

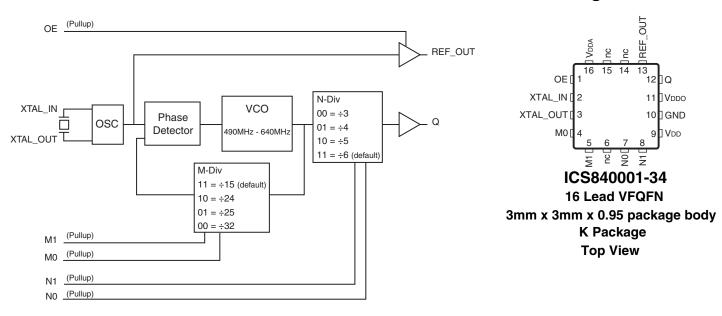
FEMTOCLOCKS™ CRYSTAL-TO-LVCMOS/LVTTL FREQUENCY SYNTHESIZER

ICS840001-34

General Description

The ICS840001-34 is a two output LVCMOS/LVTTL Synthesizer and a member of the HiPerClocks™ family of high performance devices from IDT. One output is the LVCMOS/LVTTL main synthesized clock output (Q) and one output is a three-state

LVCMOS/LVTTL reference clock (REF_OUT) output at the frequency of the crystal oscillator. The device can accept crystals from 15.3125MHz to 42.67MHz and can synthesize outputs from 81.67MHz to 213.33MHz. The ICS840001-34 is packaged in a 3mm x 3mm 16-pin VFQFN, making it ideal for use on space constrained boards..


Common Application Configuration Table

Features

- Two LVCMOS/LVTTL outputs, 22Ω typical output impedance One main clock output (Q) One three-state reference clock output (REF_OUT)
- Crystal oscillator interface can accept crystals from 15.3125MHz to 42.67MHz, 18pF parallel resonant crystal
- Q output frequency range: 81.67MHz to 213.33MHz
- RMS phase jitter @106.25, (637kHz 10MHz): 0.38ps (typical)
- VCO range: 490MHz to 640MHz
- Full 3.3V and 2.5V operating supply
- 0°C to 70°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

	Inputs				
Crystal (MHz)	M Divider	VCO (MHz)	N Divider	Output Frequency (MHz)	Application
40	15	600	6	100 (default)	Serial Attached (SCSI), PCI Express, Processor Clock
26.5625	24	637.5	6	106.25	Fibre Channel
40	15	600	4	150	Serial ATA (SATA), Processor Clock
26.5625	24	637.5	3	212.5	Fibre Channel 2
25	25	625	5	125	Ethernet
25	25	625	4	156.25	10 Gigabit Ethernet
22.5	25	562.5	3	187.5	12 Gigabit Ethernet
19.44	32	622.08	4	155.52	SONET

Block Diagram

IDT™ / ICS™ LVCMOS/LVTTL FREQUENCY SYNTHESIZER

1

Pin Assignment

Number	Name	Ту	pe	Description
1	OE	Input	Pullup	Output enable pin. When HIGH, REF_OUT output is enabled. When LOW, forces REF_OUT to Hi-Z state. See Table 3A. LVCMOS/LVTTL interface levels.
2, 3	XTAL_IN, XTAL_OUT	Input		Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
4, 5	M0, M1	Input	Pullup	M divider inputs. LVCMOS/LVTTL interface levels. See Table 3B.
6, 14, 15	nc	Unused		No connect.
7, 8	No, N1	Input	Pullup	Determines output divider value as defined in Table 3C. LVCMOS/LVTTL interface levels.
9	V _{DD}	Power		Core supply pin.
10	GND	Power		Power supply ground.
11	V _{DDO}	Power		Output supply pin.
12	Q	Output		Single-ended clock output. 22 Ω typical output impedance. LVCMOS/LVTTL interface levels.
13	REF_OUT	Output		Single-ended three-state reference clock output. 22 Ω typical output impedance. LVCMOS/LVTTL interface levels.
16	V _{DDA}	Power		Analog supply pin.

Table 1. Pin Descriptions

NOTE: Pullup refers to intenal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD} Power Dissi	Power Dissipation Capacitance	$V_{DD,} V_{DDO} = 3.465 V$		8		pF
OPD	Fower Dissipation Capacitance	$V_{DD,} V_{DDO} = 2.625 V$		6	30 36	pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
D	Output Impedance	$V_{DD,} V_{DDO} = 3.3V \pm 5\%$	14	22	30	Ω
R _{OUT}	Output impedance	$V_{DD,} V_{DDO} = 2.5V \pm 5\%$	16	26		Ω

Table 3A. Control Input Function Table

Control Input	Output
OE	REF_OUT
0	Hi-Z
1	Active (default)

Table 3B. M Divider Function Table

Contro	ol Inputs	
M1 M0		Feedback Divider Ratio
0	0	÷32
0	1	÷25
1	0	÷24
1	1	÷15 (default)

Table 3C. N Divider Function Table

Contro	ol Inputs	
N1	N0	Output Divider Ratio
0	0	÷3
0	1	÷4
1	0	÷5
1	1	÷6 (default)

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs,V _O	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	76.1°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.12	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				100	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				35	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.12	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				90	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				25	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M			$V_{DD} = 3.3V$	2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage		V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
V _{IL} Input Low Voltage		$V_{DD} = 3.3V$	-0.3		0.8	V	
	input Low Voltage		V _{DD} = 2.5V	-0.3		0.7	V
I _{IH}	Input High Current	OE, M0, M1, N0, N1	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μA
IIL	Input Low Current	OE, M0, M1, N0, N1	$V_{DD} = V_{IN} = 3.465V \text{ or}$ 2.625V	-150			μA
V	Output Lligh Voltage		V _{DDO} = 3.3V±5%	2.6			V
V _{OH}	Output High Voltage; NOTE 1		V _{DDO} = 2.5V±5%	1.8			V
V _{OL}	Output Low Voltage	; NOTE 1	V _{DDO} = 3.3V±5% or 2.5V±5%			0.5	V

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = 0^{\circ}$ C to 70°CC

NOTE 1: Outputs terminated with 50Ω to V_{DDO}/2. See Parameter Measurement Information, Output Load Test Circuit diagrams.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamenta	l	
Frequency		15.3125		42.67	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

AC Electrical Characteristics

Table 6A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		81.67		213.33	MHz
f _{OUT}	RMS Phase Jitter, Random;	100MHz, Integration Range: 637kHz – 10MHz		0.54		ps
ijit(Ø)	NOTE 1	106.25MHz, Integration Range: 637kHz – 10MHz		0.38		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		700	ps
		Q, N = 3	40		60	%
tjit(∅) t _R / t _F	Output Duty Cycle	Q, N ≠ 3	48		52	%
		REF_OUT	48		52	%

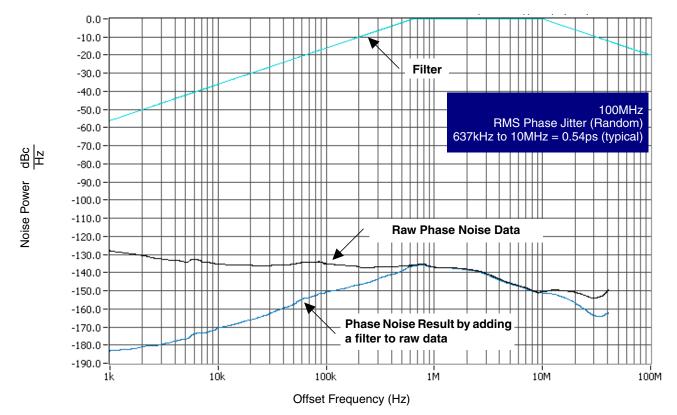
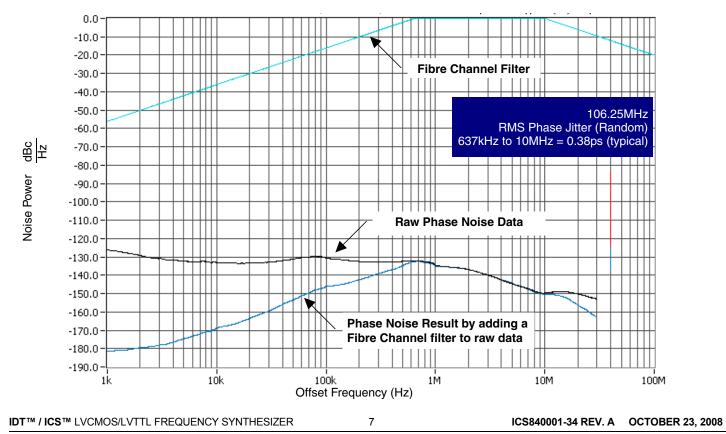
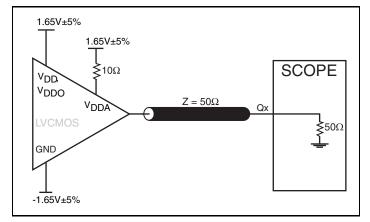
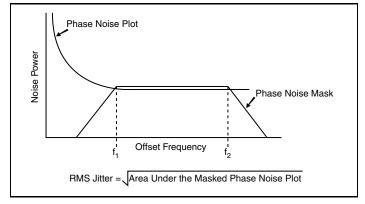

NOTE 1: Please refer to Phase Noise Plot.

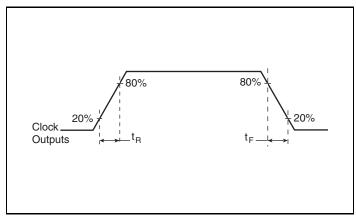
Table 6B. AC Characteristics, V_{DD} = V_{DDO} = 2.5V \pm 5%, T_{A} = 0°C to 70°C

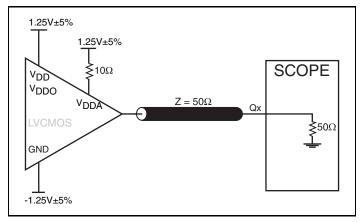

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
fout	Output Frequency		81.67		213.33	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 1	100MHz, Integration Range: 637kHz – 10MHz		0.54		ps
		106.25MHz, Integration Range: 637kHz – 10MHz		0.38		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	300		800	ps
odc	Output Duty Cycle	Q, N = 3	35		65	%
		Q, N ≠ 3	40		60	%
		REF_OUT	45		55	%

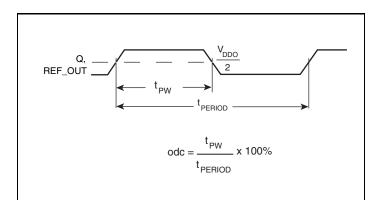
NOTE 1: Please refer to Phase Noise Plot.


Typical Phase Noise at 100MHz (3.3V)


Typical Phase Noise at 106.25MHz (3.3V)


Parameter Measurement Information


3.3V LVCMOS Output Load AC Test Circuit


RMS Phase Jitter

Output Rise/Fall Time

2.5V LVCMOS Output Load AC Test Circuit

Output Duty Cycle/Pulse Width/Period

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS40001-34 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} , and V_{DDO} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a 10Ω resistor along with a 10μ F and a $.01\mu$ F bypass capacitor should be connected to each V_{DDA} pin.

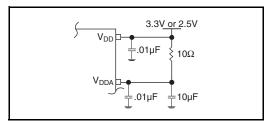


Figure 1. Power Supply Filtering

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins:

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A 1k Ω resistor can be used.

Crystal Input Interface

The ICS840001-34 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 26.5625MHz, 18pF

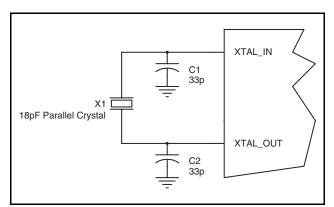


Figure 2. Crystal Input Interface

Outputs:

LVCMOS Output

All unused LVCMOS output can be left floating. There should be no trace attached.

parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

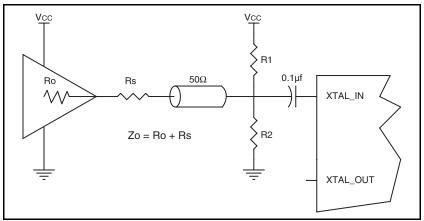


Figure 3. General Disgram for LVCMOS Driver to XTAL Input Interface

Thermal Release Path

The expose metal pad provides heat transfer from the device to the P.C. board. The expose metal pad is ground pad connected to ground plane through thermal via. The exposed pad on the device to the exposed metal pad on the PCB is contacted through solder

as shown in *Figure 4*. For further information, please refer to the Application Note on Surface Mount Assembly of Amkor's Thermally /Electrically Enhance Leadframe Base Package, Amkor Technology.

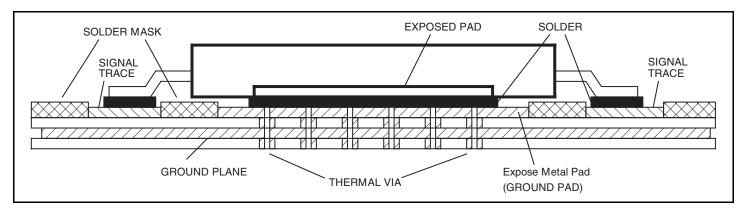
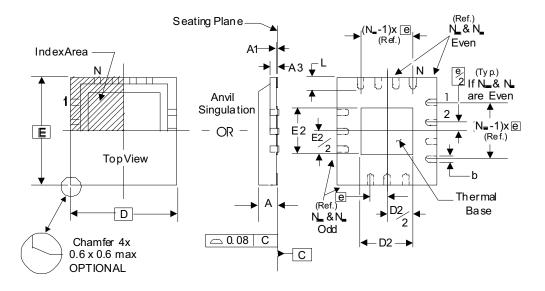


Figure 4. P.C. Board for Exposed Pad Thermal Release Path Example

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead VFQFN


θ _{JA} at 0 Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	76.1°C/W	66.5	59.7		

Transistor Count

The transistor count for ICS840001-34 is: 2805

Package Outline and Package Dimensions

Package Outline - K Suffix for 16 Lead VFQFN

Table 8. Package Dimensions

JEDEC Variation: VEED-2/-4 All Dimensions in Millimeters					
Symbol	Minimum	Maximum			
N	16				
Α	0.80	1.00			
A1	0	0.05			
A3	0.25 Ref.				
b	0.18	0.30			
N _D & N _E	4				
D&E	3.00 Basic				
D2 & E2	1.00	1.80			
е	0.50 Basic				
L	0.30	0.50			

Reference Document: JEDEC Publication 95, MO-220

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840001AK-34	1A34	16 Lead VFQFN	Tray	0°C to 70°C
840001AK-34T	1A34	16 Lead VFQFN	2500 Tape & Reel	0°C to 70°C
840001AK-34LF	A34L	"Lead-Free" 16 Lead VFQFN	Tray	0°C to 70°
840001AK-34LFT	A34L	"Lead-Free" 16 Lead VFQFN	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA