# **Low Voltage Comparators**

The NCS2200 Series is an industry first sub-one volt, low power comparator family. These devices consume only 10  $\mu$ A of supply current. They are guaranteed to operate at a low voltage of 0.85 V which allows them to be used in systems that require less than 1.0 V and are fully operational up to 6.0 V which makes them convenient for use in both 3.0 V and 5.0 V systems. Additional features include no output phase inversion with overdriven inputs, internal hysteresis, which allows for clean output switching, and rail-to-rail input and output performance. The NCS2200 Series is available in the tiny SOT-23-5 package. There are four options featuring two industry standard pinouts. Additionally, the NCS2200 and NCS2202 are available in the SC70-5 package. The NCS2200A is available in UDFN 1.2x1.0 package. (Table 1)

#### Features

- Operating Voltage of 0.85 V to 6.0 V
- Rail-to-Rail Input/Output Performance
- Low Supply Current of 10 μA
- No Phase Inversion with Overdriven Input Signals
- Glitchless Transitioning in or out of Tri-State Mode
- Complementary or Open Drain Output Configuration
- Internal Hysteresis
- Propagation Delay of 1.1 µs
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

#### **Typical Applications**

- Single Cell NiCd/NiMH Battery Powered Applications
- Cellular Telephones
- Alarm and Security Systems
- Personal Digital Assistants







**CASE 483** 



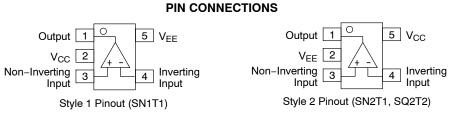
SC70-5 SQ SUFFIX CASE 419A

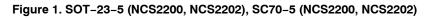


UDFN 1.2x1.0 MU SUFFIX CASE 517AA

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.


#### **DEVICE MARKING INFORMATION**


See general marking information in the device marking section on page 13 of this data sheet.

#### Table 1. Comparator Selector Guide

| Output Type   | Device         | Package       | Pinout Style |
|---------------|----------------|---------------|--------------|
| Complementary | NCS2200AMUT1G  | UDFN, 1.2x1.0 | N/A          |
| Complementary | NCS2200SN1T1G  | SOT-23-5      | 1            |
| Complementary | NCV2200SN1T1G* | SOT-23-5      | 1            |
| Complementary | NCS2200SN2T1G  | SOT-23-5      | 2            |
| Complementary | NCV2200SN2T1G* | SOT-23-5      | 2            |
| Complementary | NCS2200SQ2T2G  | SC70-5        | 2            |
| Complementary | NCV2200SQ2T2G* | SC70-5        | 2            |
| Complementary | NCS2200SQLT1G  | DFN, 2x2.2    | N/A          |
| Open Drain    | NCS2202SN1T1G  | SOT-23-5      | 1            |
| Open Drain    | NCS2202SN2T1G  | SOT-23-5      | 2            |
| Open Drain    | NCV2202SN2T1G* | SOT-23-5      | 2            |
| Open Drain    | NCS2202SQ1T2G  | SC70-5        | 1            |
| Open Drain    | NCS2202SQ2T2G  | SC70-5        | 2            |

\*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.





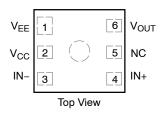



Figure 2. DFN 2x2.2 (NCS2200)

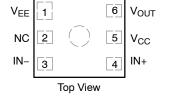



Figure 3. UDFN 1.2x1.0 (NCS2200A)

### **MAXIMUM RATINGS**

| Rating                                                                                                                                                                  | Symbol           | Value                                     | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|------|
| Supply Voltage Range (V <sub>CC</sub> to V <sub>EE</sub> )                                                                                                              | VS               | 6.0                                       | V    |
| Non-inverting/Inverting Input to V <sub>EE</sub>                                                                                                                        | -                | –0.2 to (V <sub>CC</sub> + 0.2)           | V    |
| Operating Junction Temperature                                                                                                                                          | TJ               | 150                                       | °C   |
| Operating Ambient Temperature Range NCS2200, NCS2202, NCS2200A<br>NCV2200, NCV2202                                                                                      | T <sub>A</sub>   | -40 to +105<br>-40 to +125                | °C   |
| Storage Temperature Range                                                                                                                                               | T <sub>stg</sub> | −65 to +150                               | °C   |
| Output Short Circuit Duration Time (Note 1)                                                                                                                             | t <sub>S</sub>   | Indefinite                                | s    |
| ESD Tolerance (Note 2)<br>NCS2200<br>Human Body Model<br>Machine Model<br>NCS2202<br>Human Body Model<br>Machine Model<br>NCS2200A<br>Human Body Model<br>Machine Model | _                | 2000<br>200<br>1000<br>200<br>1900<br>200 | V    |
| Thermal Resistance, Junction-to-Ambient<br>TSOP-5<br>DFN (Note 3)<br>SC70-5<br>UDFN                                                                                     | $R_{	heta JA}$   | 238<br>215<br>283<br>350                  | °C/W |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

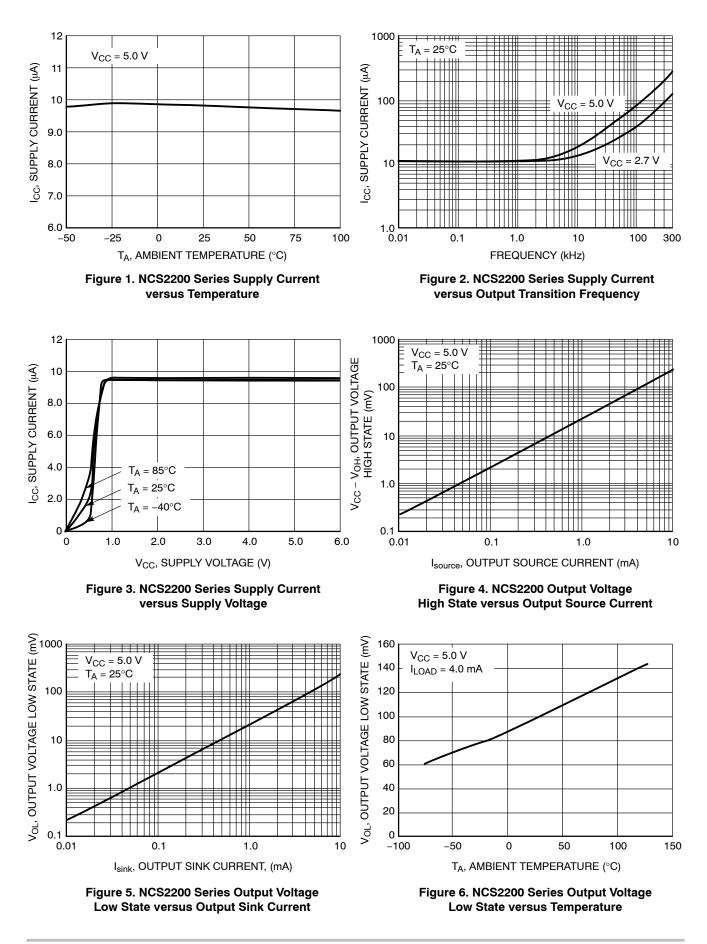
1. The maximum package power dissipation limit must not be exceeded.

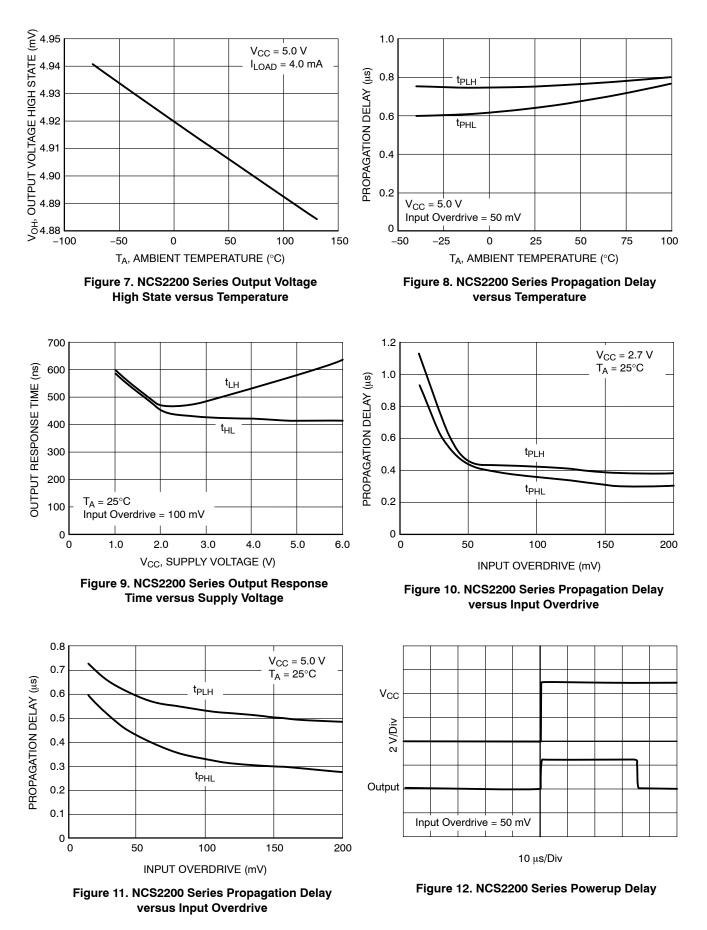
$$P_{D} = \frac{T_{J(max)} - T_{A}}{T_{J(max)} - T_{A}}$$

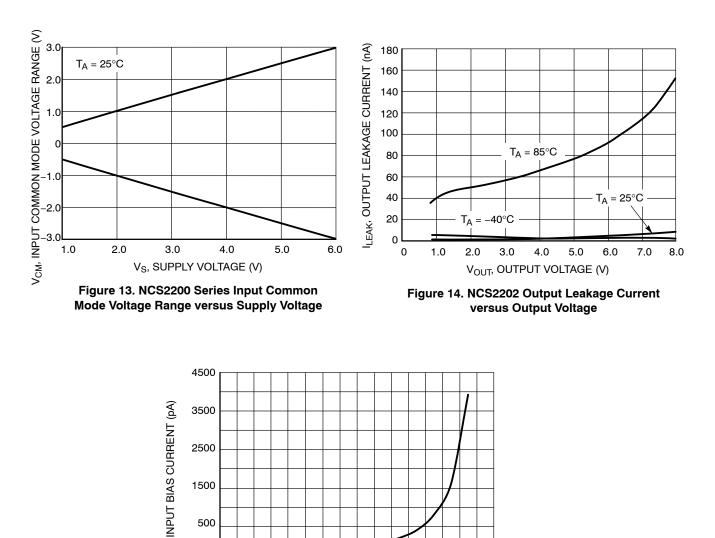
'D

 $PD = \frac{R_{\theta JA}}{R_{\theta JA}}$ 2. ESD data available upon request. 3. For more information, refer to application note, AND8080/D.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | NCS2200 Series                                   |                             |                                                  |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|------|
| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Symbol                               | Min                                              | Тур                         | Max                                              | Unit |
| Input Hysteresis $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>HYS</sub>                     | 2.0                                              | 8.0                         | 20                                               | mV   |
| Input Offset Voltage<br>V <sub>CC</sub> = 0.85 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>IO</sub>                      |                                                  |                             |                                                  | mV   |
| $T_A = 25^{\circ}C$<br>$T_A = T_{Low}$ to $T_{High}$ (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | -10<br>-12                                       | 0.5<br>_                    | +10<br>+12                                       |      |
| $V_{CC} = 3.0 V$<br>$T_A = 25^{\circ}C$<br>$T_A = T_{Low}$ to $T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | -6.0<br>-8.0                                     | 0.5<br>_                    | +6.0<br>+8.0                                     |      |
| $V_{CC} = 6.0 V$<br>$T_A = 25^{\circ}C$<br>$T_A = T_{Low}$ to $T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | -5.0<br>-7.0                                     | 0.5                         | +5.0<br>+7.0                                     |      |
| Common Mode Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CM</sub>                      | _                                                | $V_{EE}$ to $V_{CC}$        | _                                                | V    |
| Output Leakage Current (NCS2202) $V_{CC} = 6.0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILEAK                                | _                                                | 3.3                         | _                                                | nA   |
| Output Short-Circuit Sourcing or Sinking (V <sub>out</sub> = GND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | _                                                | 70                          | _                                                | mA   |
| Common Mode Rejection Ratio $V_{CM} = V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CMRR                                 | 53                                               | 65                          | _                                                | dB   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>IB</sub>                      | -                                                | 1.0                         | _                                                | pA   |
| Power Supply Rejection Ratio $\Delta V_{S} = 2.575 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSRR                                 | 45                                               | 55                          | _                                                | dB   |
| Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 45                                               |                             | _                                                |      |
| $V_{CC} = 0.85 V$<br>$T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICC                                  | -                                                | 10                          | 15                                               | μΑ   |
| $T_{A} = T_{Low} \text{ to } T_{High} \text{ (Note 5)}$ $V_{CC} = 3.0 \text{ V}$ $T_{A} = 25^{\circ}\text{C}$ $T_{VC} = T_{VC} \text{ to } T_{VC}  $ |                                      | -                                                | 10                          | 17<br>15<br>17                                   |      |
| $T_{A} = T_{Low} \text{ to } T_{High}$ $V_{CC} = 6.0 \text{ V}$ $T_{A} = 25^{\circ}\text{C}$ $T_{A} = T_{Low} \text{ to } T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | _                                                | 10                          | 15<br>17                                         |      |
| Output Voltage High (NCS2200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>OH</sub>                      |                                                  |                             |                                                  | V    |
| $V_{CC} = 0.85 \text{ V}, I_{source} = 0.5 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$<br>$T_A = T_{Low} \text{ to } T_{High} \text{ (Note 5)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 01                                 | V <sub>CC</sub> – 0.2<br>V <sub>CC</sub> – 0.225 | V <sub>CC</sub> – 0.10<br>– | -                                                |      |
| $V_{CC} = 3.0 \text{ V}, \text{ I}_{source} = 3.0 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$<br>$T_A = T_{Low} \text{ to } T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | V <sub>CC</sub> - 0.2<br>V <sub>CC</sub> - 0.25  | V <sub>CC</sub> – 0.12<br>– | -                                                |      |
| $V_{CC} = 6.0 \text{ V}, \text{ I}_{source} = 5.0 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$<br>$T_A = T_{Low} \text{ to } T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | V <sub>CC</sub> - 0.2<br>V <sub>CC</sub> - 0.25  | V <sub>CC</sub> – 0.12<br>– | -                                                |      |
| Output Voltage Low<br>$V_{CC} = 0.85 \text{ V}, I_{sink} = 0.5 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$<br>$T_A = T_{Low} \text{ to } T_{High} \text{ (Note 5)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>OL</sub>                      | -                                                | V <sub>EE</sub> + 0.10      | V <sub>EE</sub> + 0.2<br>V <sub>EE</sub> + 0.225 | V    |
| $V_{CC} = 3.0 \text{ V}, I_{sink} = 3.0 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$<br>$T_A = T_{Low} \text{ to } T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | -                                                | V <sub>EE</sub> + 0.12<br>- | V <sub>EE</sub> + 0.2<br>V <sub>EE</sub> + 0.25  |      |
| $V_{CC} = 6.0$ V, $I_{sink} = 5.0$ mA<br>$T_A = 25^{\circ}C$<br>$T_A = T_{Low}$ to $T_{High}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | -                                                | V <sub>EE</sub> + 0.12<br>- | V <sub>EE</sub> + 0.2<br>V <sub>EE</sub> + 0.25  |      |
| Propagation Delay 20 mV Overdrive, $C_L = 15 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>PHL</sub><br>t <sub>PLH</sub> |                                                  | 700<br>1100                 |                                                  | ns   |
| Output Fall Time $V_{CC}$ = 6.0 V, C <sub>L</sub> = 50 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>FALL</sub>                    | -                                                | 20                          | -                                                | ns   |
| Output Rise Time $V_{CC}$ = 6.0 V, $C_L$ = 50 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>RISE</sub>                    | -                                                | 16                          | _                                                | ns   |
| Powerup Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t <sub>PU</sub>                      | _                                                | 35                          | _                                                | μs   |


**ELECTRICAL CHARACTERISTICS** (For all values  $V_{CC} = 0.85$  V to 6.0 V,  $V_{EE} = 0$  V,  $T_A = 25^{\circ}C$ , unless otherwise noted.) (Note 4)


The limits over the extended temperature range are guaranteed by design only.
 NCS2200, NCS2202: T<sub>Low</sub> = -40°C, T<sub>High</sub> = +105°C; NCV2200, NCV2202: T<sub>Low</sub> = -40°C, T<sub>High</sub> = +125°C

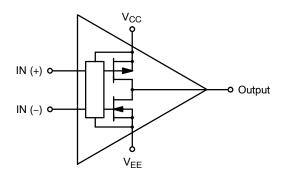

| ELECTRICAL CHARACTERISTICS | (For all values $V_{CC}$ = 0.85 V to 6.0 V, $V_{EE}$ = 0 V, T | $T_A = 25^{\circ}C$ , unless otherwise noted.) (Note 6) |
|----------------------------|---------------------------------------------------------------|---------------------------------------------------------|
|----------------------------|---------------------------------------------------------------|---------------------------------------------------------|

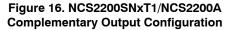
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                         | NCS2200A                           |                         |      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|------------------------------------|-------------------------|------|--|
| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Symbol                               | Min                     | Тур                                | Max                     | Unit |  |
| Input Hysteresis T <sub>A</sub> = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>HYS</sub>                     | 2.0                     | 4.5                                | 20                      | mV   |  |
| Input Offset Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>IO</sub>                      |                         |                                    |                         | mV   |  |
| $V_{\rm CC} = 0.85  \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                         |                                    |                         |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -10                     | 0.5                                | +10                     |      |  |
| $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$<br>$V_{CC} = 3.0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | -12                     | _                                  | +12                     |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -6.0                    | 0.5                                | +6.0                    |      |  |
| $T_A = -40^{\circ}C$ to $105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | -8.0                    | -                                  | +8.0                    |      |  |
| $V_{CC} = 6.0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                         |                                    |                         |      |  |
| $T_{A} = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -5.0                    | 0.5                                | +5.0                    |      |  |
| $T_A = -40^\circ C$ to $105^\circ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | -7.0                    | -                                  | +7.0                    |      |  |
| Common Mode Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>CM</sub>                      | -                       | V <sub>EE</sub> to V <sub>CC</sub> | -                       | V    |  |
| Output Short–Circuit Sourcing or Sinking (V <sub>out</sub> = GND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>SC</sub>                      | -                       | 60                                 | -                       | mA   |  |
| Common Mode Rejection Ratio V <sub>CM</sub> = V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CMRR                                 | 53                      | 70                                 | -                       | dB   |  |
| Input Bias Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I <sub>IB</sub>                      | -                       | 1.0                                | -                       | pА   |  |
| Power Supply Rejection Ratio $\Delta V_S = 2.575 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSRR                                 | 45                      | 80                                 | -                       | dB   |  |
| Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Icc                                  |                         |                                    |                         | μA   |  |
| $V_{CC} = 0.85 V$ $T_{A} = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                         | 7.5                                | 15                      |      |  |
| $T_A = -40^{\circ}$ C to 105°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                         | -                                  | 17                      |      |  |
| $V_{CC} = 3.0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                         |                                    |                         |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -                       | 8.0                                | 15                      |      |  |
| $T_A = -40^{\circ}C$ to $105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                         | -                                  | 17                      |      |  |
| $V_{\rm CC} = 6.0  \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                         | 0.0                                | 15                      |      |  |
| $T_A = 25^{\circ}C$<br>$T_A = -40^{\circ}C$ to 105°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | -                       | 9.0                                | 15<br>17                |      |  |
| Output Voltage High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>OH</sub>                      |                         |                                    |                         | V    |  |
| $V_{CC} = 0.85 \text{ V}, \text{ I}_{\text{source}} = 0.5 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VОН                                  |                         |                                    |                         | v    |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | V <sub>CC</sub> – 0.25  | V <sub>CC</sub> – 0.10             | -                       |      |  |
| $T_A = -40^{\circ}C$ to $105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | V <sub>CC</sub> – 0.275 | -                                  |                         |      |  |
| $V_{CC} = 3.0 \text{ V}, \text{ I}_{\text{source}} = 3.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                         |                                    |                         |      |  |
| $T_A = 25^{\circ}C$<br>$T_A = -40^{\circ}C$ to $105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | V <sub>CC</sub> – 0.3   | V <sub>CC</sub> – 0.12             | -                       |      |  |
| $V_{CC} = 6.0 \text{ V}, I_{source} = 5.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | V <sub>CC</sub> – 0.35  | _                                  |                         |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | V <sub>CC</sub> – 0.3   | V <sub>CC</sub> – 0.12             | -                       |      |  |
| $T_A = -40^{\circ}C$ to $105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | V <sub>CC</sub> – 0.35  | -                                  |                         |      |  |
| Output Voltage Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>OL</sub>                      |                         |                                    |                         | V    |  |
| $V_{CC} = 0.85 \text{ V}, \text{ I}_{sink} = 0.5 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                         |                                    |                         |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -                       | V <sub>EE</sub> + 0.10             | V <sub>EE</sub> + 0.25  |      |  |
| $T_A = -40^{\circ}C$ to 105°C<br>V <sub>CC</sub> = 3.0 V, I <sub>sink</sub> = 3.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                         | _                                  | V <sub>EE</sub> + 0.275 |      |  |
| $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -                       | V <sub>EE</sub> + 0.12             | V <sub>EE</sub> + 0.3   |      |  |
| $T_{A} = -40^{\circ}C$ to 105°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                         |                                    | V <sub>EE</sub> + 0.35  |      |  |
| $V_{\rm CC} = 6.0 \text{ V}, \text{ I}_{\rm sink} = 5.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                         |                                    |                         |      |  |
| $T_{A} = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -                       | V <sub>EE</sub> + 0.12             | V <sub>EE</sub> + 0.3   |      |  |
| $T_{A} = -40^{\circ}C \text{ to } 105^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                         | -                                  | V <sub>EE</sub> + 0.35  |      |  |
| Propagation Delay 20 mV Overdrive, $C_L = 15 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>PHL</sub><br>t <sub>PLH</sub> | -                       | 460<br>500                         | -                       | ns   |  |
| Propagation Delay 20 mV Overdrive, C <sub>L</sub> = 15 pF, 2.85 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                         |                                    |                         |      |  |
| Fropagation Delay 20 mv Overanve, OL = 15 pF, 2.85 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <sub>PHL</sub><br>t <sub>PLH</sub> | -                       | 410<br>500                         | -                       | ns   |  |
| Propagation Delay 50 mV Overdrive, $C_L = 15 \text{ pF}$ , 2.85 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t <sub>PHL</sub>                     | _                       | 280                                | _                       | ns   |  |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | t <sub>PLH</sub>                     | -                       | 350                                | -                       | 113  |  |
| Propagation Delay 100 mV Overdrive, C <sub>L</sub> = 15 pF, 2.85 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t <sub>PHL</sub>                     | -                       | 230                                | -                       | ns   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>PLH</sub>                     | -                       | 300                                | -                       |      |  |
| Output Fall Time $V_{CC}$ = 6.0 V, $C_L$ = 50 pF (Note 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>FALL</sub>                    | -                       | 20                                 | -                       | ns   |  |
| Output Rise Time $V_{CC}$ = 6.0 V, $C_L$ = 50 pF (Note 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>RISE</sub>                    | -                       | 16                                 | -                       | ns   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                         |                                    |                         |      |  |

6. The limits over the extended temperature range are guaranteed by design only.7. Input signal: 1 kHz, squarewave signal with 10 ns edge rate.









-20

TEMPERATURE (°C) Figure 15.

#### **OPERATING DESCRIPTION**

The NCS2200 Series is an industry first sub-one volt, low power comparator family. This series is designed for rail-to-rail input and output performance. These devices consume only 10  $\mu$ A of supply current while achieving a typical propagation delay of 1.1  $\mu$ s at a 20 mV input overdrive. Figures 10 and 11 show propagation delay with various input overdrives. This comparator family is guaranteed to operate at a low voltage of 0.85 V up to 6.0 V. This is accomplished by the use of a modified analog CMOS process that implements depletion MOSFET devices. The common-mode input voltage range extends 0.1 V beyond the upper and lower rail without phase inversion or other adverse effects. This series is available in the SOT-23-5





package. Additionally, the NCS2200 device is available in the tiny DFN 2x2.2 package and the SC70–5 package. NCS2200A is available in UDFN package.

#### **Output Stage**

The NCS2200 has a complementary P and N Channel output stage that has capability of driving a rail-to-rail output swing with a load ranging up to 5.0 mA. It is designed such that shoot-through current is minimized while switching. This feature eliminates the need for bypass capacitors under most circumstances.

The NCS2202 has an open drain N-channel output stage that can be pulled up to 6.0 V (max) with an external resistor. This facilitates mixed voltage system applications.

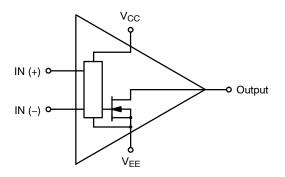
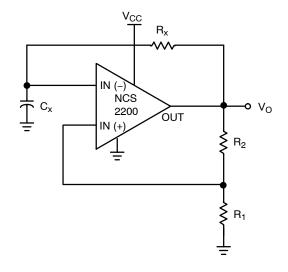





Figure 17. NCS2202SNxT1 Open Drain Output Configuration



The oscillation frequency can be programmed as follows:

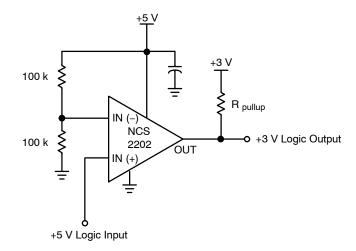

$$f=\frac{1}{T}=\frac{1}{2.2\ R_X C_X}$$

Figure 18. Schmitt Trigger Oscillator



The resistor divider  $R_1$  and  $R_2$  can be used to set the magnitude of the input pulse. The pulse width is set by adjusting  $C_1$  and  $R_3$ .

Figure 19. One-Shot Multivibrator



This circuit converts 5 V logic to 3 V logic. Using the NCS2202/3 allows for full 5 V logic swing without creating overvoltage on the 3 V logic input.



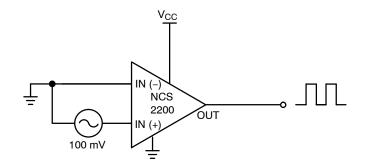



Figure 21. Zero-Crossing Detector

#### **ORDERING INFORMATION**

| Device         | Pinout Style | Output Type   | Package                        | Shipping <sup>†</sup> |
|----------------|--------------|---------------|--------------------------------|-----------------------|
| NCS2200AMUT1G  | N/A          | Complementary | UDFN<br>(Pb-Free)              | 3000 / Tape & Reel    |
| NCS2200SN1T1G  | 1            | Complementary | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCV2200SN1T1G* | 1            | Complementary | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCS2200SN2T1G  | 2            | Complementary | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCV2200SN2T1G* | 2            | Complementary | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCS2200SQ2T2G  | 2            | Complementary | SC70-5<br>(Pb-Free)            | 3000 / Tape & Reel    |
| NCV2200SQ2T2G* | 2            | Complementary | SC70–5<br>(Pb–Free)            | 3000 / Tape & Reel    |
| NCS2200SQLT1G  | N/A          | Complementary | DFN, 2x2.2<br>(Pb-Free)        | 3000 / Tape & Reel    |
| NCS2202SN1T1G  | 1            | Open Drain    | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCS2202SN2T1G  | 2            | Open Drain    | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCV2202SN2T1G* | 2            | Open Drain    | SOT-23-5 (TSOP-5)<br>(Pb-Free) | 3000 / Tape & Reel    |
| NCS2202SQ1T2G  | 1            | Open Drain    | SC70–5<br>(Pb–Free)            | 3000 / Tape & Reel    |
| NCS2202SQ2T2G  | 2            | Open Drain    | SC70–5<br>(Pb–Free)            | 3000 / Tape & Reel    |

This device contains 93 active transistors.

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. \*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and

PPAP Capable.

#### MARKING DIAGRAMS



| 5 |   |    |     |   |   | L |
|---|---|----|-----|---|---|---|
|   | С | A۷ | ( A | Y | W | • |
|   | • |    | •   |   |   |   |
| 1 |   |    |     |   |   |   |

- x = I for NCS2200SN1T1 J for NCS2200SN2T1 M for NCS2202SN1T1 N for NCS2202SN2T1
- A = Assembly Location

Y = Year

- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)





CB = Specific Device Code

N

= Pb–Free Package

(Note: Microdot may be in either location)

\*Date Code overbar and underbar may vary depending upon manufacturing location.





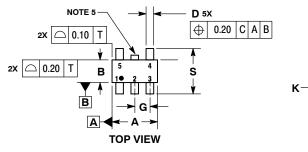
| CBx | = | Specific Device Code |
|-----|---|----------------------|
| х   | = | A for NCS2200SQ2T2   |
|     |   | D for NCS2202SQ1T2G  |
|     |   | E for NCS2202SQ2T2G  |
| М   | = | Date Code*           |

Pb-Free Package

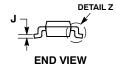
(Note: Microdot may be in either location) \*Date Code orientation, position, and underbar may vary depending upon manufacturing location.





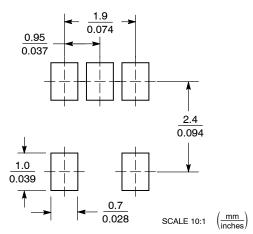

(Top View)

- S = Specific Device Code
- M = Date Code
- = Pb–Free Package


#### SOT-23-5 / TSOP-5 / SC59-5 **SN SUFFIX** CASE 483-02 **ISSUE K**

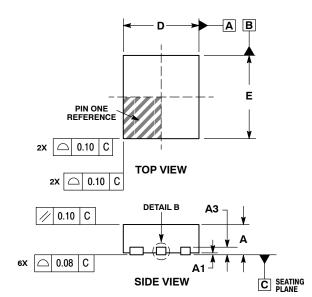
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME
- 2 3.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS. SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. 4.
- 5.

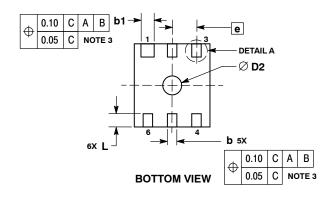
| FROM BODY. |           |        |  |  |
|------------|-----------|--------|--|--|
|            | MILLIN    | IETERS |  |  |
| DIM        | MIN       | MAX    |  |  |
| Α          | 3.00      | BSC    |  |  |
| В          | 1.50      | BSC    |  |  |
| С          | 0.90      | 1.10   |  |  |
| D          | 0.25      | 0.50   |  |  |
| G          | 0.95      | BSC    |  |  |
| Н          | 0.01      | 0.10   |  |  |
| J          | 0.10      | 0.26   |  |  |
| к          | 0.20 0.60 |        |  |  |
| м          | 0° 10°    |        |  |  |
| S          | 2.50      | 3.00   |  |  |

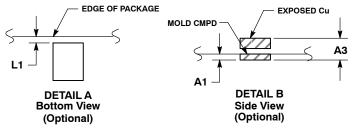








DETAIL Z

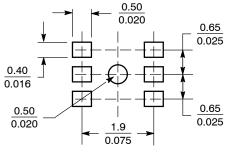

#### **SOLDERING FOOTPRINT\***




\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DFN6, 2x2.2 SQL SUFFIX CASE 488-03 ISSUE G

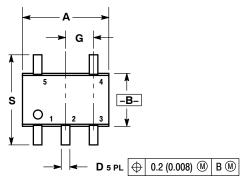


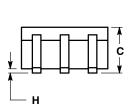


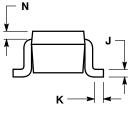



- NOTES:
   DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
   CONTROLLING DIMENSION: MILLIMETERS.
   DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30mm FROM TERMINAL
   COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
   TERMINAL & MAY HAVE MOLD COMPOUND MATERIAL ALONG SIDE EDGE.
   DETAILS A AND B SHOW OPTIONAL VIEWS
- 6. DETAILS A AND B SHOW OPTIONAL VIEWS FOR END OF TERMINAL LEAD AT EDGE OF PACKAGE AND SIDE EDGE OF PACKAGE.

|     | MILLIMETERS |          |      |  |  |  |
|-----|-------------|----------|------|--|--|--|
| DIM | MIN NOM MAX |          |      |  |  |  |
| Α   | 0.80        | 0.90     | 1.00 |  |  |  |
| A1  | 0.00        | 0.03     | 0.05 |  |  |  |
| A3  | 0.20 REF    |          |      |  |  |  |
| q   | 0.20        | 0.25     | 0.30 |  |  |  |
| b1  | 0.30        | 0.35     | 0.40 |  |  |  |
| D   |             | 2.00 BSC |      |  |  |  |
| D2  | 0.40        | 0.50     | 0.60 |  |  |  |
| Е   |             | 2.20 BSC |      |  |  |  |
| e   | 0.65 BSC    |          |      |  |  |  |
| L   | 0.30        | 0.35     | 0.40 |  |  |  |
| L1  | 0.00        | 0.05     | 0.10 |  |  |  |


**SOLDERING FOOTPRINT\*** 



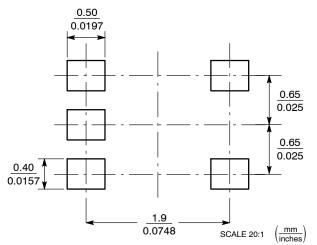


SCALE 10:1

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

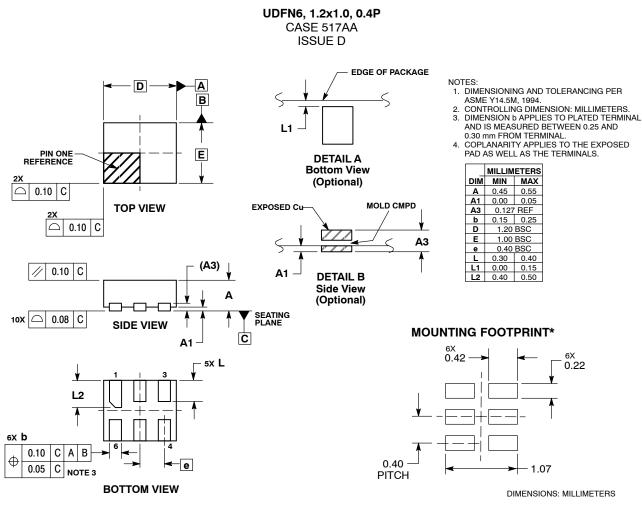
SC-88A (SC-70-5/SOT-353) SQ SUFFIX CASE 419A-02 **ISSUE L** 








- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. CDMENSIONS & AND B DO NOT INCLUD 4.


DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | INCHES |       | MILLIM   | IETERS |
|-----|--------|-------|----------|--------|
| DIM | MIN    | MAX   | MIN      | MAX    |
| Α   | 0.071  | 0.087 | 1.80     | 2.20   |
| В   | 0.045  | 0.053 | 1.15     | 1.35   |
| С   | 0.031  | 0.043 | 0.80     | 1.10   |
| D   | 0.004  | 0.012 | 0.10     | 0.30   |
| G   | 0.026  | BSC   | 0.65 BSC |        |
| Н   |        | 0.004 |          | 0.10   |
| J   | 0.004  | 0.010 | 0.10     | 0.25   |
| Κ   | 0.004  | 0.012 | 0.10     | 0.30   |
| Ν   | 0.008  | B REF | 0.20     | REF    |
| S   | 0.079  | 0.087 | 2.00     | 2.20   |





\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative