

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **General Description**

The MAX16984 combines a 5V automotive-grade stepdown converter capable of driving up to 2.5A, a USB host charger adapter emulator, and USB protection switches for automotive USB host applications. The USB protection switches provide high-ESD, short-circuit protection and feature integrated host-charger port-detection circuitry adhering to the USB 2.0 Battery Charging Specification BC1.2 battery charging specification and Chinese Telecommunication Industry Standard YD/T 1591-2009. They also include circuitry for iPod®/iPhone® 1.0A and iPad® 2.1A dedicated charging modes. The HVD+ and HVD-ESD protection features include protection to  $\pm$ 15kV Air/ $\pm$ 8kV Contact on the HVD+ and HVD- outputs to the IEC 61000-4-2 model and 330 $\Omega$ , 330pF ESD model.

maxim integrated...

The high-efficiency step-down DC-DC converter operates from a voltage up to 28V and is protected from load dump transients up to 42V. The device is optimized for high-frequency operation and includes resistor-programmable frequency selection from 220kHz to 2.2MHz to allow optimization of efficiency, noise, and board space based on application requirements. The converter has an internal high-side n-channel switch and uses a low forward-drop freewheeling Schottky diode for rectification. There is a small lowside n-channel switch to maintain fixed frequency under light loads. For lower guiescent current operation requirements, the low side n-channel switch can be disabled to allow skip mode operation under light loads. The converter can deliver up to 2.1A of continuous current at 105°C. The MAX16984S has an integrated spread-spectrum oscillator to improve EMI performance.

The MAX16984 also includes a USB load current-sense amplifier and configurable feedback adjustment circuit designed to provide automatic USB voltage adjustment to compensate for voltage drops in captive cables associated with automotive applications. The MAX16984 limits the USB load current using both a fixed internal peak current threshold of the DC-DC converter and a userconfigurable external USB load current-sense amplifier threshold.

<u>Ordering Information</u> and <u>Typical Operating Circuit</u> appear at end of data sheet.

iPod, iPhone, and iPad are registered trademarks of Apple, Inc.

#### Features

- High-Efficiency DC-DC Controller
  - $\diamond$  4.5V to 28V (42V Load Dump) Operating Voltage
  - $\diamond$  5V, 2.5A Output Current Capability
  - ♦ User-Adjustable USB Current Limit
  - $\diamond$  Fixed-Frequency 220kHz to 2.2MHz Operation
  - ♦ Forced-PWM Option at No Load
  - ♦ Spread Spectrum for EMI Reduction
  - ♦ SYNC Input for Frequency Parking
  - ♦ Low Q Current Skip Mode and Low Q Shutdown
  - ♦ Reduced Inrush Current by Soft-Start
- Integrated Output Adjustment for Cable Voltage Drop
  - ♦ User-Adjustable Voltage Gain
  - $\diamond$  Up to 3 Meter Cable/Up to 600m $\Omega$
- - Integrated iPod/iPhone/iPad Charge Detection Termination Resistors
  - Supports USB BC1.2 Charging Downstream Port (CDP) and Dedicated Charging Port (DCP) Modes
  - Chinese Telecommunication Industry Standard YD/T 1591-2009
  - ♦ High-Speed Pass-Through Mode
  - ♦ Short to Battery and Short to V<sub>BUS</sub> Protection
  - Compatible with USB On-the-Go Specification
- Split Supplies SUP and SUPSW Minimize Power Consumption
- Fault Indication Active-Low Open-Drain Output
- Overtemperature and Short-Circuit Protection
- 5mm x 5mm, 28-Pin TQFN and Side Wettable QFND Packages
- ♦ -40°C to +125°C Operating Temperature Range

#### **Applications**

Automotive Radio and Navigation USB Port for Host and Hub Applications Automotive Connectivity Telematics Dedicated USB Power Charger

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **ABSOLUTE MAXIMUM RATINGS**

| IN, D+, D-, CD0, CD1, FBPER,              | PGN   |
|-------------------------------------------|-------|
| FBMAX, SENSO, FBCAP to GND0.3V to +6V     | Outp  |
| FAULT, FOSC, BIAS, SYNC to GND0.3V to +6V | Cont  |
| D+, D-, to IN+0.3V                        | Sic   |
| HVD+, HVD- to GND0.3V to +18V             | TC    |
| SENSN, SENSP to GND0.3V to +30V           | Ope   |
| SENSP to SENSN6.0V to +6.0V               | Junc  |
| SUP, SUPSW, LX, ENBUCK to GND0.3V to +42V | Stora |
| SUP to SUPSW0.3V to +0.3V                 | Lead  |
| BST to GND0.3V to +47V                    | Sold  |
| BST to LX0.3V to +6V                      |       |

| PGND to GND                                          | 0.3V to +0.3V      |
|------------------------------------------------------|--------------------|
| Dutput Short-Circuit Duration                        | Continuous         |
| Continuous Power Dissipation ( $T_A = 70^{\circ}C$ ) |                    |
| Side-Wettable QFND (derate 33.3mW/°C abo             | ve +70°C).2666.7mW |
| TQFN (derate 34.5mW/°C above +70°C)                  | )2759mW            |
| Operating Temperature Range                          | 40°C to +125°C     |
| Junction Temperature                                 | +150°C             |
| Storage Temperature Range                            | 65°C to +150°C     |
| _ead Temperature (soldering, 10s)                    | +300°C             |
| Soldering Temperature (reflow)                       | +260°C             |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### PACKAGE THERMAL CHARACTERISTICS (Note 1)

| Side-Wettable QFND                                     |        |
|--------------------------------------------------------|--------|
| Junction-to-Ambient Thermal Resistance $(\theta_{JA})$ | 30°C/W |
| Junction-to-Case Thermal Resistance $(\theta_{JC})$    | .2°C/W |

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

#### **ELECTRICAL CHARACTERISTICS**

(V<sub>SUP</sub> = V<sub>SUPSW</sub> = 14V, V<sub>ENBUCK</sub> = V<sub>IN</sub> = 3.3V, T<sub>A</sub> = T<sub>J</sub> = -40°C to +125°C, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                               | SYMBOL               | CONDITIONS                                               | MIN  | ТҮР  | MAX  | UNITS |
|-----------------------------------------|----------------------|----------------------------------------------------------|------|------|------|-------|
| POWER SUPPLY AND ENABLE                 |                      |                                                          |      |      |      |       |
| Supply Voltage Range                    | V <sub>SUP</sub>     | Normal operation                                         | 4.5  |      | 28   | V     |
| Load Dump Event Supply<br>Voltage Range | V <sub>SUP_LD</sub>  | t < 1s (Note 3)                                          |      |      | 42   | V     |
|                                         |                      | $V_{IN} = 0V$                                            |      | 6    | 20   | μA    |
| Supply Current                          | I <sub>SUP</sub>     | V <sub>SYNC</sub> = 0V, no load, skip mode               |      | 620  | 950  | μA    |
|                                         |                      | V <sub>SYNC</sub> = 3.3V, no load, FPWM mode<br>(Note 3) |      | 9    |      | mA    |
| BIAS Voltage                            | V <sub>BIAS</sub>    | $5.75V \le V_{SUP} = V_{SUPSW} \le 28V$                  | 4.71 | 5    | 5.31 | V     |
| BIAS Current Limit                      |                      |                                                          | 40   | 120  |      | mA    |
| BIAS Undervoltage Lockout               | V <sub>UV_BIAS</sub> | V <sub>BIAS</sub> rising                                 | 3.93 | 4.2  | 4.46 | V     |
| BIAS Undervoltage Lockout<br>Hysteresis |                      |                                                          |      | 0.36 |      | V     |
| IN Voltage Range                        | V <sub>IN</sub>      |                                                          | 3.0  |      | 3.6  | V     |
| IN Enable High                          | V <sub>IN_IH</sub>   |                                                          | 1.6  |      |      | V     |
| IN Enable Low                           | V <sub>IN_IL</sub>   |                                                          |      |      | 0.5  | V     |

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{SUP} = V_{SUPSW} = 14V, V_{ENBUCK} = V_{IN} = 3.3V, T_A = T_J = -40^{\circ}C$  to +125°C, unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

| PARAMETER                                        | SYMBOL                                    | CONDITIONS                                                                                                                                          | MIN  | ТҮР  | MAX  | UNITS |
|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| IN Overvoltage Lockout                           | V <sub>IN_OVLO</sub>                      | V <sub>IN</sub> rising                                                                                                                              | 3.85 | 4.0  | 4.15 | V     |
| IN Input Current                                 | l <sub>IN</sub>                           |                                                                                                                                                     |      | 5    | 10   | μA    |
| ENBUCK Enable High                               | VENBUCK_IH                                |                                                                                                                                                     | 2.4  |      |      | V     |
| ENBUCK Enable Low                                | VENBUCK_IL                                |                                                                                                                                                     |      |      | 0.6  | V     |
| ENBUCK Hysteresis                                |                                           |                                                                                                                                                     |      | 0.15 |      | V     |
| ENBUCK Input Leakage                             |                                           | V <sub>ENBUCK</sub> = 42V                                                                                                                           |      | 0.01 | 1    | μA    |
| D+, D- ANALOG USB SWITCHES                       |                                           |                                                                                                                                                     |      |      |      |       |
| Analog Signal Range                              |                                           | Guaranteed by R <sub>ON</sub> measurement<br>(Note 3)                                                                                               | 0    |      | 3.6  | V     |
| Protection Trip Threshold                        | V <sub>OV_D</sub>                         |                                                                                                                                                     | 3.7  | 3.85 | 4.15 | V     |
| Protection Response Time                         | t <sub>FP_D</sub>                         | $      V_{IN} = 4.0V, V_{HVD\pm} = 3.3V \text{ to } 4.3V \text{ step}, \\       R_L = 15k\Omega \text{ on } D\pm, \text{ delay to } V_{D\pm} < 3V $ |      | 5    |      | μs    |
| Overvoltage Blanking Timeout<br>Period           | <sup>t</sup> B,OV_D                       | From overvoltage condition to FAULT asserted                                                                                                        |      | 18   | 30   | ms    |
| On-Resistance Switch A                           | R <sub>ON_SA</sub>                        | $I_L = 5mA$ , $0V \le V_{D\pm} \le 3.6V$                                                                                                            |      | 4    |      | Ω     |
| On-Resistance Match Between<br>Channels Switch A | ∆R <sub>ON_SA</sub>                       | $I_L = 5mA, V_{D} = 1.5V \text{ or } 3.0V$                                                                                                          |      | 10   | 150  | mΩ    |
| On-Resistance Flatness Switch A                  | R <sub>FLAT(ON)A</sub>                    | $I_{L} = 5mA, V_{D} = 0V \text{ or } 0.4V$                                                                                                          |      | 10   |      | mΩ    |
| On Resistance of HVD+/HVD-<br>Short              | R <sub>SHORT</sub>                        | $V_{DP} = 1V, I_{DM} = 500 \mu A$                                                                                                                   |      | 90   | 180  | Ω     |
|                                                  |                                           | $V_{HVD\pm} = 0V$                                                                                                                                   | -0.1 | 0    | +0.1 |       |
|                                                  | 'HVD_ON                                   | $V_{HVD\pm} = 3.6V$                                                                                                                                 |      | 2.5  |      | μΑ    |
| HVD+/HVD- Off-Leakage Current                    | I <sub>HVD_OFF</sub>                      | $V_{HVD\pm} = 18V, V_{D\pm} = 0V$                                                                                                                   |      | 12   |      | μA    |
| D+/D- Off-Leakage Current                        | I <sub>D_OFF</sub>                        | $V_{HVD\pm} = 18V, V_{D\pm} = 0V$                                                                                                                   | -1   |      | +1   | μA    |
| On-Channel -3dB Bandwidth                        | BW                                        | $R_L = 50\Omega$ , source impedance $50\Omega$ (Figure 3)                                                                                           |      | 400  |      | MHz   |
| Crosstalk                                        | V <sub>CT</sub>                           | $R_L = 50\Omega$ , f = 480MHz (Figure 3)                                                                                                            |      | -14  |      | dB    |
| On-Capacitance Switch A                          | C <sub>ON</sub>                           | f = 240MHz, V <sub>BIAS</sub> = 250mV,<br>V = 500mV <sub>P-P</sub>                                                                                  |      | 15   |      | рF    |
| Rise-Time Propagation Delay                      | t <sub>PLH</sub>                          | $R_{S} = R_{L} = 50\Omega$                                                                                                                          |      | 200  |      | ps    |
| Fall-Time Propagation Delay                      | t <sub>PHL</sub>                          | $R_{S} = R_{L} = 50\Omega$                                                                                                                          |      | 200  |      | ps    |
| Output Skew Between Switches                     | <sup>t</sup> SK(O)                        | Skew between D+ and D- switch, $R_L=50\Omega$                                                                                                       |      | 50   |      | ps    |
| Output Skew Same Switch                          | t <sub>SK(P)</sub>                        | Skew between opposite transitions in same switch, $R_L$ = 50 $\Omega$                                                                               |      | 50   |      | ps    |
| CURRENT-SENSE AMP (SENSP                         | , SENSN, FBM                              | IAX, SENSO)                                                                                                                                         |      |      |      |       |
| FBMAX, SENSO<br>Transconductance                 | G <sub>SENSO,</sub><br>G <sub>FBMAX</sub> | I/(V <sub>SENSP</sub> - V <sub>SENSN</sub> ),<br>V <sub>SENSP</sub> = 5.25V                                                                         |      | 2.50 |      | mA/V  |

Maxim Integrated

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{SUP} = V_{SUPSW} = 14V, V_{ENBUCK} = V_{IN} = 3.3V, T_A = T_J = -40^{\circ}C$  to +125°C, unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

| PARAMETER                                          | SYMBOL                                     | CONDITIONS                                                                                                            | MIN  | TYP   | MAX  | UNITS |
|----------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|-------|------|-------|
| SENSO, FBMAX Voltage Range                         | V <sub>SENSO</sub> ,<br>V <sub>FBMAX</sub> |                                                                                                                       | 0    |       | 1.2  | V     |
| Input Differential Voltage Range                   | $\Delta V_{SENSO}, \ \Delta V_{FBMAX}$     | V <sub>SENSP</sub> - V <sub>SENSN</sub>                                                                               | 0    |       | 120  | mV    |
| Bandwidth of Transconductance                      |                                            | Determined by external RC time constant; assumed R = $10k\Omega$ , and C = $10pF$                                     |      | 1     |      | MHz   |
| SENSP Pulldown Resistance                          | R <sub>SENSP_DIS</sub>                     | V <sub>SENSP</sub> = 5.05V, V <sub>ENBUCK</sub> = 0V or<br>CD1 toggle; going into and out of auto-<br>detection modes |      | 300   | 600  | Ω     |
| SENSP Discharge Time Upon<br>CD1 Toggle            | <sup>t</sup> SENSP_DIS                     | CD1 toggle; going into and out of auto-<br>detection modes                                                            | 0.5  | 1.1   | 2    | S     |
| SENSP Input Bias Current                           | tSENSP_LK                                  | $V_{SENSP} = 5.05V$                                                                                                   |      | 130   | 230  | μA    |
| SENSN Input Bias Current                           | t <sub>SENSN_LK</sub>                      | $V_{SENSN} = 5.05V$                                                                                                   |      | 70    | 120  | μA    |
| SENSP Voltage Range                                |                                            |                                                                                                                       | 3.2  |       | 28   | V     |
| SENSN Overvoltage Threshold                        | VOV SENSN                                  |                                                                                                                       | 6.8  | 7     | 7.1  | V     |
| SENSP Undervoltage Threshold                       | VUV SENSP                                  |                                                                                                                       | 4.64 | 4.75  | 4.81 | V     |
| SENSN Protection Response<br>Time                  | tov_sensn                                  |                                                                                                                       |      | 8     |      | μs    |
| SENSN Overvoltage Fault<br>Blanking Timeout Period | <sup>t</sup> B,OV_SENSN                    | From overvoltage condition to FAULT asserted                                                                          | 3    | 10    | 20   | ms    |
| SENSO CURRENT LIMIT RELAT                          | IONSHIP                                    |                                                                                                                       |      |       |      |       |
| SENSO ILIMIT Threshold                             | V <sub>TH_ILIM</sub>                       | SENSO rising, threshold used to set DC current limit                                                                  |      | 1.20  |      | V     |
| Continuous Current-Limit Fault<br>Blanking Timeout | t <sub>B,ILIM</sub>                        | From overcurrent condition to FAULT asserted                                                                          | 9    | 16.5  | 27   | ms    |
| ANALOG FEEDBACK ADJ                                |                                            |                                                                                                                       |      |       |      |       |
| SENSP Analog Adjustment Gain                       |                                            | V <sub>FBPER</sub> = 3.3V                                                                                             |      | 0.535 |      | V/V   |
| $\Delta V_{SENSP} / \Delta V_{FBMAX}$              | ASENSP                                     | $V_{\text{FBPER}} = 0V$                                                                                               |      | 1.069 |      | V/V   |
| Maximum Feedback Adjustment (compared to SENSP)    |                                            | $V_{FBPER} = 0V, V_{FBMAX} = 1.2V$                                                                                    |      | 25    |      | %     |
| Maximum Feedback Adjustment<br>(compared to SENSP) |                                            | V <sub>FBPER</sub> = 3.3V, V <sub>FBMAX</sub> = 1.2V                                                                  |      | 12.5  |      | %     |
| FBMAX Maximum Adjustment<br>Threshold              |                                            |                                                                                                                       |      | 1.2   |      | V     |
| CD0, CD1, FBPER INPUT                              |                                            |                                                                                                                       |      |       |      |       |
| Input Current                                      |                                            | $V_{PIN} = 5.5V$ , internal $2M\Omega$ pulldown to GND                                                                |      | 2.8   | 5.6  | μA    |
| Logic-High                                         | VIH                                        |                                                                                                                       | 1.6  |       |      | V     |
| Logic-Low                                          | V <sub>IL</sub>                            |                                                                                                                       |      |       | 0.5  | V     |

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{SUP} = V_{SUPSW} = 14V, V_{ENBUCK} = V_{IN} = 3.3V, T_A = T_J = -40^{\circ}C$  to +125°C, unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

| PARAMETER                            | TER SYMBOL CONDITIONS   |                                                                                                                            | MIN   | ТҮР   | MAX   | UNITS |
|--------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| <b>USB 2.0 HOST CHARGER DETE</b>     | CTION, D+/D-            |                                                                                                                            |       |       |       |       |
| Input Logic-High                     | V <sub>IH</sub>         |                                                                                                                            | 2.0   |       |       | V     |
| Input Logic-Low                      | V <sub>IL</sub>         |                                                                                                                            |       |       | 0.8   | V     |
| Data Sink Current                    | IDAT_SINK               | $V_{DAT_SINK} = 0.25V$ to 0.4V                                                                                             | 50    | 100   | 160   | μA    |
| Data Detect Voltage High             | V <sub>DAT_REFH</sub>   |                                                                                                                            | 0.4   |       |       | V     |
| Data Detect Voltage Low              | V <sub>DAT_REFL</sub>   |                                                                                                                            |       |       | 0.25  | V     |
| Data Detect Voltage Hysteresis       | V <sub>DAT_HYST</sub>   |                                                                                                                            |       | 55    |       | mV    |
| Data Source Voltage                  | VDAT_SRC                |                                                                                                                            | 0.5   |       | 0.7   | V     |
| Data Source Load Current             | IDAT_SRC                |                                                                                                                            |       |       | 200   | μA    |
| iPhone/iPad/DCP CHARGER DE           | TECTION                 |                                                                                                                            |       |       |       |       |
| HVD+/HVD- Short Pulldown             | R <sub>PD</sub>         |                                                                                                                            | 300   | 500   | 750   | kΩ    |
| RP1/RP2 Ratio                        | RT <sub>RP</sub>        |                                                                                                                            | 1.485 | 1.5   | 1.515 | Ratio |
| RM1/RM2 Ratio                        | RT <sub>RM</sub>        |                                                                                                                            | 0.857 | 0.866 | 0.875 | Ratio |
|                                      |                         | iPhone mode, DM falling (in % of $V_{BIAS}$ )                                                                              | 45    | 46    | 47    | 0/    |
| DMT Comparator Threshold             | VDM1F                   | iPad mode, DM falling (in % of V <sub>BIAS</sub> )                                                                         | 29    | 30    | 31    | %     |
| DM2 Comparator Threshold             | V <sub>DM2F</sub>       | DM falling (in % of V <sub>BIAS</sub> )                                                                                    | 6     | 7     | 8     | %     |
| DD Componenter Threehold             | V <sub>DPR</sub>        | iPhone mode, DP rising (in % of V <sub>BIAS</sub> )                                                                        | 45    | 46    | 47    | 0/    |
| DP Comparator Infeshold              |                         | iPad mode, DP rising (in % of V <sub>BIAS</sub> )                                                                          | 55.9  | 57.2  | 58.5  | 70    |
| DM1 Comparator Debounce Time         | t <sub>DM1</sub>        | V <sub>DM1</sub> step from 2.8V to 1.5V                                                                                    | 4     | 9     | 15    | ms    |
| DM2 Comparator Debounce Time         | t <sub>DM2</sub>        | V <sub>DM2</sub> step from 2.0V to 0.2V                                                                                    | 1     | 2     | 4     | S     |
| DP Comparator Debounce Time          | t <sub>DP</sub>         | V <sub>DP</sub> step from 1.5V to 2.5V                                                                                     | 600   | 1100  | 1800  | μs    |
| SYNCHRONOUS STEP-DOWN D              | C-DC CONVE              | RTER                                                                                                                       |       |       |       |       |
| PWM Output Voltage Accuracy          | V <sub>SENSP</sub>      | $7V \leq V_{SUPSW} \leq 18V,$ no load, $V_{SYNC}$ = 3.3V or $V_{SYNC}$ = 0V and FPWM mode (see TOC 24)                     |       | 5.05  |       | V     |
| Skip Mode Output Voltage<br>Accuracy | V <sub>SENSP_SKIP</sub> | $7V \le V_{SUPSW} \le 18V$ , no load, $V_{SYNC} = 0V$ , not in FPWM mode (Note 3)                                          | 4.96  | 5.05  | 5.25  | V     |
| Load Regulation                      |                         | $\begin{array}{l} 7V \leq V_{SUPSW} \leq \!\!\! 18V,  0A < I_{LOAD} < 2.1A, \\ V_{FBMAX} = GND \; (Note \; 3) \end{array}$ |       | 1.2   |       | %/A   |
|                                      | Vornor                  | $V_{SUPSW} = 16V$ , $I_{LOAD} = 2.1A$ ; $V_{FBPER} = 0V$ , $V_{FBMAX} = 1.2V$ , $V_{SYNC} = 0V$ and FPWM mode (Note 3)     | 6     | 6.15  | 6.3   | V     |
|                                      | * SENSP                 | $V_{SUPSW} = 8V$ , $I_{LOAD} = 2.1A$ ; $V_{FBPER} = 0V$ , $V_{FBMAX} = 1.2V$ , $V_{SYNC} = 0V$ and FPWM mode (Note 3)      | 6     | 6.15  | 6.3   | v     |
| Oscillator Fraguency                 | form                    | $R_{FOSC} = 68k\Omega$                                                                                                     | 380   | 440   | 480   | kHz   |
|                                      | ISW                     | $R_{FOSC} = 12k\Omega$                                                                                                     | 2.0   | 2.2   | 2.4   | MHz   |

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{SUP} = V_{SUPSW} = 14V, V_{ENBUCK} = V_{IN} = 3.3V, T_A = T_J = -40^{\circ}C$  to +125°C, unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

| PARAMETER                            | SYMBOL               | CONDITIONS                              | MIN  | ТҮР  | МАХ | UNITS |
|--------------------------------------|----------------------|-----------------------------------------|------|------|-----|-------|
| Spread-Spectrum Range                |                      | MAX16984S only                          |      | 6.5  |     | %     |
| SYNC Switching Threshold Hi          | V <sub>SYNC_HI</sub> | Rising                                  | 1.4  |      |     | V     |
| SYNC Switching Threshold Lo          | V <sub>SYNC</sub> LO | Falling                                 |      |      | 0.4 | V     |
| SYNC Internal Pulldown               |                      |                                         |      | 200  | 550 | kΩ    |
| SYNC Input Clock Acquisition<br>Time | <sup>t</sup> SYNC    | (Note 3)                                |      | 1    |     | Cycle |
| High-Side Switch On Resistance       | R <sub>ONH</sub>     | $I_{LX} = 1A$                           |      | 200  | 450 | mΩ    |
| Low-Side Switch On Resistance        | R <sub>ONL</sub>     | $I_{LX} = 500 \text{mA}$                |      | 1    | 2   | Ω     |
| BST Input Current                    | I <sub>BST</sub>     | $V_{BST}$ - $V_{LX}$ = 5V, high side on |      | 1.2  | 2   | mA    |
| LX Current-Limit Threshold           |                      | Peak Inductor current                   | 2.7  | 3.6  | 4.7 | A     |
| Skip Mode Peak Current<br>Threshold  | I <sub>SKIP_TH</sub> |                                         |      | 300  |     | mA    |
| Negative Current Limit               |                      |                                         | 0.65 | 0.85 | 1.1 | A     |
| Soft-Start Ramp Time                 | t <sub>SS</sub>      |                                         |      | 9    |     | ms    |
| FAULT OUTPUT                         |                      |                                         |      |      |     |       |
| Output-High Leakage Current          |                      | VFAULT = 5.5V                           | -5   |      | +5  | μA    |
| Output Low Level                     |                      | Sinking 1mA                             |      | 0.03 | 0.4 | V     |
| THERMAL OVERLOAD                     |                      |                                         |      |      |     |       |
| Thermal Shutdown Temperature         |                      |                                         |      | +174 |     | °C    |
| Thermal Shutdown Hysteresis          |                      |                                         |      | 30   |     | °C    |
| ESD PROTECTION (ALL PINS)            |                      |                                         |      |      |     |       |
| ESD Protection Level                 | V <sub>ESD</sub>     | Human Body Model                        |      | ±2   |     | kV    |
| ESD PROTECTION (HVD+, HVD-)          |                      |                                         |      |      |     |       |
|                                      |                      | ISO 10605 Air Gap                       |      | ±25  |     | kV    |
|                                      |                      | ISO 10605 Contact                       |      | ±8   |     | kV    |
| FSD Protection Level                 | Veran                | IEC 61000-4-2 Air Gap                   |      | ±15  |     | kV    |
|                                      | * ESD                | IEC 61000-4-2 Contact                   |      | ±8   |     | kV    |
|                                      |                      | 330Ω, 330pF Air                         |      | ±15  |     | kV    |
|                                      |                      | 330Ω, 330pF Contact                     |      | ±8   |     | kV    |

Note 2: Specifications with minimum and maximum limits are 100% production tested at T<sub>A</sub> = +25°C and are guaranteed over the operating temperature range by design and characterization. Actual typical values may vary and are not guaranteed.
Note 3: Guaranteed by design and bench characterization; not production tested.

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

**Pin Configuration** 



### **Pin Description**

| PIN | NAME  | FUNCTION                                                                                                                                                                                                                                                    |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | FAULT | Active-Low Open-Drain Fault Indicator Output. Connect a 100k $\Omega$ pullup resistor to IN.                                                                                                                                                                |
| 2   | SYNC  | Synchronization Input. The device synchronizes to an external signal applied to SYNC. When connected to GND or unconnected, skip mode is allowed under light loads. See Table 1. When connected to a clock source or IN, forced-PWM (FPWM) mode is enabled. |
| 3   | FOSC  | Resistor-Programmable Switching-Frequency Setting Control Input. Connect a resistor from FOSC to GND to set the switching frequency.                                                                                                                        |
| 4   | CD0   | Charger Detection Configuration Bit 0                                                                                                                                                                                                                       |
| 5   | CD1   | Charger Detection Configuration Bit 1                                                                                                                                                                                                                       |
| 6   | I.C.  | Internal Connection. Must be connected to external GND.                                                                                                                                                                                                     |
| 7   | FBPER | Digital Input. Used to select voltage feedback adjustment percentage.                                                                                                                                                                                       |
| 8   | IN    | Logic Enable Input. Connect to I/O voltage of USB transceiver. IN is also used for clamping during overvoltage events on HVD+ or HVD Connect a $1\mu$ F ceramic capacitor from IN to GND.                                                                   |
| 9   | D+    | USB Differential Data D+ Input. Connect D+ to low-voltage USB transceiver D+ pin.                                                                                                                                                                           |
| 10  | D-    | USB Differential Data D- Input. Connect D- to low-voltage USB transceiver D- pin.                                                                                                                                                                           |
| 11  | N.C.  | No Connection                                                                                                                                                                                                                                               |
| 12  | HVD-  | High-Voltage-Protected USB Differential Data D- Output. Connect HVD- directly to the USB connector D- pin.                                                                                                                                                  |

# Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

| PIN      | NAME   | FUNCTION                                                                                                                                                                                                                                       |
|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13       | HVD+   | High-Voltage-Protected USB Differential Data D+ Output. Connect HVD+ directly to the USB connector D+ pin.                                                                                                                                     |
| 14       | GND    | Analog Ground                                                                                                                                                                                                                                  |
| 15       | FBMAX  | Current-Sense Amp Output. Connect a resistor to GND to set the USB DC current level at which maximum voltage feedback adjustment is reached.                                                                                                   |
| 16       | FBCAP  | External Capacitor Connection. Connect a capacitor to GND to set voltage feedback adjustment bandwidth                                                                                                                                         |
| 17       | SENSO  | Current-Sense Amp Output. Connect a resistor to GND to set the maximum USB DC current limit                                                                                                                                                    |
| 18       | SENSN  | Current-Sense Amp Negative Input. Connect to negative terminal of current-sense resistor                                                                                                                                                       |
| 19 SENSP |        | DC-DC Converter Feedback Input and Current-Sense Amp Positive Input. Connect to positive terminal of current-sense resistor and the main output of the converter. Used for internal voltage regulation loop.                                   |
| 20       | BIAS   | 5V Linear Regulator Output. Connect a 1µF ceramic capacitor from BIAS to GND. BIAS powers up the internal circuitry.                                                                                                                           |
| 21       | SUP    | Voltage Supply Input. SUP is the supply pin for the internal linear regulator. Connect a minimum of 4.7µF capacitor from SUP to GND close to the IC.                                                                                           |
| 22       | BST    | High-Side Driver Supply. Connect a 0.1µF capacitor from BST to LX.                                                                                                                                                                             |
| 23, 24   | LX     | Inductor Connection. Connect a rectifying Schottky diode between LX and GND. Connect an inductor from LX to the DC-DC converter output (SENSP).                                                                                                |
| 25, 26   | SUPSW  | Internal High-Side Switch-Supply Input. SUPSW provides power to the internal switch. Connect a $4.7\mu$ F ceramic capacitor in parallel with a $47\mu$ F capacitor from SUPSW to PGND. See the <i>DC-DC Input Capacitor Selection</i> section. |
| 27       | PGND   | Power Ground                                                                                                                                                                                                                                   |
| 28       | ENBUCK | Battery-Compatible Enable Input. Drive ENBUCK low/high to disable/enable the switching regulator.                                                                                                                                              |
| _        | EP     | Exposed Pad. Connect EP to a large-area contiguous copper ground plane for effective power dissipation. Do not use as the only IC ground connection. EP must be connected to GND.                                                              |

### **Pin Description (continued)**

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator



#### **Functional Diagram**

### **Detailed Description**

The MAX16984 combines a 5V/2.1A automotive grade step-down converter, a USB host charger adapter emulator, and USB protection switches. It is designed for high-power USB ports in automotive radio, navigation, connectivity, and USB hub applications.

The USB protection switches provide high-ESD and short-circuit protection for the low-voltage internal data lines of the multimedia processor's USB transceiver and support USB Hi-Speed (480Mbps) and USB Full-Speed (12Mbps) pass-through operation. The MAX16984 features integrated host-charger port-detection circuitry adhering to the USB 2.0 Battery Charging Specification BC1.2 and also includes dedicated bias resistors for iPod/iPhone 1.0A and iPad 2.1A dedicated charging modes.

The high-efficiency step-down DC-DC converter operates from a voltage up to 28V and is protected from load dump transients up to 42V. The device includes resistor-programmable frequency selection from 220kHz to 2.2MHz to allow optimization of efficiency, noise, and board space based on the application requirements. The converter can deliver up to 2.1A of continuous current at  $105^{\circ}$ C.

The MAX16984 also includes a high-side current-sense amplifier and configurable feedback adjustment circuit designed to provide automatic USB voltage adjustment to compensate for voltage drops in captive cables associated with automotive applications.

#### **Power-Up and Enabling** System Enable (IN)

IN is used as the main enable to the MAX16984 and is also used to clamp the D+ and D- pins during an ESD and short-to-battery on the HVD+ and HVD- pins. This clamping protects the downstream USB transceiver. The IN pin contains an overvoltage lockout that disables the data switches if IN is above  $V_{IN_OVLO}$ . Bypass IN with a 1µF capacitor and connect it to the same 3.3V supply as shared with the multimedia processor's USB transceiver. If IN is logic-high, the protection switches are enabled and the USB switches operate in one of four modes per the CD0 and CD1 inputs. If IN is at a logic-low level, SUP power consumption is reduced and the device enters a standby low quiescent level.

# Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator



**Typical Operating Circuit** 

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

| PART              | TEMP RANGE      | SPREAD SPECTRUM | PIN-PACKAGE       |
|-------------------|-----------------|-----------------|-------------------|
| MAX16984RAGI/VY+* | -40°C to +125°C | Disabled        | 28 QFND-EP** (SW) |
| MAX16984SAGI/VY+* | -40°C to +125°C | Enabled         | 28 QFND-EP** (SW) |
| MAX16984RATI/V+   | -40°C to +125°C | Disabled        | 28 TQFN-EP**      |
| MAX16984SATI/V+   | -40°C to +125°C | Enabled         | 28 TQFN-EP**      |

#### **Ordering Information**

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part.

\*Future product—contact factory for availability.

\*\*EP = Exposed pad.

(SW) = Side wettable.

#### **Chip Information**

PROCESS: BiCMOS

#### **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE<br>TYPE               | PACKAGE<br>CODE | OUTLINE<br>NO. | LAND<br>PATTERN NO. |
|-------------------------------|-----------------|----------------|---------------------|
| 28 QFND-EP<br>(Side Wettable) | G2855Y+2        | <u>21-0563</u> | <u>90-0375</u>      |
| 28 TQFN-EP                    | T2855+6         | <u>21-0140</u> | <u>90-0026</u>      |

## Automotive High-Current Step-Down Converter with USB Protection/Host Charger Adapter Emulator

#### **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION                                                                                                                | PAGES<br>CHANGED                               |
|--------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 0                  | 3/13             | Initial release                                                                                                            | —                                              |
| 1                  | 7/13             | Corrected values/figures, updated <i>Electrical Characteristics</i> table specs, and clarified spread-spectrum information | 3–6, 11, 12,<br>17, 19, 20, 22,<br>27, 28, 31, |



Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

#### Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2013 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

33