
MOS FET Relays

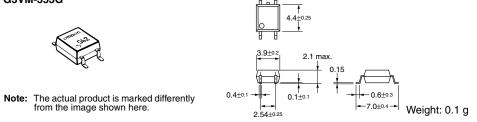
Analog-switching MOS FET Relay with SPST-NC Contacts.

- New models with SPST-NC contacts and a 4-pin SOP package included in 350-V load voltage series.
- Continuous load current of 120 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- RoHS Compliant.

Application Examples

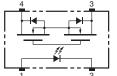
- Broadband systems
- Measurement devices and Data loggers
- Amusement machines

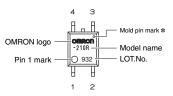
Note: The actual product is marked differently from the image shown here.


List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NC	Surface-mounting 350 VAC		G3VM-353G	100	
	terminals		G3VM-353G(TR)		2,500

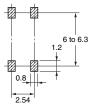
Dimensions


Note: All units are in millimeters unless otherwise indicated.


G3VM-353G

Terminal Arrangement/Internal Connections (Top View)

G3VM-353G

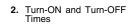


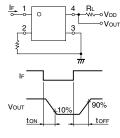
The actual product is marked differently from the image shown here.

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-353G

OMRON

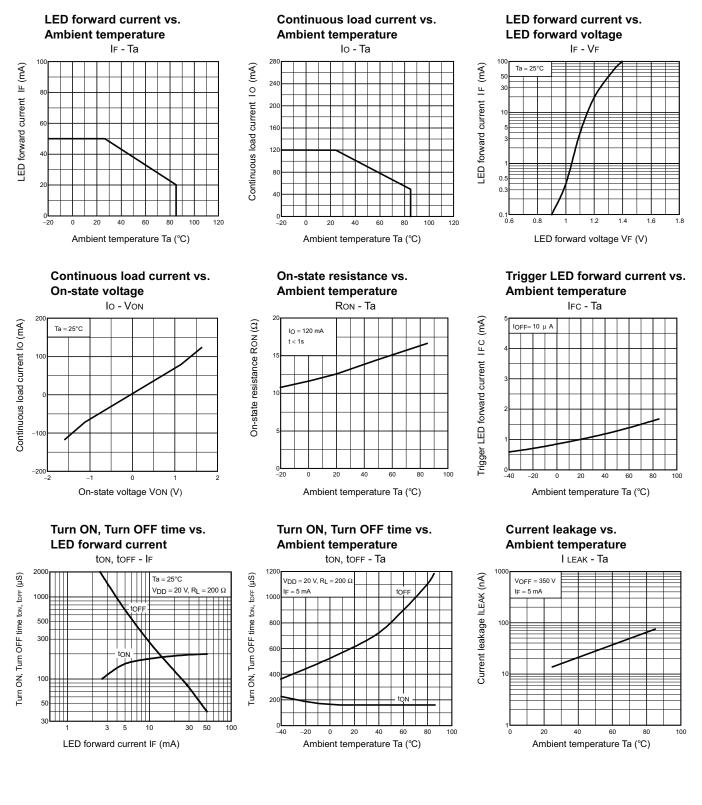

■ Absolute Maximum Ratings (Ta = 25°C)


Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	A	100 µs pulses, 100 pps
	LED forward current reduction rate	$\Delta I_{F}^{/\circ}C$	- 0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V _R	5	V	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V _{OFF}	350	V	
	Continuous load current (AC peak/DC)	I _o	120	mA	
	ON current reduction rate	$\Delta I_{ON}/^{\circ}C$	- 1.2	mA/°C	$T_a \ge 25^{\circ}C$
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Operati	ng temperature	Ta	– 40 to +85	°C	With no icing or condensation
Storage	orage temperature T _{stg} - 55		– 55 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions		
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	Note:	
	Reverse current	I _R			10	μA	V _R = 5 V		
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz	1	
	Trigger LED forward current	I _{FT}		1	3	mA	I _{OFF} = 10 μA	1	
Output	Maximum resistance with output ON	R _{ON}		15	25	Ω	l _o = 120 mA	1	
	Current leakage when the relay is open	I _{LEAK}		0.0105	1.0	μA	$V_{OFF} = 350 \text{ V}, I_F = 5 \text{ mA}$	1	
	Capacity between terminals	COFF		65		pF	V = 0, f = 1MHz, I _F = 5 mA		
Capacit	ty between I/O terminals	C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V	1	
Insulatio	on resistance	R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq \ 60\% \end{array}$		
Turn-ON time		t _{on}			1.0	ms	$I_{\rm F} = 5 \text{ mA}, R_{\rm L} = 200 \Omega,$	1	
Turn-OFF time		t _{OFF}			3.0	ms	$V_{DD} = 20 V$ (See note 2.)		


Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5		25	mA
Continuous load current (AC peak/DC)	I _o			120	mA
Operating temperature	T _a	- 20		65	°C

OMRON

■ Engineering Data G3VM-353G

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1c

06/13

Specifications subject to change without notice

Printed in USA