MOS FET Relays G3VM-21PR11

Smallest Class in market, USOP Package MOS FET Relay with High-power, 0.9A Switching in a 20-V Load Voltage Model.

- Dielectric strength of 500 Vrms between I/O
- C_{OFF} = 0.8 pF (typical) and R_{ON} = 0.18 Ω (typical).
- · RoHS compliant.

■ Application Examples

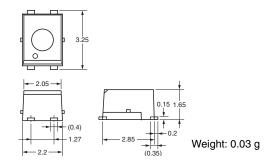
- Semiconductor inspection tools
- Measurement devices and Data loggers
- Communication equipment

Note: The actual product is marked differently from the image shown

■ List of Models

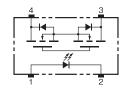
Package Type	Contact form	Terminals	Load voltage (peak value)	Model	Number per tape	
USOP4	SPST-NO		20 VAC or VDC	G3VM-21PR11		
	terminals			G3VM-21PR11(TR05)	500	
			G3VM-21PR11(TR)	1,500		

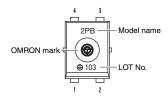
Note: Tape-cut USOP's are packaged without humidity resistance. Use manual soldering to mount them. Refer to the common precautions contained in the Technical Users Guide, "MOS FET Relays, Technical Information".


■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-21PR11




Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

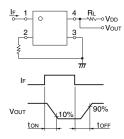
G3VM-21PR11

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-21PR11

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rating	Unit	Measurement Conditions	
Input	LED forward current	I _F	50	mA		No
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V _R	5	V		
	Connection temperature	T _J	125	°C		
Output	Load voltage (AC peak/DC)	V _{OFF}	20	V		
	Continuous load current (AC peak/DC)	Io	900	mA		
	ON current reduction rate	Δ I _{ON} /°C	-12	mA/°C	T _a ≥ 25°C	
	Pulse ON current	I _{OP}	2,700	mA	t=100ms, Duty=1/10	
	Connection temperature	T _J	125	°C		
	ric strength between input and (See note 1.)	V _{I-O}	500	V _{rms}	AC for 1 min	
Ambier	nt operating temperature	T _a	-40 to +85	°C	With no icing or condensation	
Ambier	nt Storage temperature	T _{stg}	-40 to +125	°C	With no icing or condensation	
Solderi	ng temperature		260	°C	10 s	

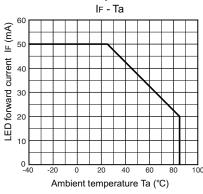

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

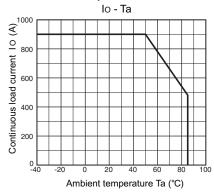
Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μА	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		0.6	3	mA	I _O = 100 mA
Output	Maximum resistance with output ON	R _{ON}		0.18	0.22	Ω	$I_F = 5 \text{ mA}, I_O = 900 \text{ mA}$ t < 1 s
	Current leakage when the relay is open	I _{LEAK}			1	nA	$V_{OFF} = 20 \text{ V}, T_a = 25^{\circ}\text{C}$
	Capacity between terminals	C _{OFF}		0.8	1.1	pF	V = 0, f = 100 MHz, t < 1 s
Capacity between I/O terminals		C _{I-O}		0.4		pF	f = 1 MHz, V _s = 0 V
Insulation resistance between I/O terminals		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC}, R_{oH} \le 60\%$
Turn-ON time		t _{ON}		0.5	2	ms	I_F = 5 mA, R_L = 200 Ω, V_{DD} = 10 V (See note 2.)
Turn-OFF time		t _{OFF}		0.1	1	ms	v _{DD} = 10 v (See Hote 2.)

2. Turn-ON and Turn-OFF Times

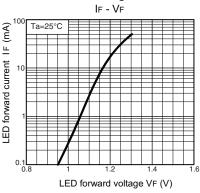
Note:

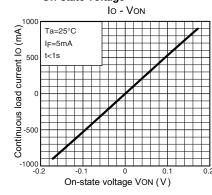

■ Recommended Operating Conditions

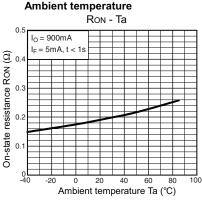
Use the G3VM under the following conditions so that the Relay will operate properly.

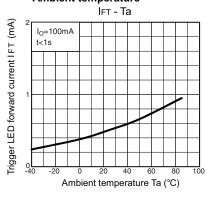

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			16	V
Operating LED forward current	I _F	5	7.5	20	mA
Continuous load current (AC peak/DC)	Io			700	mA
Ambient Operating temperature	Ta	-20		65	°C

■ Engineering Data

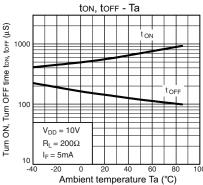

LED forward current vs. Ambient temperature

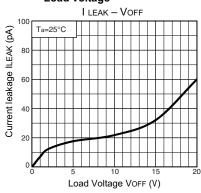

Continuous load current vs. Ambient temperature

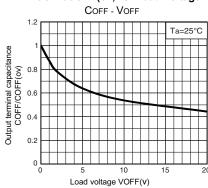

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage

On-state resistance vs.


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current


Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Load voltage

Output terminal capacitance COFF/COFF(ov) vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. K196-E-01

11/12

Specifications subject to change without notice

Printed in USA

OMRON ON-LINE

Global - http://www.omron.com

USA - http://www.components.omron.com

MOS FET Relays **G3VM-21PR11**