MDMA140P1200TG

preliminary

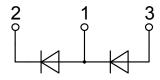
= 2x 1200 V

140A

1.11V

Standard Rectifier Module

Phase leg


Part number

MDMA140P1200TG

Backside: isolated

Features / Advantages:

- Package with DCB ceramic base plate
- Reduced weight
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

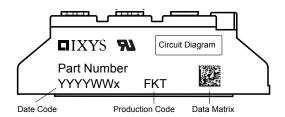
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
 Field supply for DC motors

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- · Advanced power cycling

MDMA140P1200TG

preliminary


Rectifie	r				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking v	roltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			200	μΑ
		V _R = 1200 V	$T_{VJ} = 150^{\circ}C$			3.5	mA
V _F	forward voltage drop	I _F = 140 A	$T_{VJ} = 25^{\circ}C$			1.18	V
		I _F = 280 A				1.43	V
		I _F = 140 A	T _{VJ} = 125 °C			1.11	V
		I _F = 280 A				1.41	V
I FAV	average forward current	T _C = 100°C	T _{VJ} = 150°C			140	Α
		sine 180°					i 1 1 1
$\overline{V_{F0}}$	threshold voltage		T _{VJ} = 150°C			0.78	V
r _F	slope resistance \(\right\) for power is	oss calculation only				2.2	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.23	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.20		K/W
P _{tot}	total power dissipation		$T_{\rm C}$ = 25°C			540	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2.80	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			3.03	kA
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			2.38	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			2.57	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			39.2	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			38.1	kA²s
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			28.3	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			27.5	kA²s
CJ	junction capacitance	$V_R = 400 \text{ V} \text{ f} = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		116		pF

MDMA140P1200TG

preliminary

Package TO-240AA					Ratings			
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{stg}	storage temperature				-40		125	°C
T _{VJ}	virtual junction temperature				-40		150	°C
Weight						90		g
M _D	mounting torque				2.5		4	Nm
\mathbf{M}_{T}	terminal torque				2.5		4	Nm
d _{Spp/App}	creenage distance on surfac	e striking distance through air	terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on sanae	o striking distance through an	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			4800			V
	t = 1 minu		50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4000			V

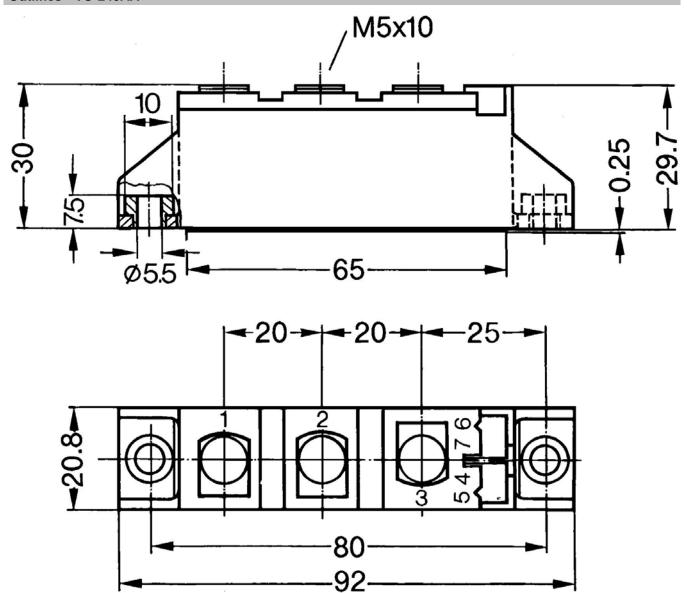
Part number

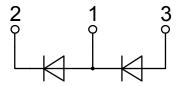
M = Module

D = Diode

M = Standard Rectifier

A = (up to 1800V) 140 = Current Rating [A] P = Phase leg


1200 = Reverse Voltage [V] TG = TO-240AA


Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDMA140P1200TG	MDMA140P1200TG	Box	6	512703

Equivalent Circuits for Simulation			* on die level	T _{VJ} = 150°C
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.78		V
$R_{0\text{max}}$	slope resistance *	1		$m\Omega$

preliminary

Outlines TO-240AA

