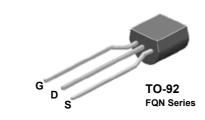
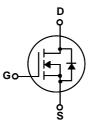


FQN1N* 0C N-Channel QFET MOSFET *00 V, 0.3\$ A, 11.5 Ω


Description


This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

March 2013

Features

- + 0.30 A, 600 V, ${\sf R}_{\sf DS(on)}$ = 11.5 Ω (Max) @V_{\sf GS} = 10 V, ID = 0.14 A
- Low Gate Charge (Typ. 4.8 nC)
- Low Crss (Typ. 3.5 pF)
- 100% Avalanche Tested

Absolute Maximum Ratings

Symbol	Parameter			FQN1N60C	Unit
V _{DSS}	Drain-Source Ve	oltage		600	V
I _D	Drain Current	- Continuous (T _C =	25°C)	0.3	A
	- Continuous (T _C = 100°C)			0.18	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	1.2	A
V _{GSS}	Gate-Source Vo	oltage		± 30	V
E _{AS}	Single Pulsed A	valanche Energy	(Note 2)	33	mJ
I _{AR}	Avalanche Curr	ent	(Note 1)	0.3	A
E _{AR}	Repetitive Avala	anche Energy	(Note 1)	0.3	mJ
dv/dt	Peak Diode Red	covery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipati	on (T _A = 25°C)		1	W
	Power Dissipati	on (T _L = 25°C)		3	W
		- Derate above 25°	С	0.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds			300	°C

Thermal Characteristics

R _{θJL} Thermal Resistance, Junction-to-Lead (Note 6a) 50 °C/W R _{θ,IA} Thermal Resistance, Junction-to-Ambient (Note 6b) 140 °C/W	Symbol	Parameter		Тур	Max	Unit
Rela Thermal Resistance, Junction-to-Ambient (Note 6b) 140 °C/W	$R_{ extsf{ heta}JL}$	Thermal Resistance, Junction-to-Lead	(Note 6a)		50	°C/W
	R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 6b)		140	°C/W

Device Marking Device Pac		kage	kage Reel Size		Tape W	/idth	Qua	ntity	
-			-92				2000ea		
Electrical C	haracteristics T	_C = 25°C unles	s otherwise no	ted					
Symbol	Parameter			Test Conditions	6	Min.	Тур.	Max.	Unit
Off Characteristic	<u>.</u>								
	ain-Source Breakdown Vol	tane	$V_{aa} = 0$	/ I_ = 250 µA		600			V
	Breakdown Voltage Temperature		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$				0.6		V/°C
	pefficient	uic	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$				0.0		V/ 0
I _{DSS} Ze	Zero Gate Voltage Drain Current			V _{DS} = 600 V, V _{GS} = 0 V				50	μA
			$V_{\rm DS}$ = 480 V, T _C = 125°C					250	μΑ
I _{GSSF} Ga	ate-Body Leakage Current,	Forward	V _{GS} = 30			100	nA		
I _{GSSR} Ga	ate-Body Leakage Current,	Reverse	$V_{GS} = -30$	0 V, V _{DS} = 0 V				-100	nA
On Characteristic	s								
	Gate Threshold Voltage		V _{DS} = V _{GS} , I _D = 250 μA			2.0		4.0	V
R _{DS(on)} Sta	atic Drain-Source n-Resistance		V _{GS} = 10	V, I _D = 0.15 A			9.3	11.5	Ω
g _{FS} Fo	rward Transconductance		V _{DS} = 40	V, I _D = 0.3 A	(Note 4)		0.75		S
Dynamic Charact	eristics								
C _{iss} Inp	Input Capacitance		V_{DS} = 25 V, V_{GS} = 0 V,				130	170	pF
C _{oss} Ou	utput Capacitance		f = 1.0 M	Hz			19	25	pF
C _{rss} Re	everse Transfer Capacitance	e					3.5	6	pF
Switching Charac	teristics								
t _{d(on)} Tu	rn-On Delay Time		V_{DD} = 300 V, I _D = 1.1 A, R _G = 25 Ω				7	24	ns
	rn-On Rise Time						21	52	ns
	rn-Off Delay Time						13	36	ns
	rn-Off Fall Time				(Note 4, 5)		27	64	ns
կ լս									
	tal Gate Charge		V _{DS} = 48	0 V, I _D = 1.1 A,			4.8	6.2	nC
Q _g To	tal Gate Charge ate-Source Charge		V _{DS} = 48 V _{GS} = 10	0 V, I _D = 1.1 A, V			4.8 0.7	6.2 	nC nC
Q _g To Q _{gs} Ga	-		V _{DS} = 48 V _{GS} = 10	0 V, I _D = 1.1 A, V	(Note 4, 5)				-
Q _g To Q _{gs} Ga Q _{gd} Ga	ate-Source Charge ate-Drain Charge	avimum Pa	V _{GS} = 10	0 V, I _D = 1.1 A, V	(Note 4, 5)		0.7		nC
Q _g To Q _{gs} Ga Q _{gd} Ga Drain-Source Dio	ate-Source Charge ate-Drain Charge de Characteristics and M		V _{GS} = 10	V	(Note 4, 5)		0.7		nC
Q _g To Q _{gs} Ga Q _{gd} Ga Drain-Source Dio I _S	ate-Source Charge ate-Drain Charge de Characteristics and M aximum Continuous Drain-	Source Dioc	V _{GS} = 10	V Current	(Note 4, 5)		0.7 2.7		nC nC A
Q _g To Q _{gs} Ga Q _{gd} Ga Drain-Source Dio Is I _S Ma	ate-Source Charge ate-Drain Charge de Characteristics and M aximum Continuous Drain- aximum Pulsed Drain-Sour	Source Dioc ce Diode Fo	V _{GS} = 10	V Current ent	(Note 4, 5)		0.7 2.7	 0.3 1.2	nC nC
Qg To Qgs Ga Qgd Ga Drain-Source Dio Is Is Ma V _{SD} Dr	ate-Source Charge ate-Drain Charge de Characteristics and M aximum Continuous Drain-	Source Dioc ce Diode Fo	$V_{GS} = 10$ atings le Forward orward Curre $V_{GS} = 0$	V Current	(Note 4, 5)		0.7 2.7		nC nC A A

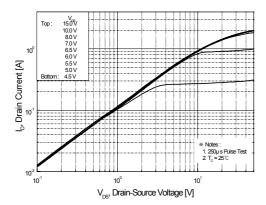
FQN1N60C N-Channel MOSFET

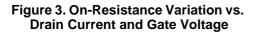
Q_{rr} Notes:

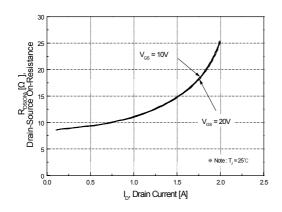
1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 59mH, I_{AS} = 1.1A, V_{DD} = 50V, R_G = 25 $\Omega,$ Starting $\mbox{ T}_{J}$ = 25°C

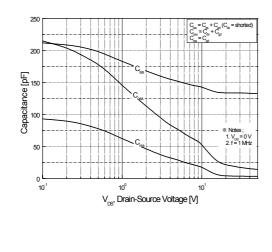
3. I_{SD} \leq 0.3A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS,} Starting $\ T_{J}$ = 25°C

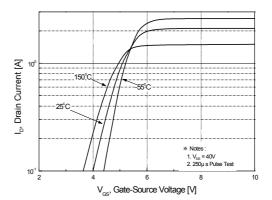

4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$

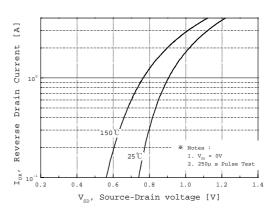

5. Essentially independent of operating temperature

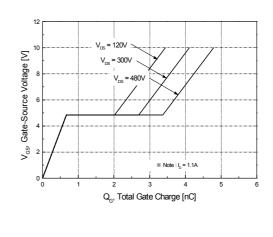

6. a) Reference point of the R_{0,IL} is the drain lead
 b) When mounted on 3"x4.5" FR-4 PCB without any pad copper in a still air environment (R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance. R_{0CA} is determined by the user's board design)

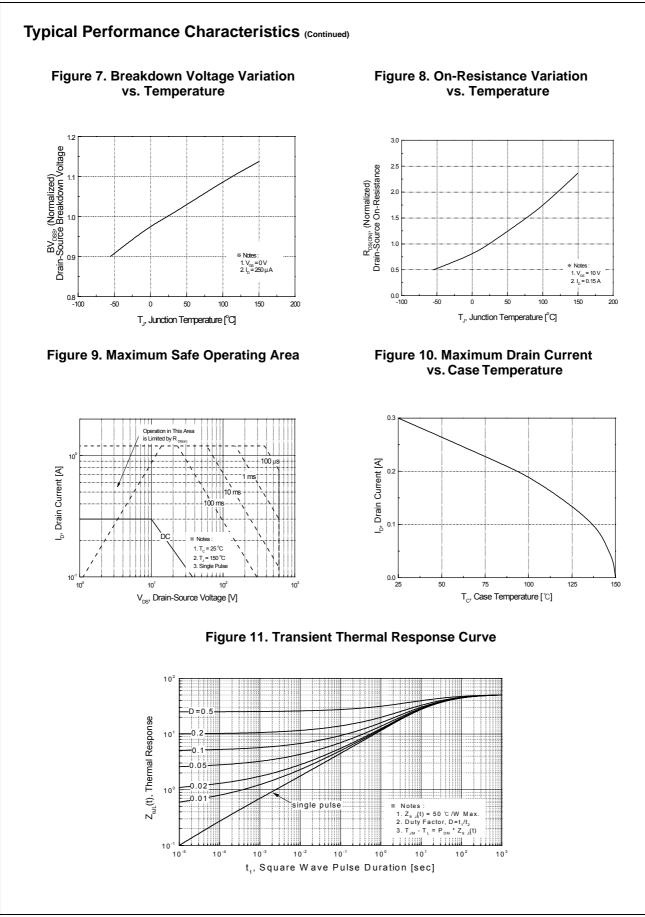
Typical Performance Characteristics

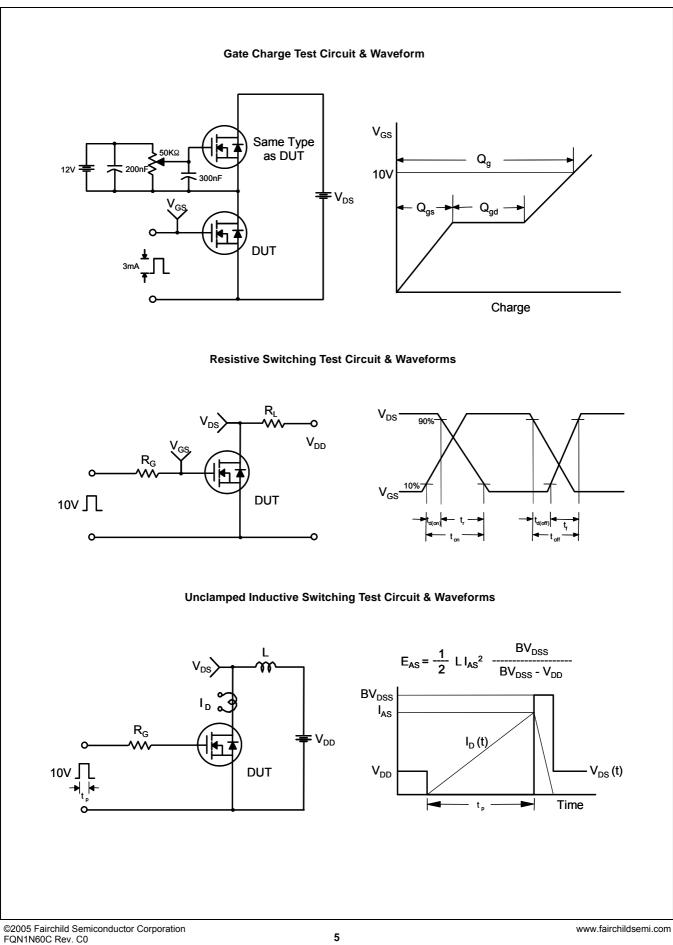

Figure 1. On-Region Characteristics



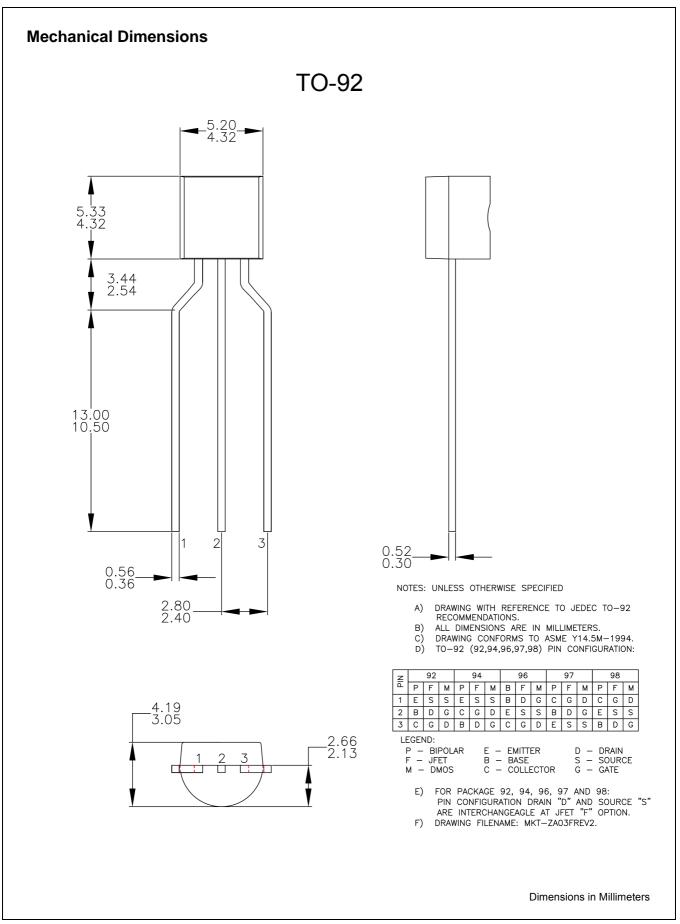

Figure 5. Capacitance Characteristics


Figure 2. Transfer Characteristics




Figure 6. Gate Charge Characteristics


©2005 Fairchild Semiconductor Corporation FQN1N60C Rev. C0



©2005 Fairchild Semiconductor Corporation FQN1N60C Rev. C0

@2005 Fairchild Semiconductor Corporation FQN1N60C Rev. C0

FQN1N60C N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP®, BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ DFUXPEED® Dual Cool™ **EcoSPARK**® EfficentMax™ ESBC™

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

FPS™

(b)® PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SYSTEM^{®*} GENERAL TinyBoost[™] TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* µSerDes™ $\mathcal{V}_{\scriptscriptstyle{\mathsf{Ser}}}$ UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

SupreMOS[®]

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 164 www.fairchildsemi.com