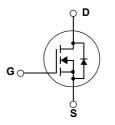


FQA90N15 / FQA90N15_F109 N-Channel QFET MOSFET 150 V, 90 A, 18 mΩ

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor[®]'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.


Features

• 90 A, 150 V, $R_{DS(on)}$ = 18 m Ω (Max)@V_{GS} = 10 V, I_D = 45 A

March 2013

- Low Gate Charge (typical 220 nC)
- · Low Crss (typical 200 pF)
- 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

Absolute Maximum Ratings

Symbol	Parameter	FQA90N15_F109	Unit V	
V _{DSS}	Drain-Source Voltage	150		
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)	90	А	
	- Continuous (T _C = 100°C)		63.5	А
I _{DM}	Drain Current - Pulsed	(Note 1)	360	А
V _{GSS}	Gate-Source Voltage	± 25	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1400	mJ
I _{AR}	Avalanche Current	(Note 1)	90	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	37.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
P _D	Power Dissipation (T _C = 25°C)	375	W	
	- Derate above 25°C	2.5	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +175	°C	
Τ _L	Maximum lead temperature for soldering purposes 1/8" from case for 5 seconds	300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Unit	
R _{0JC} Thermal Resistance, Junction-to-Case			0.4	°C/W	
$R_{\theta CS}$	S Thermal Resistance, Case-to-Sink			°C/W	
R _{0JA} Thermal Resistance, Junction-to-Ambient			40	°C/W	

Device Marking FQA90N15		Device	Packag	e Reel Size Tap		e Width		Quantity		
		FQA90N15_F109	TO-3PN	I					30	
Electric	al Cha	racteristics T _c	= 25°C unless othe	erwise noted						
Symbol		Parameter		Test Conditions		Min	Тур	Max	Unit	
Off Charac	teristics							1	1	
BV _{DSS}	Drain-Source Breakdown Voltage		V_{GS} = 0 V, I _D = 250 µA		150			V		
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient		I _D = 250	$I_D = 250 \ \mu$ A, Referenced to 25°C			0.15		V/°C	
5		ate Voltage Drain Current		V _{DS} = 150 V, V _{GS} = 0 V				1	μA	
			V _{DS} = 120 V, T _C = 125°C					10	μA	
I _{GSSF}	Gate-Boo	ly Leakage Current, Fo	orward	V _{GS} = 2	5 V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Boo	te-Body Leakage Current, Reverse		V_{GS} = -25 V, V_{DS} = 0 V				-100	nA	
On Charact	eristics									
V _{GS(th)}	Gate Thre	Threshold Voltage		V_{DS} = V_{GS} , I_D = 250 μ A		2.0		4.0	V	
R _{DS(on)}	Static Dra	Prain-Source On-Resistance		V _{GS} = 10 V, I _D = 45 A			0.014	0.018	Ω	
9 _{FS}	Forward	Transconductance		$V_{DS} = 40 \text{ V}, I_D = 45 \text{ A}$ (Note 4)			68		S	
Dynamic Ch	naracteristi	ics		-				1	1	
C _{iss}	Input Cap	Input Capacitance		$V_{DS} = 25 V, V_{GS} = 0 V,$			6700	8700	pF	
C _{oss}	Output C	apacitance		f = 1.0 MHz				1400	1800	pF
C _{rss}	Reverse	Transfer Capacitance						200	260	pF
Switching C	haracteris	tics		-				1		
t _{d(on)}	Turn-On	n-On Delay Time		$V_{DD} = 75 \text{ V}, I_D = 90\text{ A},$			105	220	ns	
t _r	Turn-On	Rise Time		- R _G = 25 Ω - (Note 4, 5)			760	1500	ns	
t _{d(off)}	Turn-Off	Delay Time					470	950	ns	
t _f	Turn-Off	Fall Time					410	830	ns	
Q _g	Total Gat	e Charge		V _{DS} = 120 V, I _D = 90A,				220	285	nC
Q _{gs}	Gate-Sou	Irce Charge		V _{GS} = 1	V _{GS} = 10 V			43		nC
Q _{gd}		in Charge		(Note 4, 5)			110		nC	
		haracteristics and Max	vimum Ratings	<u>.</u>				110		
I _S		n Continuous Drain-So	•		rent				90	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward							360	A	
V _{SD}		urce Diode Forward Vo		1	V. Is = 90 A				1.5	V
t _{rr}		Recovery Time		$V_{GS} = 0 V, I_S = 90 A$ $V_{GS} = 0 V, I_S = 90 A,$			175		ns	
Q _{rr}		Recovery Charge			$V_{GS} = 0 V, I_S = 90 A,$ $dI_F / dt = 100 A/\mu s$ (Note			0.97		μΟ

NOTES:

1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 0.29mH, I_{AS} =90A, V_{DD} = 25V, R_G = 25 $\Omega,$ Starting T_J = 25°C

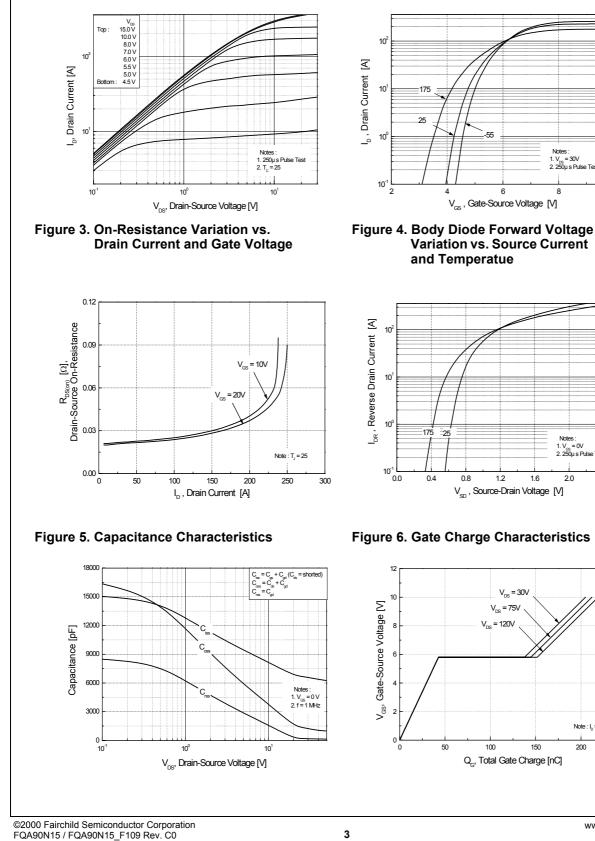
3. I_{SD} \leq 90A, di/dt \leq 300A/µs, V_{DD} \leq BV_{DSS,} Starting ~T_J = 25°C

4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$

5. Essentially independent of operating temperature

Notes : 1. V_{DS} = 30V 2. 250µ s Pulse Test

Notes : 1. V_{GS} = 0V 2. 250µ s Pulse Tes


2.4

2.0

1.6

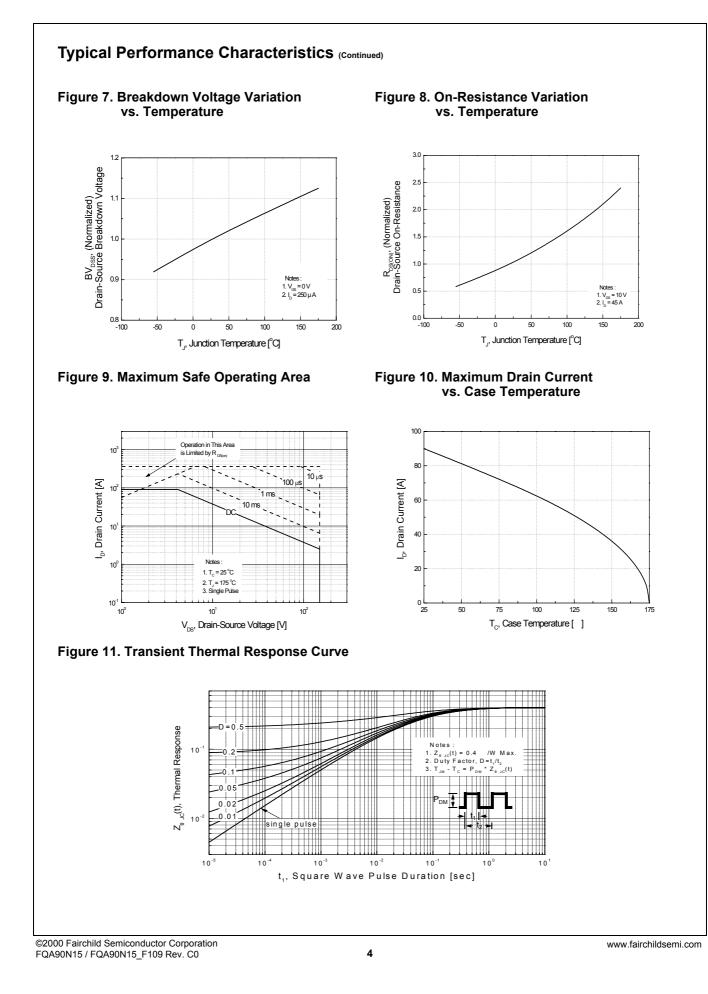
10

8

www.fairchildsemi.com

250

Note : $I_{D} = 90 \text{ A}$


200

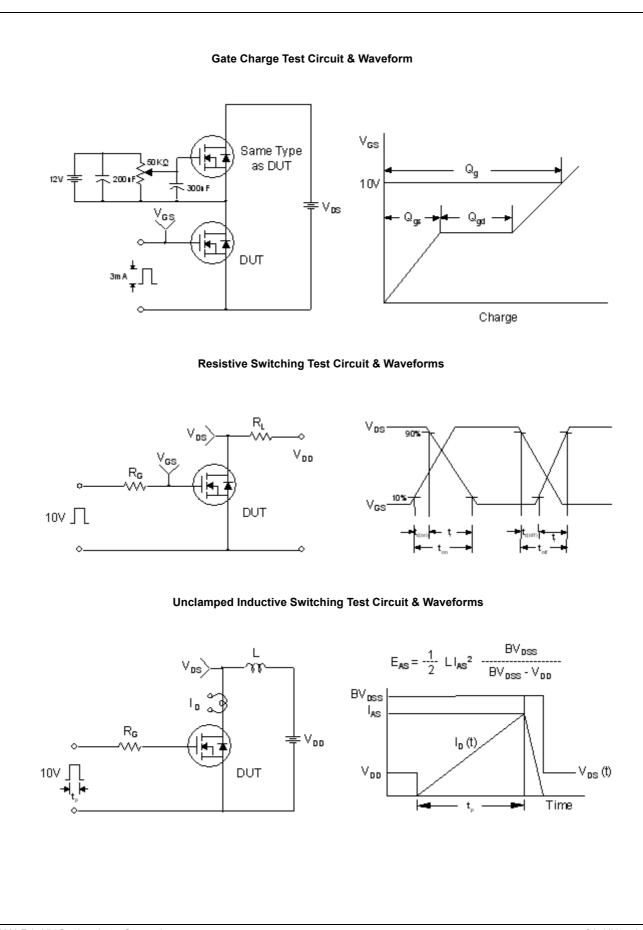
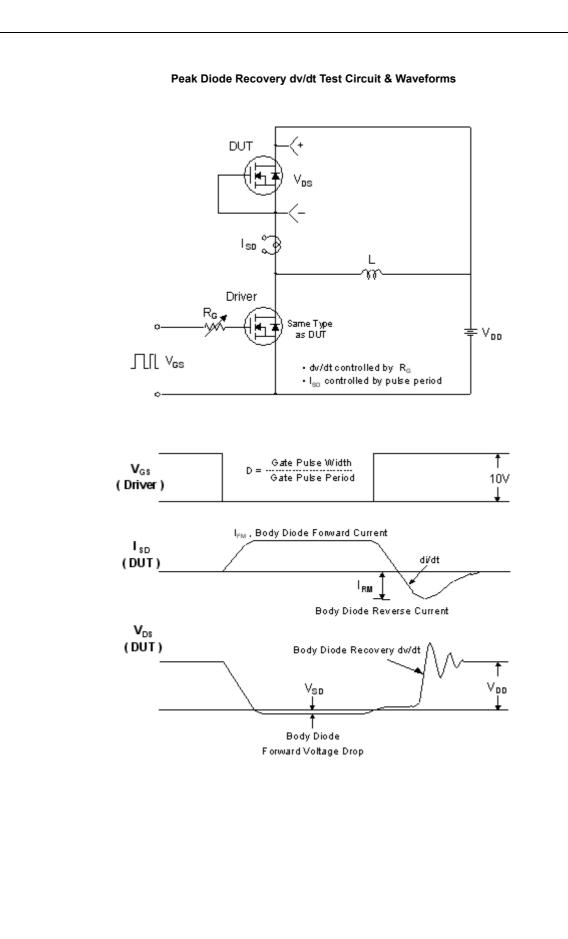
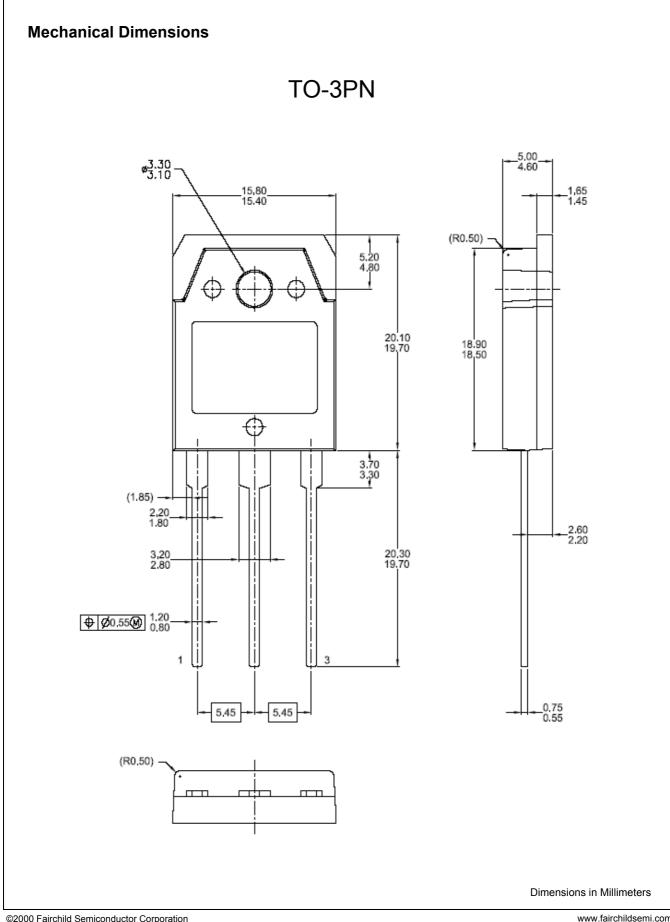

150

Figure 2. Transfer Characteristics


Typical Performance Characteristics


Figure 1. On-Region Characteristics

©2000 Fairchild Semiconductor Corporation FQA90N15 / FQA90N15_F109 Rev. C0 FQA90N15 / FQA90N15_F109 N-Channel MOSFET

©2000 Fairchild Semiconductor Corporation FQA90N15 / FQA90N15_F109 Rev. C0

www.fairchildsemi.com

FQA90N15 / FQA90N15_F109 N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPI ANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive[™] MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

F-PFS™

(b)_® PowerTrench® PowerXS™ Programmable Active Droop™ QFĔT QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®]

Sync-Lock™ TinyBoost TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* uSerDes™

Ultra FRFET™ **UniFET**[™] VCX™ VisualMax™ VoltagePlus [™] XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SvncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		