Table 132: FLASH/ROM Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
EE_ CONTROL	1.0	5.0	2.3	0.5	ns
EE_CS	1.0	5.3	2.3	0.5	ns
EE_DATA	1.0	5.0	2.9	0.5	ns

C.5 SDRAM Timing

Table 133 shows the critical timing signals on the SDRAM Interface.

Table 133: SDRAM Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
SD_A	1.0	5.6	NA	0.5	ns
SD_BA	1.0	5.8	NA	0.5	ns
SD_ COMMAND	1.0	5.4	NA	0.5	ns
SD_CS	1.0	5.6	2.6	0.5	ns
SD_D	1.0	5.0	2.7	0.5	ns
SD_ECC	1.0	5.0	2.7	0.5	ns
SD_ SELECT	1.0	5.0	2.3	0.5	ns

C.6 Miscellaneous Timing Signals

Table 134 shows the critical timing for signals that are not part of a specific interface.

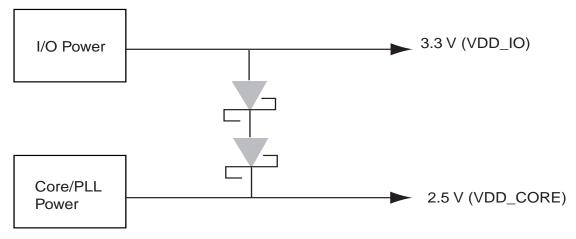
Table 134: Miscellaneous Timing Group

	Output Delay		Input Set-up Time	Input Hold Time	
Signal	Minimum	Maximum	Minimum	Maximum	Units
UART	1.0	4.0	3.3	0.5	ns
EXT_INT	1.0	5.6	2.9	0.5	ns
HRESET_	1.0	6.5	2.9	0.5	ns
I2Cx_SCLK	1.0	5.4	2.9	0.5	ns
I2Cx_SDA	1.0	5.7	3.6	0.5	ns

D. Hardware Implementation

This chapter discusses the following topics about the PowerPro Main Interface:

- "Power-up Sequencing" on page 331
- "Hardware Design for External PLL Decoupling" on page 332


D.1 Power-up Sequencing

IDT recommends the use of a bootstrap diode between the power rails. The bootstrap diodes that are used in the system must be configured so that a nominal Core Supply Voltage (VDD_CORE) is sourced from the I/O Supply Voltage (VDD_IO)) until the power supply is active. In Figure 50, two Schottky barrier diodes are connected in series. Each of the diodes has a forward voltage (V_F) of 0.6 V at high currents which provides a 1.2 V current drop. This drop maintains 2.1 V on the 2.5 V power line. Once the Core/PLL power supply stabilizes at 2.5 V, the bootstrap diode(s) are reverse biased with small leakage current.

The forward voltage must be effective at the current levels required by PowerPro (< 1 amp). Do not use diodes with only a nominal $V_{\rm F}$.

Figure 50: Bootstrap Diodes for Power-up Sequencing

D.2 Hardware Design for External PLL Decoupling

This section describes the recommended external decoupling for the Phase Locked Loop (PLL) used in PowerPro.

D.2.1 PLL Supply Environment

In order to provide the cleanest possible supply environment for the PowerPro PLL the supply voltages must be decoupled externally. Isolation must be provided between the external core supply voltage on the board and the supply voltage that goes to the PLL. The supplies can be decoupled in the following ways:

- A separate core voltage regulator can be used and a separate trace run-up to the PLL supply pins
- An isolation and decoupling network can be provided on the board to isolate and minimize noise on the core voltage supply plane before it gets to the PLL supply pins.

This application note focusses on the isolation and decoupling network for the PowerPro PLL.

D.2.1.1 PLL Isolation and Decoupling Network

For the best PLL jitter performance, IDT recommends the PLL be isolated and decoupled from the main core power plane using a surface mount RF inductor and low ESR tantalum surface mount capacitor network. The power supplies for the PLL on PowerPro should come from a single point on the board. The power trace should then be isolated from the main power plane using the network shown in Figure 51 on page 333.

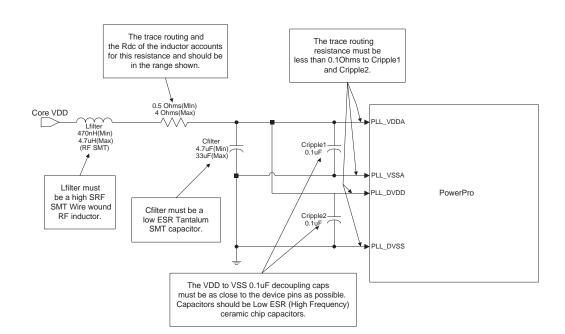


Figure 51: Requirements for PLL Isolation and Decoupling Network

The routing parasitic resistance of the trace route from any PLL supply pin to the decoupling capacitors in the isolation network must be less than 0.1 Ohms (see Figure 51). To minimize the transient IR drops across the leads from the isolation network and the PLL supply device pins, the trace routes must be kept short. The recommended layout is to have the cripple capacitors placed as close to the device pins as possible.

A possible placement for the cripple capacitors that keeps the capacitors close to PowerPro is on the backside of the board and underneath the device.

D.2.1.2 Specifications for the Supply Isolation and Decoupling Network

Table 135 and Table 136 list the specific requirements for the inductors and capacitors used in the supply isolation network.

Table 135: Capacitor Specifications

Capacitor	Value	Tolerance	Effective Series Inductance (ESL) (Max)	Effective Series Resistance (ESR) (Max)
CrippleX	0.1uF	20%	3nH	0.1
Cfilter	4.7uF	20%	3nH	1.1
Cfilter	33uF	20%	3nH	0.41

Table 136 lists the requirements for inductors in a supply isolation environment.

Table 136: Inductor Specifications

Inductor	Value	Tolerance	Self Resonant Frequency (SRF) (Min)	Rdc (Max)
Lfilter	470nH	10%	450Mhz	1.2
Lfilter	4.7uH	10%	90MHz	3.5

Table 135 and Table 136 show that there is a range of possible configurations that can be used for the isolation network. The range starts with 470nH and 4.7uF for Lfilter and Cfilter, and extends to 4.7uH and 33uF for Lfilter and Cfilter. Cripple1 and Cripple2 are required in all configurations (see Figure 51).

Figure 52 shows the results of simulations run on the network for inductors and capacitors at the extents of the range. A minimum trace or real resistance is required to dampen the LC network. The minimum damping resistance value is 0.50hms. In order to prevent IR drop from adversely affecting the PLL performance the trace and real damping resistance must be less than 4 0hms.

The following parameters were used to produce Figure 52:

- Vdb (out3 Lfilter = 4.7uH, Cfilter = 4.7uF
- Vdb (out4 Lfilter = 4.7uH, Cfilter = 33uF
- Vdb (out5 Lfilter = 470nH, Cfilter = 4.7uF
- Vdb (out6 Lfilter = 470nH, Cfilter = 33uF

Figure 52: Attenuation vs. Frequency

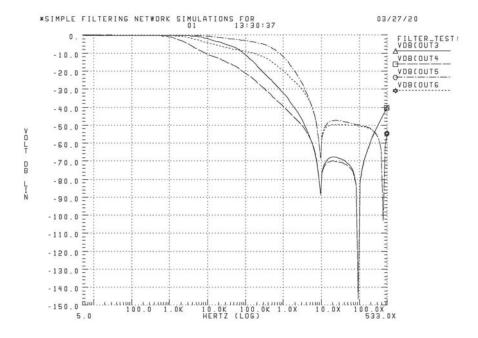


Figure 52 shows the isolation characteristics are dominated by the Lfilter value. The larger the Lfilter value, the lower the filter corner and the better the attenuation at frequencies above 1KHz. The first set spikes in the curves result from the ESL of the Cripple capacitor. The second set of spikes (90MHz for Lfilter = 4.7uH and 450MHz for Lfilter = 470nH) result from the SFR of the Lfilter inductor.

Filter Recommendation

When choosing the filter component values the noise level of the application must be understood. For applications that have noise issues, larger Lfilter and Cfilter values provide better isolation, up to the 70dB in the frequency range from 10MHz-to-200MHz range. In less noisy environments, the smaller Lfilter and Cfilter values provide about 50dB of attenuation over the 10MHz-to-400MHz range.

Glossary

Bank A bank is defined as a memory region defined with a base register and a bank size

register. A physical bank of memory is controlled by a single chip select. A DIMM

could be comprised of a single bank or dual banks.

Column A column refers to a portion of memory within an SDRAM device. An SDRAM

device can be thought of as a grid with rows and column. Once a row is activated, any column within that row can be accessed multiple times without reactivating the

row. Columns are activated with the SD_CAS_ signal.

Cycle The term cycle refers to a single data beat.

DIMM A DIMM is an acronym for Dual Inline Memory Module. A DIMM is a physical

card comprising multiple memory devices. The card can be populated on one or

both sides. A DIMM can be a single bank or a dual bank DIMM.

Leaf SDRAM use multiple banks within the device operating in an interleaved mode.

16-Mbit SDRAM devices contain two internal banks. An internal bank is referred

to as a leaf.

Logical memory banks This refers to the logical, or virtual, memory separations in the actual SDRAM

memory in the DIMM modules. Logical memory refers to an imaginary set of locations, or addresses, where data can be stored. It is imaginary in the sense that the memory area is not the same as the real physical memory composed of transistors. PowerPro supports four DIMMs of memory. A DIMM could be comprised of a single bank or dual banks. PowerPro supports either 4 logical banks of memory

for a single DIMM or 8 logical banks for a dual DIMM.

Master When discussing bus ownership, this manual uses the term master to indicate bus

owner

Page A page is a row of memory. Once a row is activated, any column within that row

can be accessed multiple times without having to reactivate the row. This is referred to "keeping the page open". While it depends on the SDRAM device configuration, PowerPro supports 2 Kbytes for 64-bit wide memory page size. When an SDRAM's physical configuration supports a larger page size, PowerPro breaks it up into a

smaller 2-Kbyte page size.

Physical memory banks This refers to the physical, or actual, SDRAM memory in the DIMM modules.

PowerPro supports four DIMMs of memory. A DIMM could be comprised of a single bank or dual banks. This means PowerPro supports one or two physical

banks of memory on each DIMM.

Processor (60x) bus Processor (60x) bus refers to the interface between PowerPro and the Processor, to

which PowerPro is connected. The processor bus is the 60x bus.

Reset When the term "reset" is used, it includes the signals that can reset PowerPro. The

signals are: HRESET_ and PORESET_.

Row A row is a portion of memory within the SDRAM device. An SDRAM device can

be thought of as a grid with rows and columns. Once a row is activated, any column within that row can be accessed multiple times without reactivating the row. Rows

are activated with the SD_RAS_ signal.

SDRAM SDRAM stands for Synchronous Dynamic Random Access memory. SDRAM is a

type of DRAM that can run at much higher clock than conventional memory. SDRAM synchronizes itself with the processor bus and is capable of running at

processor bus speed.

Slave The term slave indicates the address accessed by the bus master

Transaction A transaction is composed of one or more cycles.

Index	WAIT 247
mucx	WEOFF 248
	WEON 248
\mathbf{A}	WIDTH 249
Address Retry Window	EE_Bx_MASK Register
defined 36	M 245
Arbitration 49	Endian Conversion 52
Address 51	endian mapping 18
Bus Parking 52	Error Handling
Data Bus 51	Processor Bus Interface Errors 124
Data Bas 31	SDRAM Interface Errors 127
В	
Buffered DIMM	${f F}$
defined 76	FLASH/ROM Interface
defined 70	Address Mapping 60
C	Connecting FLASH/ROM to PowerPro 69
	Connection Summary 66
Configuration Master defined 143	Data Port 60
	Memory Addressing 60
Configuration Slave defined 143	Time-Multiplexed Signals 58
defined 145	Transactions 67
D	Frequency
	QCLK
DIMM	QUICC 162
defined 75	QUICC IDMA fast termination 162
document conventions 17	Functional Overview
E	FLASH/ROM Interface 33
	General Purpose I/O Port 33
EE_Bx_ADDR Register	I2C Interface 33
A 242	JTAG Interface 34
ENABLE 243	Processor Bus (PB) Interface 32
MUX 243	Registers 33
EE_Bx_CTRL Register	SDRAM Interface 32
ARE 249	UART Interface 34
BM 247	functional overview 23
CSON 248	
FWE 247	\mathbf{G}
FWT 249	General Purpose I/O Port
OEON 248	Reads 112
PORT 248	Register 111
RE 249	Writes 112
THRD 249	GPIO_ x Register
THWR 249	DATA 314

DIR 314	INT_VINC Register
ENABLE 313	PRI 287
MASK 313	VINC 287
GPT_CAPTURE Register	Interrupts
EE_AM 264, 273	Registers 136
PB_AM 264, 273	Software Debugging 139
SD_AM 263, 272	Sources 136
SEVT 263, 272	
GPT_COUNT Register	J
GPTC 262, 271	JTAG 34
GPT_Cx Register	JTAG Interface
CT 268, 277	Interface Description 158
GPT_INT Register	JTAG Signals 158
C_IEN 265, 274	TAP Controller 160
T_IEN 265, 274	THE COMMONE TOO
GPT_ISTATUS Register	M
C_STAT 266, 275	Mechanical and Ordering Information
T_STAT 266, 275	Ordering Information 321
GPT_Mx Register	Memory Signals
CM 269, 278	
GPT_Tx Register	EE_A 55, 166, 190
TT 267, 276	EE_AL 55, 167, 193
11 201, 210	EE_AL1_55, 167, 193
I	EE_AL2 56, 168, 193
I2C Interface	EE_CS_ 56, 168, 193
Bus Master Transactions 116	EE_OE_ 55, 167, 193
	EE_READY 56, 168, 193
I2C_SCL 116	EE_RNW 56, 168, 194
I2Cx_CSR Register	EE_SELECT 55, 167, 193
ACT 255	EE_WE_ 55, 167, 194
ADDR 255	GPIO 55, 56, 166, 167, 168, 191, 193, 194
CS 255	GPIO_ 56
DEV_CODE 255	INT 167, 192
ERR 255	SD_A 55, 166, 190
RW 255	SD_BA 55, 166, 190
INT_ENABLE Register	SD_CAS 166
IE 281, 282	SD_CS_ 166, 167, 191, 192
INT_GENERATE Register	SD_D 167
IGTYPE 283	SD_DQM 166, 192
INT_MSTATUS Register	SD_ECC_ 166, 192
MSTAT 280	SD_RAS 166
INT_POLARITY Register	SD_SELECT 55, 167, 193
IPOL 284	SD_WE 166
INT_SOFTSET Register	Miscellaneous Signals
SINT 291, 292	EE_A 57, 169, 195
INT_STATUS Register	EE_DATA 57, 169, 195
STAT 279	EXT_INT_ 169, 196
INT_TRIGGER Register	GPIO 57, 169, 170, 195, 196, 197
ITTYPE 285	I2C0_SCLK 170, 196
INT_VBADDR Register	I2C0_SDA 170, 196
VA 286	I2C1_SCLK 170, 196
INT_VECTOR Register	I2C1_SDA 170, 196
V 289	INT 57, 169, 170, 195, 196, 197

PLL_VDDA 170	PB_TEA_ 164
PLL_VSSA 171	PB TS 163
PWRUP 57, 169, 195	PB_TSIZ 163
UART0_RX 57, 169, 197	PB_TT 163
UART0_TX 57, 169, 197	PORESET_ 162
UART1_TX 169, 197	PB_AM_ADDR Register
VDDCORE 170	A 221
VDDIO 170	PB_AM_MASK Register
VSS 170	M 222
	PB_ARB_CTR Register
N	Mx_EN 214
Non-buffered DIMMs	PB_ARB_CTRL Register
defined 76	BM_PARK 215
	Mx_PRI 214
0	PARK 215
ordering information 321	PB_ERR_ADDR Register
	A 220, 223
P	PB_ERR_ATTR Register
PB Interface	DPAR 217
Address Phase 37	ECC_UC 217
Address retry window 36	ES 218
Arbitration 49	MES 217
Data Phase 41	REG 217
Endian Conversion 52	SIZ_ERR 218
Termination 46	TT_ERR 218
window of opportunity 36	PB_GEN_CTRL Register
PB Interface Support	AP_EN 210
MPC8260 (PowerQUICC II) 35	ARTRY_EN 209
PowerPC 603e/740/750 35	DP_EN 210
PowerPC 7400 35	ECC_TEST 209
PB Signals	PARITY 210
EE_A 164, 187, 188, 189	PLL_EN 209
EE_A_ 164, 165, 185, 186, 187	TEA_EN 209
GPIO 163, 164, 184, 187, 188, 189	PB_REG_ADDR Register
GPIO_ 164, 165, 185, 186, 187	BA 208
HRESET_162	Pin Information
INT_ 165, 187	324 PBGA Pin to Package Ball Cross-reference
PB_A 163	173
PB_AACK_ 163	PowerPro Features 24
PB_AP 163, 184	FLASH/ROM Interface 25
PB_ARTRY_ 163	Integrated Peripherals 25
PB_BG 113	Operating Environment 26
PB_BG_ 113, 163, 165, 184, 186	Packaging 26
PB_BR_ 163, 164, 184, 185	Processor Interface 24
PB_CLK 162	Registers 26
PB_D 164	SDRAM Interface 25
PB_DBG_ 164, 165, 187, 188	PowerSpan 23
PB_DP 164, 187, 188, 189	R
PB_DVAL_ 164	
PB_INT_ 164	Registers
PB_TA_ 164	Register Access 199
PB_TBST_ 163	Register Descriptions 201

Register Reset 201	JT_TDO 158, 171
related documentation 21	JT_TMS 158, 171
Reset, Clock and Power-up	JT_TRST_ 159, 172
Clocks 151	TEST_ON 159
Configuration Master and Slave Devices 143	Timing 323
Power-up 151	č
Reset 141	\mathbf{U}
Resets	UART
pins 142	Clocking 110
1	Interrupt Enable Register 109
S	Interrupt Status and FIFO Control Register 109
SD_Bx_ADDR Register	Line Control Register 109
A 233	Line Status Register 109
ENABLE 233	Modem Control Register 109
SD_Bx_CTRL Register	Modem Status Register 109
A_MODE 238	Receive/Transmit Data Register 108
BMGT 238	UARTx_IER Register
BUF 237	ELSI 296
ECC_CE 237	ERBFI 296
ECC_CO 239	ETBEI 296
ECC_EN 226, 237	UARTx_ISTAT_FIFO Register
ECC_UC 239	B0 299, 302
NBANK 237	B1 299, 302
T_RAS 238	B2 299, 302
T_RCD 238	B3 299, 302
T_RP 238	B6 299, 302
SD_Bx_MASK Register	B7 299, 302
M 235	UARTx_LCR Register
SD_REFRESH Register	DLAB 304
T 224, 232	EPS 304
SD_TIMING Register	PEN 304
CL 226	SB 304
DQM_EN 226	SP 304
ENABLE 225	STB 304
EX_DP 226	WLEN 304
T_RC 227	UARTx_LSR Register
TUNE 227	BI 308
SDRAM Interface 75	DR 308
Address Mapping 61, 97	ERF 308
Commands 87	FE 308
ECC Protection 97	OE 308
Initialization 79	TEMT 308
SDRAM Configurations 76	THRE 308
Signal Description 161	UARTx_RX_TX Register
Snooping	D 293
defined 76	UARTx_SCR Register
	SR 312
T	
Test Signals	\mathbf{W}
BIDIR_CTRL 159, 172	WD_COUNT Register
JT_TCK 158, 171	WDC 260, 261
JT_TDI 158, 171	WD_CTRL Register

ENABLE 257 WD_RST 257 WD_TIMEOUT Register WDT 258 Window of Opportunity defined 36

PowerPro User Manual 80A5000_MA001_10

344

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775

www.idt.com

for Tech Support: email: EHBhelp@idt.com phone: 408-360-1538

Document: 80A5000_MA001_10

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2009. All rights reserved.

November 2009