September 2013

FSB32560 Motion SPM[®] 3 Series

Features

- UL Certified No.E209204(SPMBC-027 Package)
- 600 V 25 A 3 phase IGBT Inverter Bridge Including Control ICs for Gate Driving and Protection
- Three Separate Negative DC-link Terminals for Inverter Current Sensing
- Single-Grounded Power Supply for Built-in HVIC
- Isolation Rating of 2500 Vrms/min.
- Low Thermal Resistance by Using Ceramic Substarte

General Description

FSB32560 Is A Motion SPM® 3 Series that Fairchild Has Developed to Provide A Very Compact and High Performance Inverter Solution for AC Motor Drives in Low-Power Applications Such as Air Conditioners. It Combines Optimized Circuit Protections and Drives Matched to Low-Loss IGBTs. The System Reliability Is Further Enhanced by The Integrated Under-Voltage Lock-Out and Over-Current Protection. The High Speed Built-In HVIC Provides Optocoupler-Less Single-Supply IGBT Gate Driving Capability that Further Reduces The Overall Size of The Inverter System Design. Each Phase Current of The Inverter Can Be Monitored Thanks to The Three Separate Negative DC Terminals.

RoHS compliant Applications

 Motion Control - Home Appliance / Industrial Motor Features

Resource

• AN-9035: Motion SPM® 3 Series Ver.2 User's Guide

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Packing Type	Quantity
FSB32560	FSB32560	SPMBA-027	-	RAIL	10

Integrated Power Functions

• 600 V - 25 A IGBT Inverter for Three-Phase DC/AC Power Conversion (Please Refer to Figure 3)

Integrated Drive, Protection and System Control Functions

- For Inverter High-Side IGBTs: Gate Drive Circuit, High Voltage Isolated High-Speed Level Shifting
 Control Circuit Under-Voltage (UV) Protection
 Note) Available Bootstrap Circuit Example is Given in Figures 10 and 11.
- For Inverter Low-Side IGBTs: Gate Drive Circuit, Short Circuit Protection (SC)
 Control Supply Circuit Under-Voltage (UV) Protection
- Fault Sgnaling: Corresponding to a UV Fault (Low-Side Supply)
- Input interface: Active High Interface, Can Work with 3.3 / 5 V Logic

Pin Configuration

Top View

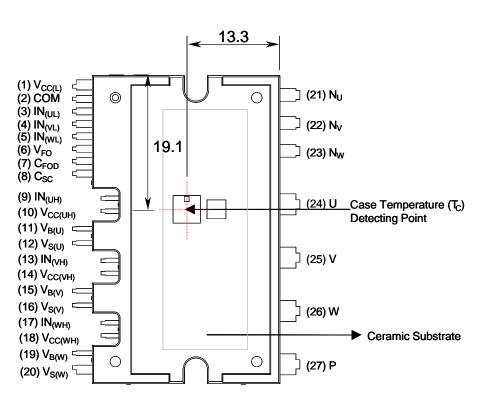
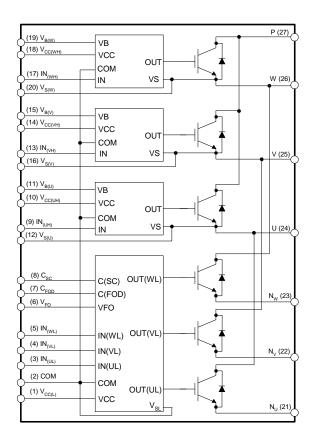



Figure 2.

Pin Descriptions

Pin Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM	Common Supply Ground
3	IN _(UL)	Signal Input for Low-side U Phase
4	IN _(VL)	Signal Input for Low-side V Phase
5	IN _(WL)	Signal Input for Low-side W Phase
6	V _{FO}	Fault Output
7	C _{FOD}	Capacitor for Fault Output Duration Time Selection
8	C _{SC}	Capacitor (Low-pass Filter) for Short-Current Detection Input
9	IN _(UH)	Signal Input for High-side U Phase
10	V _{CC(UH)}	High-side Bias Voltage for U Phase IC
11	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
12	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
13	IN _(VH)	Signal Input for High-side V Phase
14	V _{CC(VH)}	High-side Bias Voltage for V Phase IC
15	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
16	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
17	IN _(WH)	Signal Input for High-side W Phase
18	V _{CC(WH)}	High-side Bias Voltage for W Phase IC
19	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
20	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
21	N _U	Negative DC-Link Input for U Phase
22	N _V	Negative DC-Link Input for V Phase
23	N _W	Negative DC-Link Input for W Phase
24	U	Output for U Phase
25	V	Output for V Phase
26	W	Output for W Phase
27	Р	Positive DC-Link Input

Internal Equivalent Circuit and Input/Output Pins

Note

- 1. Inverter low-side is composed of three IGBTs, freewheeling diodes for each IGBT and one control IC. It has gate drive and protection functions.
- 2. Inverter power side is composed of four inverter dc-link input terminals and three inverter output terminals.
- 3. Inverter high-side is composed of three IGBTs, freewheeling diodes and three drive ICs for each IGBT.

Figure 3.

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified)

Inverter Part

Symbol	Parameter	Conditions	Rating	Units
V _{PN}	Supply Voltage	Applied between P- N _U , N _V , N _W	450	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P- N _U , N _V , N _W	500	V
V _{CES}	Collector-emitter Voltage		600	V
± I _C	Each IGBT Collector Current	T _C = 25°C	25	Α
		T _C = 100°C	12	Α
P _C	Collector Dissipation	T _C = 25°C per One Chip	29	W
TJ	Operating Junction Temperature	(Note 1)	-20 ~ 125	°C

Note

Control Part

Symbol	Parameter	Conditions	Rating	Units
V _{CC}	Control Supply Voltage	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$, $V_{CC(L)}$ - COM	20	V
V_{BS}	High-side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(VL)}$	-0.3~17	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3~V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	5	mA
V_{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Total System

Symbol	Parameter	Conditions	Rating	Units
V _{PN(PROT)}	Self Protection Supply Voltage Limit (Short Circuit Protection Capability)	$V_{CC} = V_{BS} = 13.5 \sim 16.5 \text{ V}$ $T_J = 125^{\circ}\text{C}$, Non-repetitive, less than 2µs	400	V
T _C	Module Case Operation Temperature	-20°C≤ T _J ≤ 125°C, See Figure 2	-20 ~ 100	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60Hz, Sinusoidal, AC 1 minute, Connection Pins to ceramic substrate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
R _{th(j-c)Q}	Junction to Case Thermal	Inverter IGBT part (per 1/6 module)	-	-	3.5	°C/W
R _{th(j-c)F}	Resistance	Inverter FWD part (per 1/6 module)	-	-	4.7	°C/W

Note

2. For the measurement point of case temperature($T_{\mbox{\scriptsize C}}$), please refer to Figure 2.

^{1.} The maximum junction temperature rating of the power chips integrated within the Motion SPM® 3 Product is $150^{\circ}C(@T_{C} \le 100^{\circ}C)$. However, to insure safe operation of the Motion SPM 3 Product, the average junction temperature should be limited to $T_{J(ave)} \le 125^{\circ}C(@T_{C} \le 100^{\circ}C)$.

$\textbf{Electrical Characteristics} \ \, (T_J = 25^{\circ}\text{C}, \, \text{Unless Otherwise Specified})$

Inverter Part

S	ymbol	Parameter	Condi	tions	Min.	Тур.	Max.	Units
V	CE(SAT)	Collector-Emitter Saturation Voltage	$V_{CC} = V_{BS} = 15 \text{ V}$ $I_{C} = 25 \text{ A}, T_{J} = 25^{\circ}\text{C}$ $V_{IN} = 5 \text{ V}$		-	2.15	2.85	V
	V_{F}	FWD Forward Voltage	V _{IN} = 0 V	$I_C = 25 \text{ A}, T_J = 25^{\circ}\text{C}$	-	2.20	2.90	V
HS	t _{ON}	Switching Times	V _{PN} = 300 V, V _{CC} = V _{BS} = 15 V		-	0.31	-	μS
	t _{C(ON)}		$I_C = 12 \text{ A}$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Induce	tive Load	-	0.15	-	μS
	t _{OFF}		(Note 3)	aive Load	-	0.90	-	μS
	t _{C(OFF)}				-	0.34	-	μS
	t _{rr}				-	0.10	-	μS
LS	t _{ON}		$V_{PN} = 300 \text{ V}, V_{CC} = V_{E}$	_{IS} = 15 V	-	0.58	-	μS
	t _{C(ON)}		$I_C = 12 \text{ A}$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Induce	tive Load	-	0.30	-	μS
	t _{OFF}		(Note 3)	aive Load	-	0.96	-	μS
	t _{C(OFF)}				-	0.37	-	μS
	t _{rr}				-	0.10	-	μS
	I _{CES}	Collector-Emitter Leakage Current	V _{CE} = V _{CES}		-	-	250	μΑ

Note

^{3.} t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

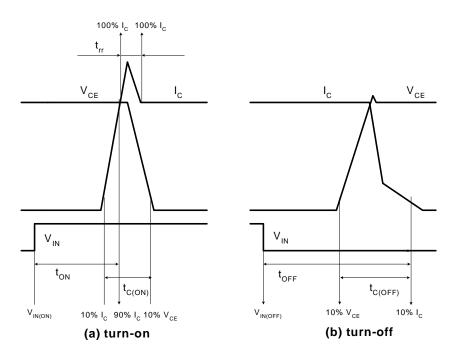


Figure 4. Switching Time Definition

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Control Part

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Units
I _{QCCL}	Quiescent V _{CC} Supply Current	V _{CC} = 15 V IN _(UL, VL, WL) = 0V	V _{CC(L)} - COM	ı	-	23	mA
I _{QCCH}		$V_{CC} = 15 \text{ V}$ $IN_{(UH, VH, WH)} = 0 \text{V}$	V _{CC(UH)} , V _{CC(VH)} , V _{CC(WH)} - COM	i	-	200	μΑ
I _{QBS}	Quiescent V _{BS} Supply Current	$V_{BS} = 15 \text{ V}$ $IN_{(UH, VH, WH)} = 0 \text{ V}$	$egin{array}{c} V_{B(U)} - V_{S(U)}, \ V_{B(V)} - V_{S(V)}, \ V_{B(W)} - V_{S(W)} \end{array}$	-	-	500	μΑ
V _{FOH}	Fault Output Voltage	V _{SC} = 0 V, V _{FO} Circu	$V_{SC} = 0 \text{ V}, V_{FO} \text{ Circuit: } 4.7 \text{ k}\Omega \text{ to 5 V Pull-up}$		-	-	V
V _{FOL}		V _{SC} = 1 V, V _{FO} Circu	V_{SC} = 1 V, V_{FO} Circuit: 4.7 kΩ to 5 V Pull-up		-	0.8	V
V _{SC(ref)}	Short Circuit Trip Level	V _{CC} = 15 V (Note 4)		0.45	0.5	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level		10.7	11.9	13.0	V
UV _{CCR}	Voltage Protection	Reset Level		11.2	12.4	13.2	V
UV _{BSD}		Detection Level		10	11	12	V
UV _{BSR}		Reset Level		10.5	11.5	12.5	V
t _{FOD}	Fault-out Pulse Width	C _{FOD} = 33 nF (Note 5)		1.0	1.8	-	ms
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) ,		3.0	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	$IN_{(VL)}$, $IN_{(WL)}$ - COM		ı	-	0.8	V

Note:

Recommended Operating Conditions

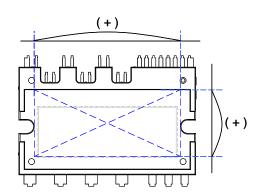
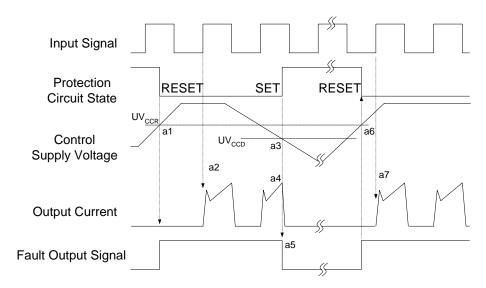
Symbol	Parameter	Conditions	Value			Units
Symbol	Parameter	Conditions		Тур.	Max.	Units
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	-	300	400	V
V _{CC}	Control Supply Voltage	$ \begin{array}{l} \text{Applied between V}_{\text{CC(UH)}}, \text{V}_{\text{CC(VH)}}, \text{V}_{\text{CC(WH)}}, \\ \text{V}_{\text{CC(L)}} \text{- COM} \end{array} $	13.5	15	16.5	V
V _{BS}	High-side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.0	15	18.5	V
dV _{CC} /dt, dV _{BS} /dt	Control supply variation		-1	-	1	V/μs
t _{dead}	Blanking Time for Preventing Arm-short	For Each Input Signal	2.0	-	-	μS
f _{PWM}	PWM Input Signal	$-20^{\circ}C \leq T_{C} \leq 100^{\circ}C, \ -20^{\circ}C \leq T_{J} \leq 125^{\circ}C$	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N_U , N_V , N_W - COM (Including surge voltage)	-4		4	V

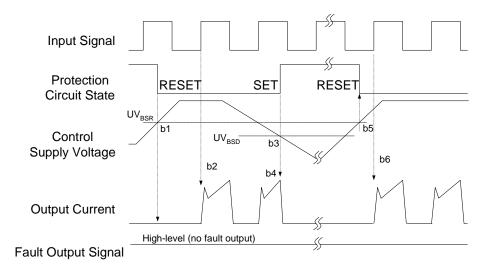
^{4.} Short-circuit current protection is functioning only at the low-sides.

^{5.} The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$

Mechanical Characteristics and Ratings

Parameter	Col		Units			
raiailletei	Col	Conditions			Max.	Ullits
Mounting Torque	Mounting Screw: - M3	Recommended 0.62N•m	0.51	0.62	0.72	N•m
Device Flatness		Note Figure 5	0	-	+120	μ m
Weight			-	15.4	-	g


Figure 5. Flatness Measurement Position

Time Charts of Protective Function

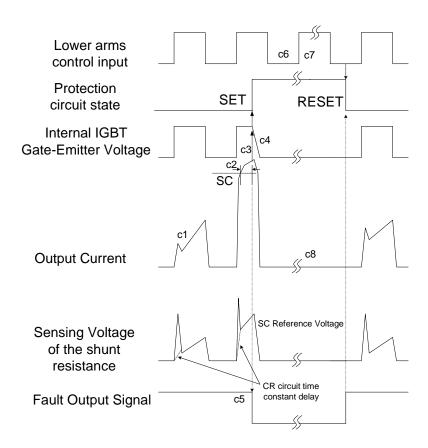
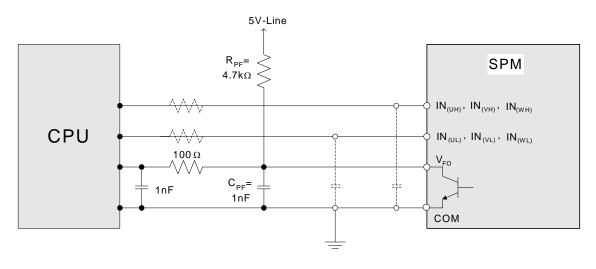

- a1 : Control supply voltage rises: After the voltage rises UV_{CCR} , the circuits start to operate when next input is applied.
- a2: Normal operation: IGBT ON and carrying current.
- a3 : Under voltage detection (UV_{CCD}).
- a4: IGBT OFF in spite of control input condition.
- a5 : Fault output operation starts.
- a6 : Under voltage reset (UV $_{CCR}$).
- a7: Normal operation: IGBT ON and carrying current.

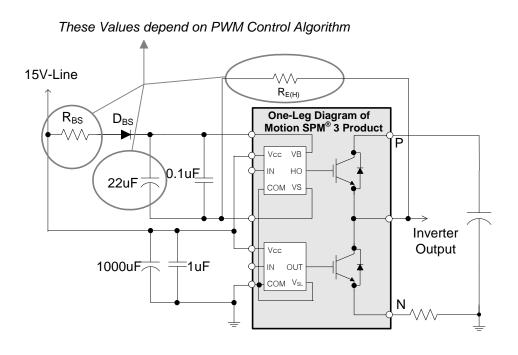
Figure 6. Under-Voltage Protection (Low-side)

- b1 : Control supply voltage rises: After the voltage reaches UV_{BSR}, the circuits start to operate when next input is applied.
- b2: Normal operation: IGBT ON and carrying current.
- b3 : Under voltage detection (UV_{BSD}).
- b4: IGBT OFF in spite of control input condition, but there is no fault output signal.
- b5 : Under voltage reset (UV_{BSR})
- b6: Normal operation: IGBT ON and carrying current


Figure 7. Under-Voltage Protection (High-side)

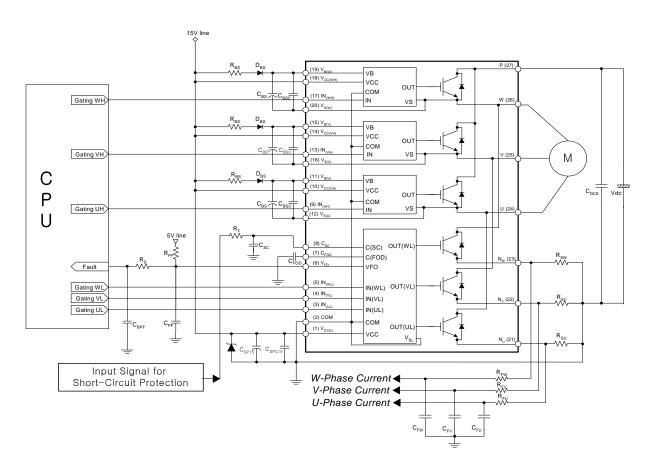
(with the external shunt resistance and CR connection)

- c1: Normal operation: IGBT ON and carrying current.
- c2 : Short circuit current detection (SC trigger).
- c3: Hard IGBT gate interrupt.
- c4: IGBT turns OFF.
- c5 : Fault output timer operation starts: The pulse width of the fault output signal is set by the external capacitor C_{FO} .
- c6: Input "L": IGBT OFF state.
- c7 : Input "H": IGBT ON state, but during the active period of fault output the IGBT doesn't turn ON.
- c8: IGBT OFF state


Figure 8. Short-Circuit Current Protection (Low-side Operation only)

Note:

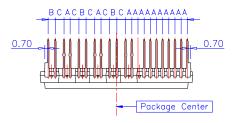
- 1) RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The Motion SPM® 3 Product input signal section integrates 3.3kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.
- 2) The logic input is compatible with standard CMOS or LSTTL outputs.


Figure 9. Recommended CPU I/O Interface Circuit

Note:

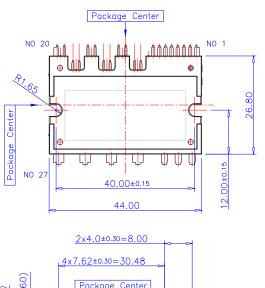
- 1) It would be recommended that the bootstrap diode, D_{BS} , has soft and fast recovery characteristics.
- 2) The ceramic capacitor placed between V_{CC} -COM should be over 1uF and mounted as close to the pins of the Motion SPM 3 Product as possible.

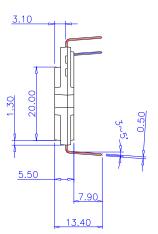
Figure 10. Recommended Bootstrap Operation Circuit and Parameters

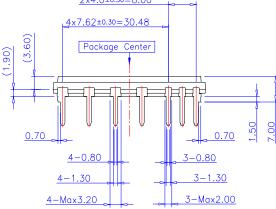


Note:

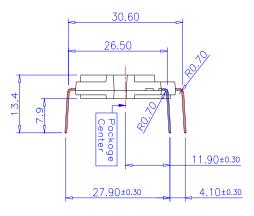
- 1) To avoid malfunction, the wiring of each input should be as short as possible. (less than 2-3cm)
- 2) By virtue of integrating an application specific type HVIC inside the Motion SPM[®] 3 Product, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible.
- 3) V_{FO} output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately $4.7k\Omega$ resistance. Please refer to Figure 9.
- 4) C_{SP15} of around 7 times larger than bootstrap capacitor C_{BS} is recommended.
- 5) V_{FO} output pulse width should be determined by connecting an external capacitor(C_{FOD}) between C_{FOD} (pin7) and COM(pin2). (Example : if C_{FOD} = 33 nF, then t_{FO} = 1.8ms (typ.)) Please refer to the note 5 for calculation method.
- 6) Input signal is High-Active type. There is a 3.3kΩ resistor inside the IC to pull down each input signal line to GND. When employing RC coupling circuits, set up such RC couple that input signal agree with turn-off/turn-on threshold voltage.
- 7) To prevent errors of the protection function, the wiring around R_F and C_{SC} should be as short as possible.
- 8) In the short-circuit protection circuit, please select the $R_F C_{SC}$ time constant in the range 1.5~2 μs .
- 9) Each capacitor should be mounted as close to the pins of the Motion SPM 3 Product as possible.
- 10) To prevent surge destruction, the wiring between the smoothing capacitor and the P&GND pins should be as short as possible. The use of a high frequency non-inductive capacitor of around 0.1~0.22µF between the P&GND pins is recommended.
- 11) Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays.
- 12) C_{SPC15} should be over $1\mu F$ and mounted as close to the pins of the Motion SPM 3 Product as possible.

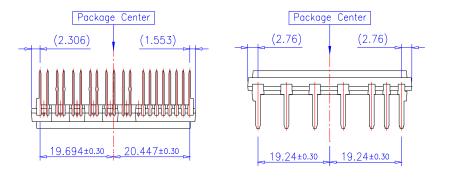

Figure 11. Typical Application Circuit


Detailed Package Outline Drawings

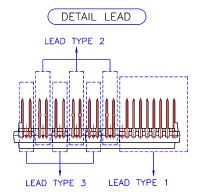


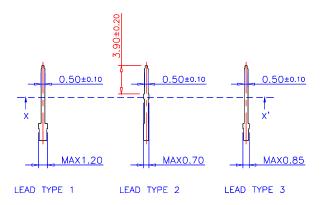
Lead Pitch : ±0.30

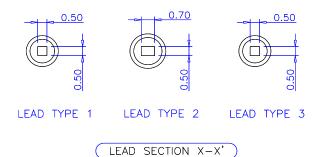

A: 1.778 B: 2.050 C: 2.531



Detailed Package Outline Drawings (Continued)




Lead Forming Dimension



PKG Center to Lead Distance

Detailed Package Outline Drawings (Continued)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 FPS™

 AccuPower™
 F-PFS™

 AX-CAP®*
 FRFET®

 PRESTM
 Close Res

BitSiC[™] Global Power ResourceSM
Build it Now[™] GreenBridge[™]

 $\begin{array}{lll} \text{CorePLUS}^{\top} & \text{Green FPS}^{\top} \\ \text{CorePOWER}^{\top} & \text{Green FPS}^{\top} \text{ e-Series}^{\top} \\ \end{array}$

 $\begin{array}{lll} \textbf{CROSSVOLT}^{\text{\tiny TM}} & \textbf{Gmax}^{\text{\tiny TM}} \\ \textbf{CTL}^{\text{\tiny TM}} & \textbf{GTO}^{\text{\tiny TM}} \\ \textbf{Current Transfer Logic}^{\text{\tiny TM}} & \textbf{IntelliMAX}^{\text{\tiny TM}} \\ \textbf{DEUXPEED}^{\otimes} & \textbf{ISOPLANAR}^{\text{\tiny TM}} \\ \end{array}$

Dual Cool™ Making Small Speakers Sound Louder

EcoSPARK[®] and Better™

EfficientMax™ MegaBuck™

ESBC™ MICROCOUPLER™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®

MicroFET™
MicroPak2™
MicroPak2™
MillerDrive™
MotionMax™
MotionMax™
MotionMax™
MotionHax™
ContoHiT™

FACT®

FAST®

FastvCore™

FestvCore™

FETBench™

FAST®

OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

QFET[®]
QS[™]
Quiet Series[™]
RapidConfigure[™]

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SOURCES OF YOUR S
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS®
SyncFET™

Sync-Lock™

SYSTEM

GENERAL®*

TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPOwer™
TinyPWM™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™

TRUECURRENT®*
µSerDes™

UHC[®]
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will standards for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.