
Motor Control Platform Software Guide

Document Number: X7328A

Publication Date: 2012/1/13

XMOS © 2012, All Rights Reserved.

Motor Control Platform Software Guide 2/48

SYNOPSIS

The XMOS motor control development platform is provided with a software framework and example
control loop. This document provides information relating to the structure, implementation and
use of the software modules that are specific to the motor control development platform, and
interfacing to associated peripheral modules such as the CAN component.

CONTENTS

· Motor Control Platform Example Applications

· Processing Blocks

· Display and Shared IO Interface

· Pulse Width Modulation

· Analogue to Digital Converter (ADC) Interface

· Application Level Communications Interfaces

· Hall Sensor Interface

· Quadrature Encoder Input

· API

· Resource usage

X7328A

1 Motor Control Platform Example Applications

IN THIS CHAPTER

· Basic BLDC Speed Control Application app_basic_bldc

· FOC Application app_dsc_demo

The current release package ships with two example applications.

· An application showing an example Field Oriented Control (FOC) control loop
for two motors

· An application showing speed control of two motors using simple sector based
commutation

Each application is capable of spinning two motors at speeds between 500 and
3800 RPM. The A and B buttons on the control board increase and decrease the
speed. The display shows the demand speed, and the current speed of each of the
two motors.

If an over-current state is detected by the system, or if the motor spins in an
unexpected direction, or stalls, then the motor will be shut down, and FAULT will
appear by the motor in the display.

1.1 Basic BLDC Speed Control Application app_basic_bldc

This application makes use of the following functionality.

· PWM

· Hall Input

· Display

· Ethernet & Communications

· Processing Blocks

X7328A

Motor Control Platform Software Guide 4/48

1.1.1 Motor Control Loop

The main motor control code for this application can be found in the file
src/motor/run_motor.xc. The motor control thread is launched using the
following function.

void run_motor (chanend c_wd ,
chanend c_pwm ,
chanend c_control ,
port in p_hall ,
port out p_pwm_lo[],
chanend? c_wd);

The core of this function is a continuous loop that receives the position of the rotor
as measured by the hall sensor, and selects which coil to energise based on that
position.

After initially pausing and starting the watchdog the main loop is entered. The
main loop responds to two events. The first event is a change in hall sensor state.
This will trigger an update to the low side of the inverters (p_pwm_lo) and also to
the PWM side of the inverter based on the hall sensor state. The output states are
defined by the lookup arrays declared at the start of the function.

/* sequence of low side of bridge */
unsigned bldc_ph_a_lo [6] = {1,1,0,0,0,0};
unsigned bldc_ph_b_lo [6] = {0,0,1,1,0,0};
unsigned bldc_ph_c_lo [6] = {0,0,0,0,1,1};

/* sequence of high side of bridge */
const unsigned bldc_high_seq [6] = {1,2,2,0,0,1};

The other event that can be responded to is a command from the c_control channel.
This can take the form of two commands. The first command is a request to read
the current speed value. The second command is a request to change the PWM
value that is being sent to the PWM thread and subsequently the motor.

1.1.2 Speed Control Loop

The speed control loop for this application can be found in the file
src/control/speed_control.xc. The thread is launched by calling the following
function.

void speed_control(chanend c_control , chanend c_lcd , chanend
↩ c_can_eth_shared);

This thread begins by initialising the PID data structure with the required coef-
ficients. Following this a startup sequence is entered. This triggers open loop
control to get the motor to begin rotating. After a sufficient time period the main
speed loop is entered into.

X7328A

Motor Control Platform Software Guide 5/48

The main loop consists of a select statement that responds to three events. The
first event is a timed event that triggers the PID control and an update to the motor
control threads PWM value. This simply applies the calculated PID error to the set
point that is requested.

The second and third events are a request from the LCD and buttons thread or
the communication I/O thread. This can either be a request from the display for
updated speed, set point and PWM demand values or a change in set point.

1.2 FOC Application app_dsc_demo

This application makes use of the following functionality.

· PWM

· QEI

· ADC

· Display

· Ethernet & Communications

· Processing Blocks

1.2.1 Control Loop

The control loop can be found in the file src/motor/inner_loop.xc. The thread is
launched by calling the following function.

void run_motor (
chanend? c_in ,
chanend? c_out ,
chanend c_pwm ,
streaming chanend c_qei ,
chanend c_adc ,
chanend c_speed ,
chanend? c_wd ,
port in p_hall ,
chanend c_can_eth_shared)

The control loop takes input from the encoder, a set speed from the control
modules and applies it via PWM. It contains two controllers in one loop, the speed
controller and the current controller. The speed controller uses the QEI input to
measure the speed of the motor, in order to bring the motor to the correct demand
speed. The output of this controller is a tangential torque which is required
to acheive that demand speed. The torque is passed through the iq_set_point
variable. The id_set_point variable is always zero, as no force is required in the
radial direction. The torque is a direct consequence of current flow in the coils,
and therefore the iq_set_point is also a measure of the demand current.

X7328A

Motor Control Platform Software Guide 6/48

The second controller is the torque/current controller. This uses the measured coil
currents from the ADC, and tries to make them equal to the iq_set_point demand.
The output of this controller is the extra current required to deliver the required
torque. This is used to set the PWM duty cycles for the three coils.

Because the motor is spinning, and the mathematics for the algorithm is done in
the frame of reference of the spinning rotor, the QEI is used to find the rotor angle.
A Park transform is used to transform between the fixed coil frame of reference
and the spinning rotor frame of reference.

The Clarke transform is used to convert the three currents in the coils into a radial
and tangential two component current. This is possible because the coil currents
have only two degrees of freedom, the third coil current being the sum of the other
two.

This loop is a simple example of how a control loop may be implemented and the
function calls that would be used to achieve this.

The first two arguments, c_in and c_out are used to synchronize the PWMs for
multiple motors so that they do not have their ADC dead time in exactly the same
time.

Further information on field oriented motor control can be found at:

· http://en.wikipedia.org/wiki/Field-Oriented_Control

1.2.2 Control loop customization

As described, there are two distinct control loops in the FOC design, but they are
both coded into a single loop. Separating these into two loops, running in two
different threads, may be necessary for designs that have a complex algorithm
governing the speed.

The speed control part of the loop uses measurements from the QEI to determine
the speed, and a set point that is passed in on a channel from the display or comms
threads. To extract the speed control algorithm and put it into another thread, the
following actions could be taken.

· Move the speed control PID calculation into a new thread (the speed control
thread).

· Move the UI/comms channel processing into the new thread.

· Add a new channel to join the new thread to the torque control thread.

· On a regular timer, send a query to the torque control thread to retreive the
rotor speed. Alternatively, the QEI thread could be adjusted to have an extra
channel input so that the speed control thread could query the QEI.

· After the speed control thread has performed the algorithm to determine the
new demand tangential torque, send the result to the torque control thread
through the channel.

X7328A

http://en.wikipedia.org/wiki/Field-Oriented_Control

Motor Control Platform Software Guide 7/48

In this way, the speed control thread can take advantage of a full 62.5 MIPS. Speed
ramping, damping, filtering, or predictive torque control could all be implemented.

X7328A

2 Processing Blocks

IN THIS CHAPTER

· PID Calculation Routines

· Clarke & Park Transforms

· Sine & Cosine lookup

This module provides a number of standard computation functions that are utilised
in motor control. These are outlined below.

· PID Calculation Routines

· Clarke & Park Transforms

· Sine & Cosine lookup

2.1 PID Calculation Routines

The processing blocks module provides the following PID calculation routines. The
coefficients are signed 16 bit fixed point.

#include "pid_regulator.h"

void init_pid(int Kp , int Ki, int Kd, pid_data *d);

int pid_regulator(int set_point , int actual , pid_data *d);

int pid_regulator_delta(int set_point , int actual , pid_data *d);

int pid_regulator_delta_cust_error(int error , pid_data *d);

int pid_regulator_delta_cust_error_speed(int error , pid_data &d);

int pid_regulator_delta_cust_error_Iq_control(int error , pid_data &iq);

int pid_regulator_delta_cust_error_Id_control(int error , pid_data &id);

init_pid initialises the pid_data structure values with the coefficient values for
Kp, Ki and Kd. These value are the proportional, integral and differential coeffi-
cients controlling the PID controller. The compile time constant PID_RESOLUTION
determines how many fractional bits are present in these coefficients.

pid_regulator performs a standard PID calculation using the set_point and actual
values. It calculates the error and applies the PID coefficients and then returns the
result. The returned error will be applied to the set_point value.

X7328A

Motor Control Platform Software Guide 9/48

pid_regulator_delta performs a standard PID calculation using the set_point and
actual values. It calculates the error and applies the PID coefficients and then
returns the resulting error.

pid_regulator_delta_cust_error performs a standard PID calculation using a
previously calculated error value. It calculates the error and applies the PID
coefficients and then returns the resulting error.

pid_regulator_delta_cust_error_speed, pid_regulator_delta_cust_error_Iq_control
and pid_regulator_delta_cust_error_Id_control are customized control PIDs
that limit the output to a specific range appropriate to the variable being
controlled.

2.2 Clarke & Park Transforms

The processing blocks module provides the following Clarke and park transforms.
The internal coefficients are all fixed point values.

#include "park.h"
void park_transform(int *Id, int *Iq ,

int I_alpha , int I_beta ,
unsigned theta);

void inverse_park_transform(int *I_alpha , int *I_beta ,
int Id, int Iq,
unsigned theta);

#include "clarke.h"
void clarke_transform(int *I_alpha , int *I_beta ,

int Ia, int Ib, int Ic);

void inverse_clarke_transform(int *Ia , int *Ib, int *Ic ,
int alpha , int beta);

Each function has the calculation outputs passed as references (e.g. as pointers
in C) and the inputs passed as normal arguments. The Park transform moves the
rotating frame of reference of values relative to the stator (and the QEI and ADCs)
into the frame of reference of the rotor. The Clarke transform takes 3-vector values
which are gathered by measurement of the three coils and transforms them into
a 2-vector value. This is possible because the 3-vectors have only 2 degrees of
freedom, the current in one of the coils being the sum of the other two. See a
description of Field Oriented Control for more information.

2.3 Sine & Cosine lookup

The sine and cosine functions are largely provided for use in the Park transforms,
but may be used by other functions if required. The sine table provided has a 256
entry lookup. This is convenient for a 1024 step full circle QEI on a 4 pole motor,
since each angular increment in the QEI represents 4 times the electrical angle.

X7328A

Motor Control Platform Software Guide 10/48

Thus the 0-1023 range merely needs to be looked up in a 0-255 range, with the
upper 2 bits truncated.

The lookup functions provided are as follows.

#include "sine_lookup.h"

inline long long sine(unsigned angle);
inline long long cosine(unsigned angle);

X7328A

3 Display and Shared IO Interface

IN THIS CHAPTER

· Hardware Interface

· Operation

· LCD Communication

This module provides a details on the display interface and shared IO manager
used in the XMOS Motor Control Development Platform.

The shared IO manager interfaces to the following components on the board:

· A Newhaven Display NHD-C12832A1Z-FSW-FBW-3V3 128 x 32 pixel monochrome
LCD display via a SPI like interface.

· The 4 push button surface mount switches (marked A-D).

Provision could also be made in this thread to drive the 4 surface mount LEDs next
to switches A-D.

3.1 Hardware Interface

The interface is implemented using 11 pins in total, including:

· 1 x 4 bit port to control the display address / data signal.

· 3 x 1-bit ports for the display chip select, serial clock and data signals.

· 1 x 4-bit ports for the buttons A-D.

3.2 Operation

The following files are used for the display and shared IO manager.

lcd.h
Prototypes for LCD functions.

lcd.xc
LCD driver functions.

lcd_data.h
Contains the lcd driver font map.

lcd_logo.h
Contains the XMOS logo as a unsigned char array.

X7328A

Motor Control Platform Software Guide 12/48

shared_io.h
Header for the main shared IO server and defines commands this thread uses.

shared_io.xc
Contains the main shared IO server routine.

The shared IO manager that interacts with the hardware is a single thread with
three channels connecting to it. The function is called from main with parameters
passing a structure containing the appropriate ports into it. The server thread
prototype is:

void display_shared_io_manager(chanend c_speed[],
REFERENCE_PARAM(lcd_interface_t , p),
in port btns ,
out port leds)

The purpose of each argument is as follows:

c_speed
An array of speed control channel for controlling the motors.

p A reference to the control structure describing the LCD interface.

btns
A 4 bit input port attached to the buttons.

leds
A 4 bit output port attached to the leds.

The main shared IO manager is constructed from a select statement within a
while(1) loop, so that it gets executed repeatedly.

case t when timerafter(time + 10000000) :> time :
Timer that executes at 10Hz. This gets the current speed, current Iq and
speed setpoint from the motor control loops and updates the display with
the new values. It also debounces the buttons.

case !btn_en => btns when pinsneq(value) :> value:
Execute commands if a button is pressed.

The switches are debounced by setting the but_en guard signal to two whenever a
button is pressed. The 10Hz timer in the select statement decrements the value
by one, if the value is not 0, on each iteration though its loop. Therefore, after a
minimum of 200ms and a maximum of 300ms the switch is re-enabled.

3.3 LCD Communication

Communication with the LCD is done using a lcd_byte_out function. This com-
municates directly with the ports to the display. The protocol is unidirectional SPI

X7328A

Motor Control Platform Software Guide 13/48

with a separate command / data pin which specifies if the current data transfer is a
command or data word.

The procedure for sending a byte to the display is:

· Select the display using the CS_N signal.

· Set the address / data flag.

· Clock out the 8 bits of data MSB first by: - Setting the data pin to the bit value. -
Setting clock high. - Setting clock low.

· Deselect the display using the CS_N signal.

The following functions are provided that use the lcd_byte_out function to send
data to the display:

lcd_clear
This wipes the display by writing blank characters into the displays output
buffer.

lcd_draw_image
This takes an unsigned char array of size 512 bytes and writes it to the
display. Hence, it can be used to display images on the display.

lcd_draw_text_row
Writes a row of 21 characters to the display on the row specified by lcd_row
(0-3).

The display is configured as 128 columns x 4 byte rows, as the byte writes the data
to 8 pixel rows in one transfer. A 5x7 pixel font map is provided for the characters
A-z, a-z, 0-9 and standard punctuation.

The command set for the display is defined in the datasheet. When sending data
to the display it is best to try to send the data as fast as possible. This is because
the display has to be turned off, whilst the data is being written to it. Therefore,
writing large amounts of data on a regular basis can cause the display to flicker.

X7328A

4 Pulse Width Modulation

IN THIS CHAPTER

· Configuration

· PWM Server Usage

· PWM Client Usage

· PWM Service Implementation

· PWM Client Implementation

The PWM driver code is written using a client server model. The client functions
are designed to be run from either the main control loop or a separate thread
that sits between the control loop and the PWM server thread (dependant on
timing constraints defined by the speed of the control loop). The client and server
communicate with each other through a channel and also some shared memory.
Consequently, the client and server threads must reside on the same core.

The PWM implementation is centre synchronised. This means that the output is
of the form shown in the figure. Having centrally synchronized PWM reduces the
number of coincident edges, thus reducing switching noise as fewer FETs are
switched simultaneously.

A

A'

B

B'

C

C'
Synchronisation

Point

n n

4.1 Configuration

The PWM module has three modes of operation defined, plus a number of other
options. The modes are defined in dsc_config.h that is part of the application
code.

X7328A

Motor Control Platform Software Guide 15/48

4.1.1 PWM Modes

The PWM operation mode can be one of the following options:

· An inverted mode, whis operates a three leg 180 degree inverter by ensuring
that the HI and LO sides of the inverter are switched in a complementary manner

· A simple mode, which operates a three leg inverter by switching the HI side and
then applying PWM to the low side of the inverter to achieve simple commutation

4.1.2 Dead Time

The dead time for the inverted mode is defined using the PWM_DEAD_TIME con-
figuration. This is in units of 10ns when using the default reference clock of
100MHz. The dead time is the short period of time between the non-inverted and
the inverted PWM lines changing. During this time, neither side of the H-bridge is
connected to the motor. The two signals are staggered by the dead time so that
the two sides of the H-bridge are never ON at the same time, and do not change
simultaneously.

4.1.3 PWM Resolution

PWM resolution is defined using PWM_MAX_VALUE. The value defined here sets the
frequency of the PWM. The relationship between PWM_MAX_VALUE, XS1_TIMER_HZ
and PWM frequency (PWM_FREQ) is defined in the equation below. XS1_TIMER_HZ
is defined at compile time by the ReferenceFrequency identifier in the project XN
file. By default this reference frequency is 100MHz so XS1_TIMER_HZ would have a
value of 100,000,000.

PWM_FREQ = XS1_TIMER_HZ / (PWM_MAX_VAL)

So with an example value of PWM_MAX_VALUE being 4096, the PWM_FREQ will
be 24,414Hz. Likewise, for a PWM frequency of 25Hz, the PWM_MAX_VAL would
be 100000000 / 25 = 4000000. The maximum value for the PWM_MAX_VAL
is 0x3FFFFFFF-PWM_DEAD_TIME, because the timestamps used to calculate the
triggering of the PWM need to be no more than half of a 32 bit word into the future.
This gives a minimum PWM period of around 0.1Hz.

In the FOC example, the ReferenceFrequency is set to 250MHz. This changes the
calculation and gives the following:

PWM_FREQ = 250000000 / 4096 = 61.035 kHz

The PWM_MAX_VALUE is the total length of time which each PWM cycle occupies.
Because the PWM is symmetrical, there are only PWM_MAX_VALUE / 2 steps that
are available for positioning the rising PWM edge, and likewise for the falling PWM
edge. Thus the number of bits available for a PWM_MAX_VALUE of 4096 is actually
11 bits. Note however that the update_pwm client function will shift the input
value down by one bit, so that the client function should still provide a duty cycle
value in the range of 0 to PWM_MAX_VALUE-1.

X7328A

Motor Control Platform Software Guide 16/48

The following table gives some values of associated resolution and period for
250MHz and 100MHz clock rates and symmetrical.

Clock / MHz Period / Hz Resolution / bits

250 488,281 8

250 122,070 10

250 61,035 11

250 30,517 12

250 1,907 16

100 195,312 8

100 48,828 10

100 24,414 11

100 12,207 12

100 762 16

4.1.4 Locking the ADC trigger to PWM

In some implementations it is desirable to lock the ADC conversion trigger to
the PWM. This allows the system to sample the ADC at a specific point in the
PWM period (such as when the lower leg is guaranteed to be on). This is en-
abled using the LOCK_ADC_TO_PWM definition. The PWM server thread function
pwm_service_inv_triggered should be used, which has extra arguments to include
a channel which signals the ADC module, and a dummy port which is used as a
timing source for the ADC trigger action. This port is not actually driven, and a
port which is not pinned out of the device can be used.

4.2 PWM Server Usage

The usage for each mode is described below. The PWM server needs to be instanti-
ated on the same core as the PWM client. One of the following is required to be
included.

· pwm_service_simple.h

· pwm_service_inv.h

X7328A

Motor Control Platform Software Guide 17/48

4.2.1 Inverter Mode

To instantiate the PWM service, one of the following function needs to be called.
The first is used when ADC synchronization is required, for which LOCK_ADC_TO_PWM
must be defined.

void do_pwm_inv_triggered(chanend c_pwm ,
chanend c_adc_trig ,

in port dummy_port ,
buffered out port :32 p_pwm[],
buffered out port :32 p_pwm_inv[],
clock clk);

void do_pwm_inv(chanend c_pwm ,
buffered out port :32 p_pwm[],
buffered out port :32 p_pwm_inv[],
clock clk);

chanend c_pwm is the channel used to communication with the client side.

chanend c_adc_trig is the channel used to communicate the triggering of the ADC
conversion to the ADC thread.

in port dummy_port is an unused port that is used to consistently trigger the ADC
conversion. This port can overlap other used ports at it is never written to and the
input value is never used.

buffered out port:32 p_pwm[] and buffered out port:32 p_pwm_inv[] are ar-
rays of 1 bit ports with an array length of 3 that are used for the HI and LO
sides of inverter respectively.

clock clk is the clock block that the PWM thread uses for timing output.

4.2.2 Simple commutation mode

This mode is designed for simple commutation of a brushless DC motor. An
example of the output of this mode is shown in the figure below. Only the low
sides of the three bridges is driven by the PWM service. It is up to the associated
application to drive the high sides of the bridges in conjunction. The application
must make sure that the low and high sides of the same bridge are never driven
together.

X7328A

Motor Control Platform Software Guide 18/48

UL

UH

VL

VH

WL

WH

To instantiate the PWM service in this mode the following function needs to be
called.

void do_pwm_simple(chanend c_pwm ,
buffered out port :32 p_pwm[],
clock clk);

chanend c_pwm is the channel used to communication with the client side.

buffered out port:32 p_pwm[] is an array of 1 bit ports with an array length of 3
that are used for the HI or LO sides of the inverter respectively.

clock clk is the clock block that the PWM thread uses for timing output.

4.3 PWM Client Usage

Because the client and server use shared memory to communicate, the PWM client
functions must be operated on the same core as the server. The usage of the client
functions in the various operational modes are described below. The following
must be included to call the client functions, depending on the commutation mode
chosen:

· pwm_cli_simple.h

· pwm_cli_inv.h

4.3.1 Inverter Mode

The only call required to update the PWM values that are currently being output
is listed below. It takes only two arguments, the channel to the PWM server and
an array of size three containing unsigned integers that must be between 0 and
PWM_MAX_VALUE.

X7328A

Motor Control Platform Software Guide 19/48

void update_pwm_inv(chanend c, unsigned value[]);

This function will process the values and pass them to the PWM service thread.

4.3.2 Basic BLDC commutation mode

The basic BLDC commutation mode client operates slightly differently to achieve
the waveform shown in the previous figure. The function call listed below must be
utilised.

Only a single output is active at any one time and this channel must be identified
using the pwm_chan argument, this is a value between 0 and 2. The corresponding
inverted leg of the inverter needs to be switched manually in the control thread.
Please refer to the app_basic_bldc application and associated documentation.

void update_pwm_simple(chanend c,
unsigned value ,
unsigned pwm_chan);

4.4 PWM Service Implementation

The PWM service is designed as a continuously running loop that cannot be blocked.
This is important to ensure continuous output as stalling an output on an inverter
in any application could result in serious failure of the appliance that is being
driven.

To achieve the behaviour needed the PWM services are all written in assembly
language. This is done to achieve a fine grained control over the instruction
sequences required to load up the buffers in the ports and also the port timers.

The PWM service pulls the required data from a shared memory location. This is a
double buffered scheme where the client will update the memory area that is not
currently in use and then inform the service via a channel which memory location
it should look at for the output data. The update sequence is looked at in more
detail in the discussion of the client implementation.

4.4.1 PWM service port initialisation pwm_service_inv.xc

This file achieves a number of functions. The primary function is a wrapper that is
called to start the PWM service running. This configures the port and then enters
the main loop for the PWM service.

Firstly three legs of the inverter drive are configured to be attached to the clock
block and have an initial output of 0. This is deemed to be a safe start-up
configuration as all drives are switched off.

Then, in the loop, the inverted ports are configured to output the inverse or
complementary of the data that is put into the buffers. This means that only a
single data set need be maintained and removes the need for inverting the data
using the instruction set as this is done by the port logic.

X7328A

Motor Control Platform Software Guide 20/48

Following the loop that sets up the individual PWM channels is the configuration
for the ADC triggering port. This is an input port that is attached to the same clock
block as the PWM output ports. An input port that overlaps other in use ports (as
described in the usage section above) will not affect their operation. The dummy
port is just used for timing synchronisation when signalling the ADC.

Finally the clock block is started.

Once the ports have been configured the output will remain in the initialised state
until the thread receives notification from the client thread that data is available in
the shared memory for output. It is important to wait for the first client update
otherwise there is a risk of output uninitialised data which may damage the drive
circuitry.

Once this information is received the main loop is entered.

4.4.2 PWM service main loop pwm_op_inv.S

The operation of the main loop is best described visually as in the flow chart shown
in the figure. The entries in the flow chart relate directly to the labels within the
main loop. A brief overview of each part of the main loop are given below. These
should be consulted alongside the comments that reside in the code itself.

pwm_op_inv

PWM_MODE_1 PWM_MODE_2 PWM_MODE_3 PWM_MODE_4 PWM_MODE_5 PWM_MODE_6 PWM_MODE_7

PWM_MODE_1
Loop

PWM_MODE_1
Loop

PWM_MODE_3
Loop

PWM_MODE_4
Loop

PWM_MODE_5
Loop

PWM_MODE_6
Loop

PWM_MODE_7
Loop

Update
event?

Update
event?

Update
event?

Update
event?

Update
event?

Update
event?

Update
event?

Y Y Y Y Y Y Y

GO_UPDATE_M1 GO_UPDATE_M7

The code begins at the pwm_op_inv entry point. This begins by running a standard
callee save. This preserves any registers that we will clobber as part of the operation
of this function. The arguments to the function are then stored on the stack itself
in sp[8:11]. This ensures we have access to them later.

Following this the registers are moved around into the configuration we require
and data is read from the t_data_out structure after calculating the appropriate
pointers. The port resource IDs are then loaded into registers and the mode of
operation is read and the port timer read to initialise the synchronisation point.

The code then branches to the appropriate mode according to the mode value that
has been read from the data structure provided to it by the client.

X7328A

Motor Control Platform Software Guide 21/48

4.4.3 Loop modes

By default, the PWM is configured to be unable to do the top and bottom 0.5%
of the duty cycle range. This prevents the system having to deal with the un-
usual cases where the output is a very short or very long pulse. If the constant
PWM_CLIPPED_RANGE is removed from the dsc_pwm_common.h file, then the PWM
will be able to cope with the full duty cycle range.

In this case, to achieve the required output, the port buffers are used to create the
extremely short or long pulses as shown in the figure. The green boxes indicate a
buffer of data that is output from the port.

Synchronisation Point

This method of output requires a combination of one or two buffer outputs
depending on the length of these pulses. Rather than calculate these during
runtime the client will ascertain the particular combination of outputs required and
then will define the mode. The different buffering output modes are individually
implemented to reduce branching overhead within the loop.

At the entrance to the loop mode (taking PWM_MODE_4 as the working example)
the mode value is replaced with the channel end resource ID. We then enter the
core of the PWM service loop. The loop will setup each of the ports in sequence,
calculating the appropriate port timer value from the data set that is provided by
the client.

When the option to lock the ADC to PWM is required then the system will block
on the in instruction while it waits for the timer on the dummy port. Once the
port timer reaches the required value the thread will output the token to the ADC
thread.

If the ADC to PWM lock is not utilised then the thread will pause on the next setpt
instruction until that particular port timer value is met and the data is output. The
ports are loaded in reverse order to turn them off at the correct time. Once all of
the channels are reloaded the thread will check for data on the update channel.
If data is found then it will immediately enter GO_UPDATE_M1 otherwise it will
continue through the loop calculating the next synchronisation point and looping
back to the top of the output sequence.

X7328A

Motor Control Platform Software Guide 22/48

If the system branches to update then it will execute a sequence very similar to the
entry of the function, reading the data out of the data structure and setting up the
relevant memory pointers. The update for PWM_MODE_[1:6] loops are all the same.
In the case of PWM_MODE_7 the update sequence is slightly different due to the
fact that the event is likely to occur when one of the channels is high. This means
that a further output is required before receiving the update from the client.

MODE PWM pulse pattern

1 3 short

2 2 short + 1 standard

3 1 short + 2 standard

4 3 standard

5 1 short + 1 standard + 1 very long

6 1 very long + 2 standard

7 2 short + 1 very long

unused 1 standard + 2 very long

unused 1 short + 2 very long

unused 3 very long

To drive the ports, the PWM uses the 32 bit buffered ports. The short pulse, which
is known as a SINGLE internally, is one where the duration of the pulse is shorter
than 32 reference clock cycles, and the buffer is silled with an appropriate bit
pattern to generate the pulse. The very long pulses, known as LONG_SINGLE, are
within 31 reference clocks of the PWM_MAX_VALUE and are therefore similar to the
short pulses. The standard pulses, known as DOUBLE, output both the rising edge
and falling edge as separate words, hence the name double.

Note that the mode consisting of three very long pulses is not catered for. The
client clips the values if this case is attempted.

4.5 PWM Client Implementation

Before a specific client for the inverting mode starts, it needs to let the
server thread know where its shared memory control buffers are. A call to
pwm_share_control_buffer_address_with_server will pass this information to the
server. Each client can only talk to one server, but since multiple client/server
components can co-exist, each must have its own memory buffer.

The PWM client is required to do a number of functions to provide the correct data
to the PWM service that outputs the correct values and timings to the ports. The
PWM client must:

· Calculate the output values

· Calculate the timing values (taking into account dead time)

· Sort the ports into time order

X7328A

Motor Control Platform Software Guide 23/48

· Ascertain the loop mode required

· Maintain the shared data set, including which buffer is in use and which one can
be updated

Taking the inverter mode as our working example (located in
module_dsc_pwm/src/dsc_pwm_cli/pwm_cli_inv) the function update_pwm_inv
first saves the PWM values for later use and then initialises the channel ordering
array to assume a sequential order of output.

If the non-clipped PWM range is being used, then following this the calculation of
the timings and output values are done for each of the channel. This is done by
passing the relevant PWM value and data set references to calculate_data_out_ref.
This function also ascertains the type of output which can be one of three values
SINGLE, DOUBLE and LONG_SINGLE.

Once the calculations for each of the PWM channels is completed they can be
ordered. This is done using the order_pwm function. This orders the values in the
channel ID buffer and also works out the loop mode that is required.

When the values have been ordered and the loop mode calculated the buffer
number is passed to the PWM service to indicate an update.

X7328A

5 Analogue to Digital Converter (ADC) Interface

IN THIS CHAPTER

· ADC Server Usage

· ADC Client Usage

· ADC Server Implementation

The analogue to digital interface currently provided is written for the 7265. This
provides a clocked serial output following a sample and hold conversion trigger
signal. The physical interface of the ADC is not covered in detail as the interface
for ADC’s will vary from manufacturer to manufacturer. Examples of the interfaces
for the MAX1379 and LTC1408 is also available in this module.

Besides the client and server interfaces the key issue discussed in this section is
the synchronisation of the ADC to the PWM and how this is achieved on the ADC
side.

The preprocessor define LOCK_ADC_TO_PWM must be 0 or 1 for off and on
respectively. This defines whether the ADC readings are triggered by the PWM so
that measurements can be taken at the appropriate point in the PWM cycle.

5.1 ADC Server Usage

The header file adc_7265.h and function call adc_7265_triggered are required to
operate the ADC software as a server. This server is utilised in the case where the
ADC is locked to the PWM.

See the API section for a full description of the function call.

5.2 ADC Client Usage

The functions below are the primary method of collecting ADC data from the ADC
service.

The client can be utilised as follows:

#include "adc_client.h"

void do_adc_calibration(chanend c_adc);

{int , int , int} get_adc_vals_calibrated_int16(chanend c_adc);

X7328A

Motor Control Platform Software Guide 25/48

do_adc_calibration(...) is used to initialise the ADC and calibrate the 0 point.
The server will enter a mode where the next 512 samples are averaged, and the
result is considered to be the zero point of further readings.

get_adc_vals_calibrated_int16(...) is used to get the three ADC values with
the zero calibration, offset and scaling applied to get a signed 16 bit value. This is
a multiple return function in channel order.

5.3 ADC Server Implementation

The ADC server implementation discussed here is the triggered variant of the ADC
code. The ADC server first configures the ports as clocked inputs and outputs.
Following this the main loop is entered.

ADC readings are triggered by the receipt of a trigger control token over the
channel. A token is used as this offers minimum latency for channel communication.
Following the token being received the ADC values are read after a time constant
that is calibrated to align with the appropriate measurement point.

ADC values can be requested from the server at any point.

The screenshot shows three PWM ports and the ADC conversion trigger port. It
shows that the ADC trigger rising edge, where the sample hold is made, is directly
centred in the PWM channel inter-cycle period.

X7328A

6 Application Level Communications Interfaces

IN THIS CHAPTER

· do_comms_eth

· do_comms_can

· Replacing the communications module

This module provides a details on the higher application level communication
interfaces used in the XMOS Motor Control Development Platform.

The motor control platform has been written to take advantage of the XMOS
Ethernet and XMOS CAN open source components. With suitable compile time
options, the example applications will automatically contain ethernet or CAN
control modules. A high level communication server has been written for each, and
these interface to the standard MAC and PHY components for the two protocols.
These high level server threads are called do_comms_eth and do_comms_can.

Documentation for the CAN, Ethernet and TCP/IP XMOS components can be found
in the software guides for those components, either on the xmos.com website or
from the relevent open source respositories.

A LabView runtime based control application, suitable for both CAN and Ethernet
control, is included with the software release, in the gui subdirectory.

6.1 do_comms_eth

The thread do_comms_eth interfaces to the TCP/IP stack and provides a server
interface on the TCP port defined by TCP_CONTROL_PORT (this is typically defined
as 9595). See the documentation for the sc_xtcp and sc_ethernet modules, which
describe the use of the TCP/IP service and Ethernet services.

After configuring the TCP port and TCP/IP stack interface, the thread sits in a
while(1){} loop processing TCP/IP events. The following actions are performed
based on the event type:

· XTCP_NEW_CONNECTION - No action is taken.

· XTCP_RECV_DATA - Main processing function, described below.

· XTCP_SENT_DATA - Closes the send request by sending a 0 byte packet.

· XTCP_REQUEST_DATA / XTCP_RESEND_DATA - Sends the data generated during the
XTCP_RECV_DATA event to the client.

· XTCP_CLOSED - Closes the connection.

X7328A

Motor Control Platform Software Guide 27/48

The main processing function receives a packet from the client and processes it,
responding with data as appropriate. The format of the accepted packets are:

^1|xxxx - This sets the speed of the motors to the value given in the 4 digit number.
The value is given as a hexadecimal number.

^2| - This requests the current state of the motor be sent to the remote client. The
server replies with the text string

^2| aaaa|bbbb|cccc|dddd|eeee|ffff|gggg|hhhh|iiii|jjjj|kkkk|llll|mmmm|nnnn|oo
↩ |pp

aaaa - Speed of motor 1
bbbb - Speed of motor 2
cccc - Current Ia for motor 1
dddd - Current Ib for motor 1
eeee - Current Ic for motor 1
ffff - Iq Set Point for motor 1
gggg - Id output for motor 1
hhhh - Iq output for motor 1
iiii - Current Ia for motor 2
jjjj - Current Ib for motor 2
kkkk - Current Ic for motor 2
llll - Iq Set Point for motor 2
mmmm - Id output for motor 2
nnnn - Iq output for motor 2
oo - Fault flag for motor 1
pp - Fault flag for motor 2

The files for this thread are in control_comms_eth.xc and control_comms_eth.h

6.1.1 Customizing the TCP/IP packet

The ethernet and TCP/IP communications module is an example of a simple
query and reply protocol using a fixed packet format. Many alternatives exist for
communication with the device through ethernet, and an incomplete list is given
below.

· Remove TCP/IP altogether and send and receive ethernet layer 2 packets of a
given fixed format

· Use UDP instead of TCP, with the same packet format

· Alter the packet format to a proprietory alternative

· Integrate an industry standard communication protocol on either Ethernet layer
2 or TCP/IP. Modbus/IP is a good example of this.

6.2 do_comms_can

XMOS provides an independent CAN component in the sc_can open source reposi-
tory. See the documentation for that component for more details of the CAN PHY
interface.

X7328A

Motor Control Platform Software Guide 28/48

This thread is similar in operation to the do_comms_eth thread, and provides the
same interface to the speed_control_loop.

It works by configuring the CAN interface and then sitting in a while(1){} loop
receiving packets from the CAN interface. Once the thread receives a packet from
the client, it looks at the command type, and processes it accordingly.

· If command type (byte 2) equals 1, then this command replies with the current
speed and other measured data.

· If command type (byte 2) equals 2, then this command sets the desired speed
from the data supplied in the packet.

The format of a received CAN packet is:

· 2 bytes - sender address - used to address the return packet if required.

· 1 byte - command type

· 4 bytes - desired speed in big-endian order if command equals 2.

The format of a transmitted CAN packet is:

· 4 bytes - current speed in big-endian order.

· 2 bytes - the measured Ia for motor 1.

· 2 bytes - the measured Ib for motor 1.

The files for this thread are in control_comms_can.xc and control_comms_can.h

6.2.1 Customizing the CAN communcation module

The sc_can XMOS CAN component supports the CAN PHY, as used in the exam-
ple communication system given. Many alternative configurations exist, and an
incomplete list is given below.

· Use the CAN LLC supported by the sc_can module to provide a set of CAN
registers containing the read and write parameters of the application.

· Alter the CAN packet format.

6.3 Replacing the communications module

The ethernet/TCP and CAN communications systems are only examples of the
many alternatives that can be implemented using the flexible XMOS architecture.
Both of these communication modules are implemented as a collection of threads
running in the device. They communicate with the motor control thread using
channels.

By replacing the threads with alternative physical interface and protocol threads,
that communicate with the motor control thread using the same channel messages,
it becomes easy to produce a different external control scheme. If the messages

X7328A

Motor Control Platform Software Guide 29/48

which are currently sent on the channels are not flexible enough, then they too can
be altered to provide additional functionality.

An incomplete list of other external control schemes is given below.

· Simple GPIO control

· UART

· SPI

· I2C

· Clocked parallel port

· Bluetooth

· EtherCAT

· RS485

X7328A

7 Hall Sensor Interface

IN THIS CHAPTER

· Hall Sensor Usage

· Hall Sensor Client

· Hall Sensor Server Implementation

The hall sensor interface is used for measuring speed and estimating the position
of the motor.

7.1 Hall Sensor Usage

The hall sensor input module provides a number of functions and options in its
usage. A listing of the available functions is given below.

#include "hall_input.h"

void run_hall_speed_timed(chanend c_hall ,
chanend c_speed ,
port in p_hall ,
chanend ?c_logging_0 ,
chanend ?c_logging_1);

void do_hall(unsigned &hall_state ,
unsigned &cur_pin_state ,
port in p_hall);

select do_hall_select(unsigned &hall_state ,
unsigned &cur_pin_state ,
port in p_hall);

run_hall_speed_timed(...) provides a server thread which measures the time
between hall sensor state transitions on a 4 bit port as provided on the motor
control platform. This functions implementation is described in more detail below.

do_hall(...) simply writes the next hall state into the hall_state variable and
current pin state into the cur_pin_state variable.

do_hall_select(...) is the same as do_hall but is a select function. This function
is used in the basic BLDC demonstration application.

X7328A

Motor Control Platform Software Guide 31/48

7.2 Hall Sensor Client

When using the hall sensor server thread as described above, the information may
be accessed by using the client functions as listed below.

#include "hall_client.h"

{unsigned ,unsigned ,unsigned} get_hall_pos_speed_delta(chanend c_hall);

get_hall_pos_speed_delta(...) will request and subsequently return the theta,
speed and delta values respectively from the hall input server thread. The theta
value is an estimated value, speed is in revolutions per minute (RPM) and delta is
currently used for debugging purposes.

7.3 Hall Sensor Server Implementation

This code is currently considered experimental

The function run_hall_speed_timed(...) provides a thread that handles hall sen-
sor input functions, speed and angle estimations.

After initialising the ports and initialising the current hall sensor state the code
enters a startup phase. This is where an ideal theta value is passed to the client as
the motor is not yet actually turning, so no angular estimation can be made. This
continues until the hall sensor thread has received two transitions.

Following the initial startup sequence the hall sensor thread enters the main
operational loop. This comprises of a select statement that handles either a
request for information from the clients, a timeout to detect no rotation or a state
transition on hall sensor.

When a new transition is received the new hall state is stored and the current theta
base value is updated. This base value is defined as the angular location of the
hall sensor within the motor. The system then defines what the next hall sensor
state it should wait for will be.

Once the base angle and next state values have been updated the timing calcula-
tions are completed to define the speed and angle calculation. Speed calculation is
defined by looking for a full mechanical rotation of the motor where it returns to a
defined state.

When the thread receives a request for speed and angle information these are
calculated and then delivered over the change. The angle estimation is done by
considering the time the motor has taken to travel over a hall sensor sector. It
assumes that the hall sensor data is requested at a regular time over the sector
(which as it is blocked by the PWM it will be in the example FOC implementation).

Once the values are calculated they are provided to the client over the channel.

X7328A

8 Quadrature Encoder Input

IN THIS CHAPTER

· Configuration

· QEI Server Usage

· QEI Client Usage

The quadrature encoder input (QEI) module is provided with a library for both
running the thread that handles the direct interface to the pins and also for
retrieving and calculating the appropriate information from that thread.

The particular interface that is implemented utilises three signals comprising of two
quadrature output (A and B) and an index output (I). A and B provide incremental
information while I indicates a return to 0 or origin. The signals A and B are
provided out of phase so that the direction of rotation can be resolved.

A
B
I

8.1 Configuration

The QEI module provides one or multiple QEI device versions of the server. If more
than one QEI device is interfaced to the XMOS device, then the designer can opt to
use multiple single-device QEI server threads, or one multi-device thread.

The multiple-QEI service loop has a worst-case timing of 1.4us, therefore being
able to service two 1024 position QEI devices spinning at 20kRPM.

X7328A

Motor Control Platform Software Guide 33/48

8.2 QEI Server Usage

To initiate the service the following include is required as well as the function
call shown. This defines the ports that are required to read the interface and
the channel that will be utilised by the client thread. The compile time constant
NUMBER_OF_MOTORS is used to determine how many clients and ports are serviced
by the multi-device QEI server.

#include "qei_server.h"

void do_qei(streaming chanend c_qei , port in pQEI);

void do_qei_multiple(streaming chanend c_qei[NUMBER_OF_MOTORS], port in
↩ pQEI[NUMBER_OF_MOTORS]);

8.3 QEI Client Usage

To access the information provided by the quadrature encoder the functions listed
below can used.

#include "qei_client.h"

{ unsigned , unsigned , unsigned } get_qei_data(chanend c_qei);

The three values are the speed, position and valid state. The position value
is returned as a count from the index zero position and speed is returned in
revolutions per minute (RPM).

The third value indicates whether the QEI interface has received an index signal
and therefore that the position is valid.

X7328A

9 API

IN THIS CHAPTER

· Configuration Defines

· External modules

· ADC

· QEI

· Hall sensors

· Computational Blocks

· Watchdog Timer

· High level communications

· LCD display and PHY reset

9.1 Configuration Defines

The file dsc_config.h must be provided in the application source code. This file can set the
following defines:

PWM_DEAD_TIME

This is the period, in 10ns intervals, which is not counted towards the PWM time as the PWM
is output.

PWM_MAX_VALUE

The PWM input is clamped to this value

LOCK_ADC_TO_PWM

If this is defined, the PWM outputs synchronization information to a channel and dummy port,
allowing the ADC module to synchronize the ADC measurement to the dead time when all
PWM channels are off.

NUMBER_OF_POLES

This is the number of poles in the motor. It is therefore ratio of the number of electrical
rotations to each physical rotation. If a motor has a single winding per coil, then it is called a
2 pole motor. Two sets of windings per coil makes a four pole motor, and so on.

USE_CAN

When defined, the CAN controller in included in the executable. This option is mutually
exclusive with Ethernet.

X7328A

Motor Control Platform Software Guide 35/48

USE_ETH

When defined, the Ethernet controller is included in the executable. This option is mutually
exclusive with CAN.

TCP_CONTROL_PORT

When the Ethernet controller is included, this is the TCP port that the server listens on, for
receiving control information.

MIN_RPM

The minimum RPM that the controllers can set.

MAX_RPM

The maximum RPM that the controllers can set.

9.2 External modules

For documentation on the Ethernet, CAN and PWM modules, see the relevent XMOS software
module documentation.

9.3 ADC

9.3.1 Client functions

void do_adc_calibration(streaming chanend c_adc)
ADC calibration sequence.

This switches the ADC server into calibration mode. After a number (512) of
samples the server reverts to non-calibration mode, and subsequent calls to the
function get_adc_vals_calibrated_int16 will take the measured average of the
calibration period as an offset

This function has the following parameters:

c_adc the control channel to the ADC server

{int, int, int} g get_adc_vals_calibrated_int16(streaming chanend c_adc)
Get values converted from 14 bit unsigned to 16 bit signed and calibrated.

Read a set of current values from the motor, and convert them into a standardized
16 bit scale

This function has the following parameters:

c_adc the control channel to the ADC server

9.3.2 Server functions
void adc_7265_triggered(streaming chanend c_adc[ADC_NUMBER_OF_TRIGGERS],

X7328A

Motor Control Platform Software Guide 36/48

chanend c_trig[ADC_NUMBER_OF_TRIGGERS],
clock clk,
out port SCLK,
port CNVST,
in buffered port:32 DATA_A,
in buffered port:32 DATA_B,
port out MUX)

Implements the AD7265 triggered ADC service.

This implements the AD hardware interface to the 7265 ADC device. It has two
ports to allow reading two simultaneous current readings for a single motor.

This function has the following parameters:

c_adc the array of ADC server control channels

c_trig the array of channels to recieve triggers from the PWM modules

clk an XCORE clock to provide clocking to the ADC

SCLK the external clock pin on the ADC

CNVST the convert strobe on the ADC

DATA_A the first data port on the ADC

DATA_B the second data port on the ADC

MUX a port to allow the selection of the analogue MUX input

void adc_ltc1408_triggered(chanend c_adc[],
chanend c_trig[],
clock clk,
port out SCLK,
buffered out port:32 CNVST,
in buffered port:32 DATA)

Execute the triggered ADC server.

This is the server thread implementation for the LTC1408 ADC device.

This function has the following parameters:

c_adc the array of ADC control channels

c_trig the array of channels to receive triggers from the PWM modules

clk the clock for the ADC device serial port

SCLK the port which feeds the ADC serial clock

X7328A

Motor Control Platform Software Guide 37/48

CNVST the ADC convert strobe

DATA the ADC data port

void run_adc_max1379(chanend c_adc[],
clock clk,
port out SCLK,
port out CNVST,
port out SEL,
in buffered port:32 DATA)

The server thread for the MAX1379 ADC device.

Implements the server thread for the MAX1379 ADC device

This function has the following parameters:

c_adc the array of ADC control channels

clk the clock for the ADC device serial port

SCLK the port which feeds the ADC serial clock

CNVST the ADC convert strobe

SEL the chip select for the ADC device

DATA the ADC data port

9.4 QEI

9.4.1 Client functions

{ unsigned, unsigned, unsigned } g get_qei_data(streaming chanend c_qei)
Get the position from the QEI server.

This function has the following parameters:

c_qei The control channel for the QEI server

This function returns:

the speed, position and valid state

9.4.2 Server functions

void do_qei(streaming chanend c_qei, port in p_qei)
Implementation of the QEI server thread.

This function has the following parameters:

X7328A

Motor Control Platform Software Guide 38/48

c_qei The control channel used by the client

p_qei The hardware port where the quadrature encoder is located

void do_multiple_qei(streaming chanend c_qei[], port in p_qei[])
Implementation of the QEI server thread that services multiple QEI devices.

This function has the following parameters:

c_qei The control channels used by the client

p_qei The hardware ports where the quadrature encoder is located

9.5 Hall sensors

9.5.1 Client functions
{unsigned, unsigned, unsigned} g get_hall_pos_speed_delta(chanend c_hall)

Get position, speed and delta from a hall server.

The client library function for a hall sensor server

This function has the following parameters:

c_hall the channel for communicating with the hall server

void do_hall(unsigned &hall_state, unsigned &cur_pin_state, port in p_hall)
A blocking read of the hall port.

This function has the following parameters:

hall_state the output hall state

cur_pin_state
the last value read from the hall encoder port

p_hall the hall port

select do_hall_select(unsigned &hall_state,
unsigned &cur_pin_state,
port in p_hall)

A selectable read of the hall pins.

This selectable function becomes ready when the hall pins change state

This function has the following parameters:

hall_state the output hall state

X7328A

Motor Control Platform Software Guide 39/48

cur_pin_state
the last value read from the hall encoder port

p_hall the hall port

9.5.2 Server functions

void run_hall(chanend c_hall, port in p_hall)
A basic hall encoder server.

This implements the basic hall sensor server

This function has the following parameters:

c_hall the control channel for reading hall position

p_hall the port for reading the hall sensor data

void run_hall_speed(chanend c_hall, chanend c_speed, port in p_hall)
A hall encoder server that also calculates motor speed.

This implements the hall sensor server

This function has the following parameters:

c_hall the control channel for reading hall position

c_speed the control channel for reading the rotor speed

p_hall the port for reading the hall sensor data

void run_hall_speed_timed_avg(chanend c_hall,
chanend c_speed,
port in p_hall)

A hall encoder server that also calculates motor speed.

This implements the hall sensor server, where the speed is calculated using a timed
average of many values.

This function has the following parameters:

c_hall the control channel for reading hall position

c_speed the control channel for reading the rotor speed

p_hall the port for reading the hall sensor data

void run_hall_speed_timed(chanend c_hall,
chanend c_speed,

X7328A

Motor Control Platform Software Guide 40/48

port in p_hall,
chanend ?c_logging_0,
chanend ?c_logging_1)

A hall encoder server that also calculates motor speed.

This implements the hall sensor server, where the speed is calculated using a timed
average of many values.

This function has the following parameters:

c_hall the control channel for reading hall position

c_speed the control channel for reading the rotor speed

p_hall the port for reading the hall sensor data

c_logging_0 an optional channel for logging the hall data on port 0

c_logging_1 an optional channel for logging the hall data on port 1

9.6 Computational Blocks

void park_transform(int &Id, int &Iq, int I_alpha, int I_beta, unsigned theta)
Perform a Park transform.

A Park transform is a 2D to 2D transform which takes the radial and tangential
components of a measurement (for instance the magnetic flux or total coil currents)
and converts them to a rotating frame of reference. Typically this is the rotating
frame of reference attached to the spinning rotor.

This function has the following parameters:

Id the output tangential component

Iq the output radial component

I_alpha the input tangential component

I_beta the input radial component

theta the angle between the fixed and rotating frames of reference

void inverse_park_transform(int &I_alpha,
int &I_beta,
int Id,
int Iq,
unsigned theta)

Perform an inverse Park transform.

X7328A

Motor Control Platform Software Guide 41/48

A Park transform is a 2D to 2D transform which takes the radial and tangential
components of a measurement (for instance the magnetic flux or total coil currents)
and converts them to a rotating frame of reference. Typically this is the rotating
frame of reference attached to the spinning rotor.

This function has the following parameters:

I_alpha the output tangential component

I_beta the output radial component

Id the input tangential component

Iq the intput radial component

theta the angle between the fixed and rotating frames of reference

void clarke_transform(int Ia, int Ib, int Ic, int &I_alpha, int &I_beta)
Perform a clarke transform.

A Clarke transform is a 3D to 2D transformation where the 3D components have
only 2 degrees of freedom. It is used to convert the three current values in the 120
degree separation coils into a radial and tangential component values.

This function has the following parameters:

Ia the parameter from coil A

Ib the parameter from coil B

Ic the parameter from coil C

I_alpha the output tangential component

I_beta the output radial component

void inverse_clarke_transform(int &Ia, int &Ib, int &Ic, int alpha, int beta)
Perform an inverse clarke transform.

The inverse Clarke transform is a 2D to 3D transformation where the 3D compo-
nents have only 2 degrees of freedom. It is used to convert radial and tangential
components of the current vector into the three coil currents.

This function has the following parameters:

Ia the output parameter for coil A

Ib the output parameter for coil B

Ic the output parameter for coil C

alpha the input tangential component

X7328A

Motor Control Platform Software Guide 42/48

beta the input radial component

int sine(unsigned angle)
Look up the fixed point sine value.

This looks up the sine of a value. The value is the index into the sine table, rather
than a particular angular measurement. The sine table has 256 entries, so each
index is 1.4 degrees.

A table of 256 entries is suitable for an encoder angle measured in 1024 steps,
attached to a 4 pole motor. Each encoder step is 360/1024 = 0.35 physical degrees,
but this is worth 4 times as many electrical degrees, or 1.4 electrical degrees.

The result is in fixed point 18.14 format.

This function has the following parameters:

angle the index of the sine value to look up

This function returns:

the 18.14 fixed point sine value

int cosine(unsigned angle)
Look up the fixed point cosine value.

This looks up the cosine of a value. The value is the index into the sine table,
rather than a particular angular measurement.

This function has the following parameters:

angle the index of the cosine value to look up

This function returns:

the 18.14 fixed point cosine value

9.7 Watchdog Timer

void do_wd(chanend c_wd, out port wd)
Run the watchdog timer server.

The watchdog timer needs a constant stream of pulses to prevent it from shutting
down the motor. This is a thread server which implements the watchdog timer
output.

The watchdog control port should have two bits attached to the watchdog circuitry.
Bit zero will get a rising edge whenever the watchdog is to be reset, and bit one
will have the pulse train.

This function has the following parameters:

c_wd the control channel for controlling the watchdog

X7328A

Motor Control Platform Software Guide 43/48

wd the control port for the watchdog device

9.8 High level communications

9.8.1 Ethernet control

void do_comms_eth(chanend c_commands[], chanend tcp_svr)
Implement the high level Ethernet control server.

This control the motors based on commands from the ethernet/TCP stack

This function has the following parameters:

c_commands Array of command channels for motors

tcp_svr channel to the TCP/IP thread

9.8.2 CAN control

void do_comms_can(chanend c_commands[], chanend rxChan, chanend txChan)
This is a thread which performs the higher level control for the CAN interface.

Use it in conjunction with the thread ‘canPhyRxTx’ from the module module_can.

This function has the following parameters:

c_commands Channel array for interfacing to the motors

rxChan Connect to the rxChan port on the canPhyRxTx

txChan Connect to the txChan port on the canPhyRxTx

9.9 LCD display and PHY reset

9.9.1 LCD
lcd_interface_t

The control structure for the LCD ports.

The display uses an I2C interface with an extra control signal to support selection
between a data read/write and a control read/write. This extra signal is bit zero of
the p_core1_shared member - which contains no other signals despite the name.

This structure has the following members:

out port p_lcd_sclk
i2c serial clock

out port p_lcd_mosi
i2c serial data

X7328A

Motor Control Platform Software Guide 44/48

out port p_lcd_cs_n
i2c chip select

out port p_core1_shared
Display data/control select.

void reverse(char s[])
Reverse the order of bytes in the array.

This function has the following parameters:

s the byte array to reverse

void itoa(int n, char s[])
Convert an integer into a base 10 ASCII string.

This function has the following parameters:

n the integer to represent in string form

s the output byte array to contain the number

void lcd_ports_init(lcd_interface_t &p)
Initialise the LCD device.

This function has the following parameters:

p the LCD interface description

void lcd_byte_out(lcd_interface_t &p, unsigned char i, int is_data)
Write a byte to the LCD.

This function has the following parameters:

p the LCD interface description

i the byte to write

is_data a boolean indicating if the write is data or control information

void lcd_clear(lcd_interface_t &p)
Clear the LCD.

This function has the following parameters:

p the LCD interface description

void lcd_draw_image(const unsigned char image[], lcd_interface_t &p)
Draw an image on the LCD.

Draw an image on the LCD. The image is assumed to cover the complete LCD. The
size of the LCD is 128 wide by 32 high.

X7328A

Motor Control Platform Software Guide 45/48

This function has the following parameters:

image a byte array containing the image data.

p the LCD interface description

void lcd_draw_text_row(const char string[], int lcd_row, lcd_interface_t &p)
Write text to a row on the LCD.

Display a row of text. The LCD columns beyond the end of the string will be
cleared.

This function has the following parameters:

string the ASCII string to display on the LCD

lcd_row the character row on which to display the string

p the LCD interface description

X7328A

10Resource usage

IN THIS CHAPTER

· MIPS

The table shows the resource usage for the main components in the system. The
transforms are a functional library and thus do not have a thread or port usage.

Component Threads Memory Channel Ends 1b Ports 4b ports

ADC 1 2.2KB 2 4 1

PWM 1 2.8KB 2 6 0

Transforms 0 264B 0 0 0

QEI 1 400B 1 0 1

Watchdog 1 120B 1 1 0

PID 0 300B 0 0 0

See the documentation for the ethernet and CAN software components for their
resource usage.

10.1 MIPS

This table shows the FOC control loop worst case timing, against the number of
threads running in the motor control core. These values were measured on a
500MHz core.

Number of threads MIPS per thread Loop time

4 125 7.9 us

5 100 10 us

6 83.3 12 us

7 71.4 14 us

8 62.5 16 us

For a single motor, using PWM, ADC, QEI and a control loop, only 4 threads
are required on the motor core. Another core can be used to provide further
functionality, or for a single motor, the remaining 4 threads in the motor core can
be used for control and IO, giving a single core FOC motor control solution.

A dual motor, single core FOC solution can be created, by using the dual-QEI mode
of the QEI server. The threads for such a solution would be:

· PWM for motor 1

X7328A

Motor Control Platform Software Guide 47/48

· PWM for motor 2

· dual QEI

· Control loop for motor 1

· Control loop for motor 2

· ADC

· Watchdog and main application

· CAN PHY interface

X7328A

Motor Control Platform Software Guide 48/48

Table of Contents

1 Motor Control Platform Example Applications 3
1.1 Basic BLDC Speed Control Application app_basic_bldc 3

1.1.1 Motor Control Loop . 4
1.1.2 Speed Control Loop . 4

1.2 FOC Application app_dsc_demo . 5
1.2.1 Control Loop . 5
1.2.2 Control loop customization . 6

2 Processing Blocks 8
2.1 PID Calculation Routines . 8
2.2 Clarke & Park Transforms . 9
2.3 Sine & Cosine lookup . 9

3 Display and Shared IO Interface 11
3.1 Hardware Interface . 11
3.2 Operation . 11
3.3 LCD Communication . 12

4 Pulse Width Modulation 14
4.1 Configuration . 14

4.1.1 PWM Modes . 15
4.1.2 Dead Time . 15
4.1.3 PWM Resolution . 15
4.1.4 Locking the ADC trigger to PWM . 16

4.2 PWM Server Usage . 16
4.2.1 Inverter Mode . 17
4.2.2 Simple commutation mode . 17

4.3 PWM Client Usage . 18
4.3.1 Inverter Mode . 18
4.3.2 Basic BLDC commutation mode . 19

4.4 PWM Service Implementation . 19
4.4.1 PWM service port initialisation pwm_service_inv.xc 19
4.4.2 PWM service main loop pwm_op_inv.S . 20
4.4.3 Loop modes . 21

4.5 PWM Client Implementation . 22

5 Analogue to Digital Converter (ADC) Interface 24
5.1 ADC Server Usage . 24
5.2 ADC Client Usage . 24
5.3 ADC Server Implementation . 25

6 Application Level Communications Interfaces 26
6.1 do_comms_eth . 26

6.1.1 Customizing the TCP/IP packet . 27
6.2 do_comms_can . 27

6.2.1 Customizing the CAN communcation module 28
6.3 Replacing the communications module . 28

7 Hall Sensor Interface 30

X7328A

Motor Control Platform Software Guide 49/48

7.1 Hall Sensor Usage . 30
7.2 Hall Sensor Client . 31
7.3 Hall Sensor Server Implementation . 31

8 Quadrature Encoder Input 32
8.1 Configuration . 32
8.2 QEI Server Usage . 33
8.3 QEI Client Usage . 33

9 API 34
9.1 Configuration Defines . 34
9.2 External modules . 35
9.3 ADC . 35

9.3.1 Client functions . 35
9.3.2 Server functions . 35

9.4 QEI . 37
9.4.1 Client functions . 37
9.4.2 Server functions . 37

9.5 Hall sensors . 38
9.5.1 Client functions . 38
9.5.2 Server functions . 39

9.6 Computational Blocks . 40
9.7 Watchdog Timer . 42
9.8 High level communications . 43

9.8.1 Ethernet control . 43
9.8.2 CAN control . 43

9.9 LCD display and PHY reset . 43
9.9.1 LCD . 43

10 Resource usage 46
10.1 MIPS . 46

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

X7328A

	Motor Control Platform Example Applications
	Basic BLDC Speed Control Application app_basic_bldc
	Motor Control Loop
	Speed Control Loop

	FOC Application app_dsc_demo
	Control Loop
	Control loop customization

	Processing Blocks
	PID Calculation Routines
	Clarke & Park Transforms
	Sine & Cosine lookup

	Display and Shared IO Interface
	Hardware Interface
	Operation
	LCD Communication

	Pulse Width Modulation
	Configuration
	PWM Modes
	Dead Time
	PWM Resolution
	Locking the ADC trigger to PWM

	PWM Server Usage
	Inverter Mode
	Simple commutation mode

	PWM Client Usage
	Inverter Mode
	Basic BLDC commutation mode

	PWM Service Implementation
	PWM service port initialisation pwm_service_inv.xc
	PWM service main loop pwm_op_inv.S
	Loop modes

	PWM Client Implementation

	Analogue to Digital Converter (ADC) Interface
	ADC Server Usage
	ADC Client Usage
	ADC Server Implementation

	Application Level Communications Interfaces
	do_comms_eth
	Customizing the TCP/IP packet

	do_comms_can
	Customizing the CAN communcation module

	Replacing the communications module

	Hall Sensor Interface
	Hall Sensor Usage
	Hall Sensor Client
	Hall Sensor Server Implementation

	Quadrature Encoder Input
	Configuration
	QEI Server Usage
	QEI Client Usage

	API
	Configuration Defines
	External modules
	ADC
	Client functions
	Server functions

	QEI
	Client functions
	Server functions

	Hall sensors
	Client functions
	Server functions

	Computational Blocks
	Watchdog Timer
	High level communications
	Ethernet control
	CAN control

	LCD display and PHY reset
	LCD

	Resource usage
	MIPS

