MDMA140P1600TG

=

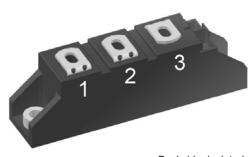
=

 V_{RRM} l _{fav}

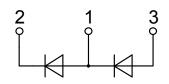
VF

preliminary

140A


1.11V

= 2x 1600 V


Standard Rectifier Module

Phase I	eg
---------	----

Part number MDMA140P1600TG

Backside: isolated **S** E72873

Features / Advantages:

- Package with DCB ceramic base plate
- Reduced weight
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase
- bridge configurations • Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
 Field supply for DC motors

Package: TO-240AA

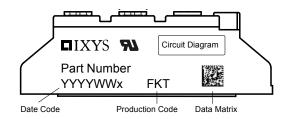
- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

MDMA140P1600TG

preliminary


Rectifie	r				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse block	$T_{VJ} = 25^{\circ}C$			1700	V	
V _{RRM}	max. repetitive reverse blocking v	roltage	$T_{VJ} = 25^{\circ}C$			1600	V
l _R	reverse current, drain current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			200	μA
		V _R = 1600 V	$T_{vJ} = 150^{\circ}C$			3.5	mA
V _F	forward voltage drop	I _F = 140 A	$T_{VJ} = 25^{\circ}C$			1.18	V
		I _F = 280 A				1.43	V
		I _F = 140 A	T _{vJ} = 125 °C			1.11	V
		I _F = 280 A				1.41	V
FAV	average forward current	T _c = 100°C	T _{vJ} = 150°C			140	А
		sine 180°					
V _{F0}	threshold voltage		T _{vj} = 150°C			0.78	V
r _F	slope resistance } for power le	oss calculation only				2.2	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.23	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.20		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			540	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2.80	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			3.03	kA
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			2.38	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			2.57	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			39.2	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			38.1	kA²s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			28.3	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			27.5	kA²s
C	junction capacitance	V_{R} = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		116		pF

20130109a

preliminary

Package	TO-240AA				l	Ratings	5	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{stg}	storage temperature				-40		125	°C
T _{VJ}	virtual junction temperature				-40		150	°C
Weight						90		g
M _D	mounting torque				2.5		4	Nm
Μ _τ	terminal torque				2.5		4	Nm
d Spp/App	creepage distance on surface striking distance through air		terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}			terminal to backside	16.0	16.0			mm
	isolation voltage t	t = 1 second			4800			V
	t = 1 minute		50/60 Hz, RMS; Iıso∟ ≤ 1 mA		4000			V

Part number

M = Module D = Diode

M = Standard Rectifier

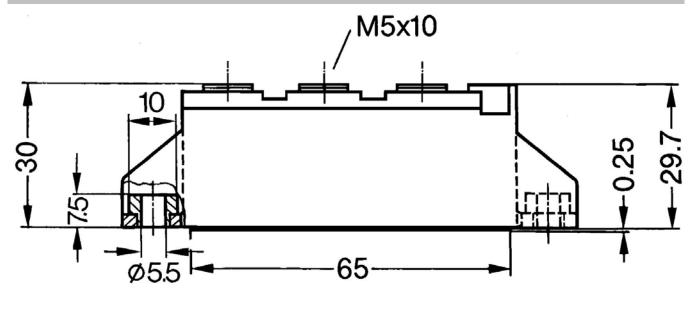
A = (up to 1800V) 140 = Current Rating [A] P = Phase leg

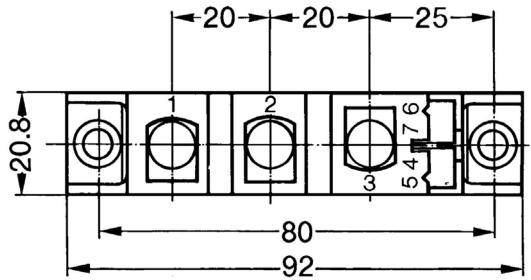
1600 = Reverse Voltage [V] TG = TO-240AA

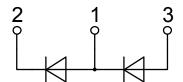
Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDMA140P1600TG	MDMA140P1600TG	Box	6	512788

Equiva	alent Circuits for	Simulation	* on die level	T _{vJ} = 150°C
)[R ₀]-	Rectifier		
V _{0 max}	threshold voltage	0.78		V
$R_{0 max}$	slope resistance *	1		mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20130109a


MDMA140P1600TG



preliminary

