

FDD7N25LZ N-Channel UniFETTM MOSFET 250 V, 6.2 A, 550 mΩ

Features

- $R_{DS(on)} = 430 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 3.1 \text{ A}$
- Low Gate Charge (Typ.12 nC)
- Low C_{rss} (Typ. 8 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Improved Capability
- RoHS Compliant

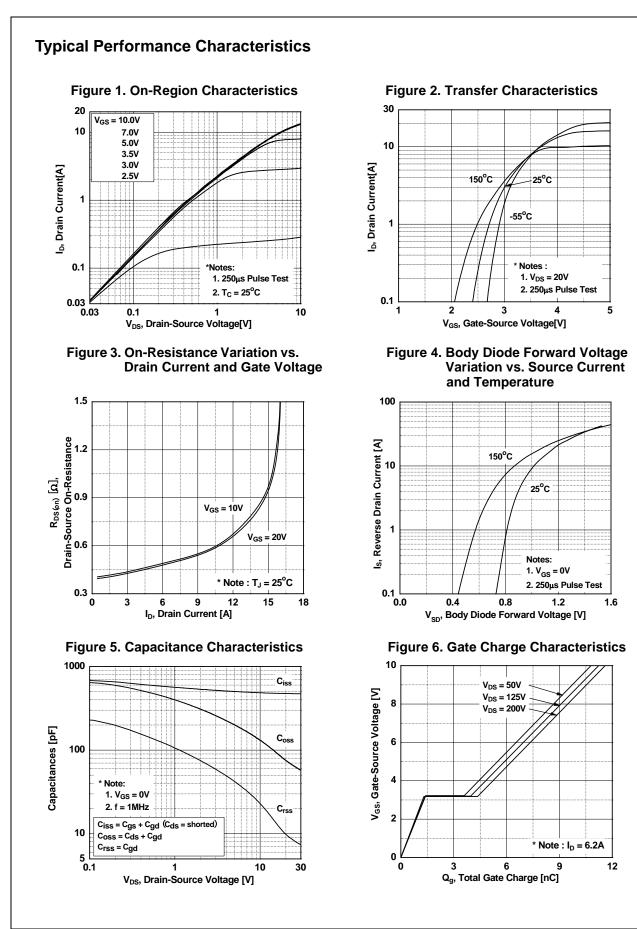
Applications

- LCD/LED/PDP TV
- Consumer Appliances
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

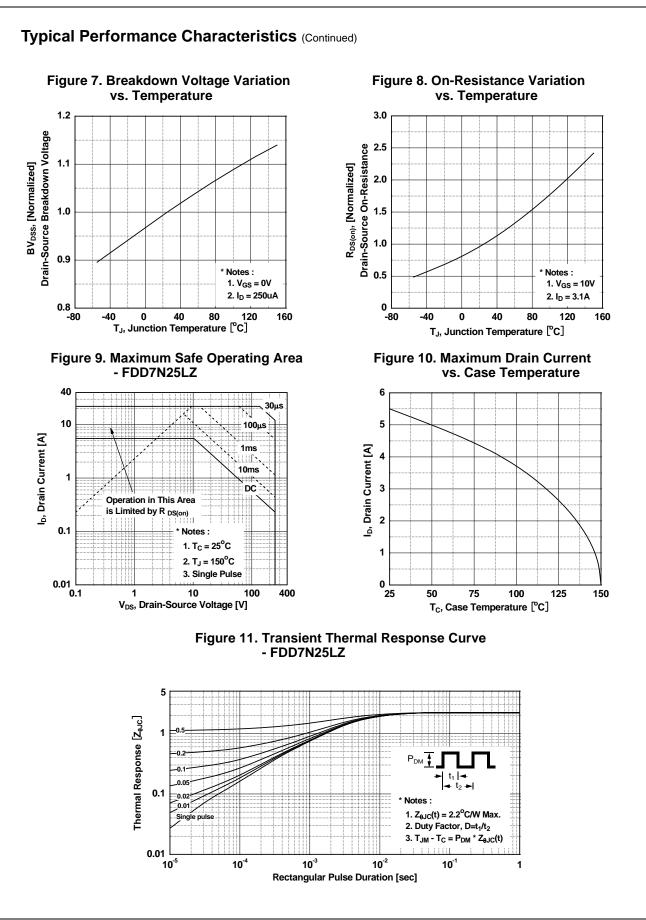
Description

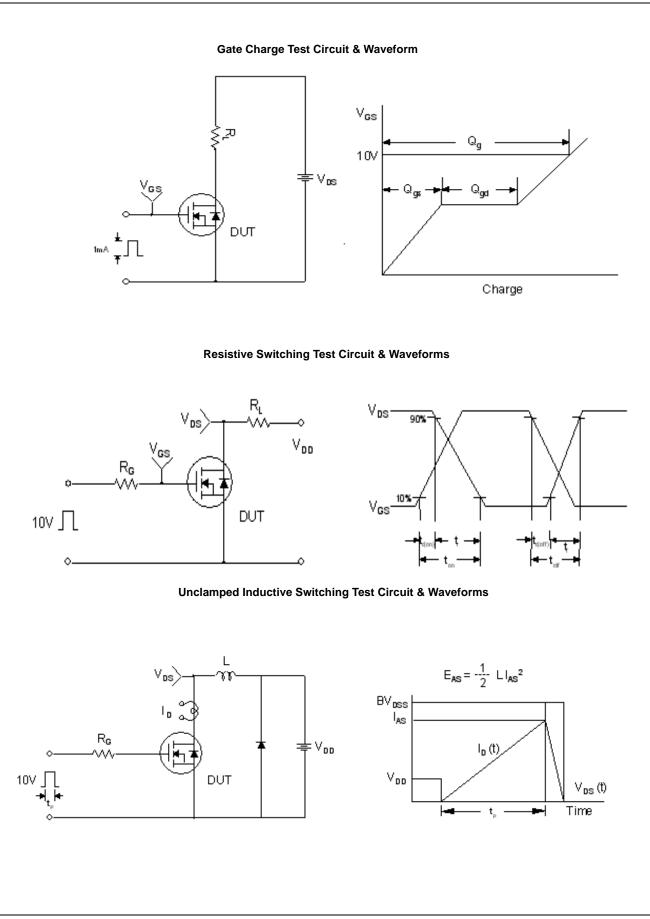
UniFETTM MOSFET is Fairchild Semiconductor[®]'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*


Symbol	Parameter			FDD7N20LZ	Unit	
V _{DSS}	Drain to Source Voltage			250	V	
V _{GSS}	Gate to Source Voltage			±20	V	
I _D	Droin Current	- Continuous (T _C = 25 ^o C)		6.2	^	
	Drain Current	- Continuous (T _C = 100 ^o C)		3.7	A	
I _{DM}	Drain Current	- Pulsed	25	А		
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	115	mJ	
I _{AR}	Avalanche Current		(Note 1)	5.5	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	5.6	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	10	V/ns	
P _D	Devues Dissis eties	$(T_{\rm C} = 25^{\rm o}{\rm C})$		56	W	
	Power Dissipation	- Derate above 25°C		0.45	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

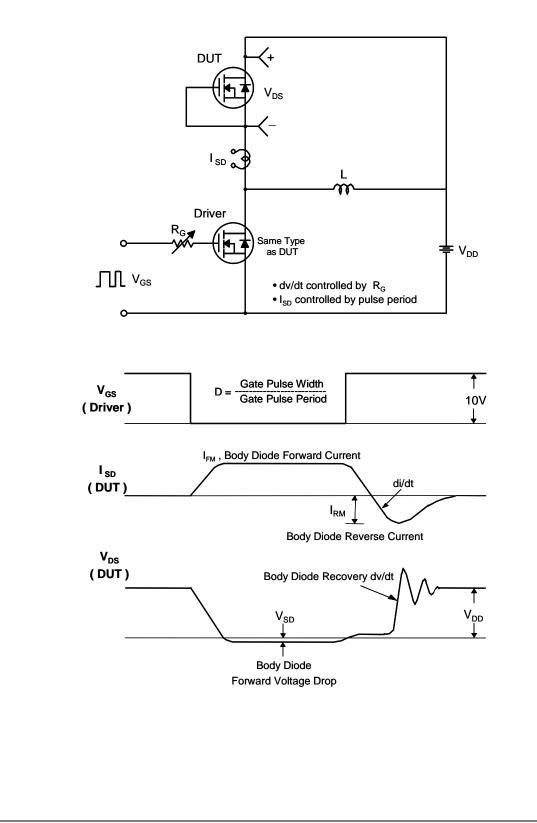
Thermal Characteristics

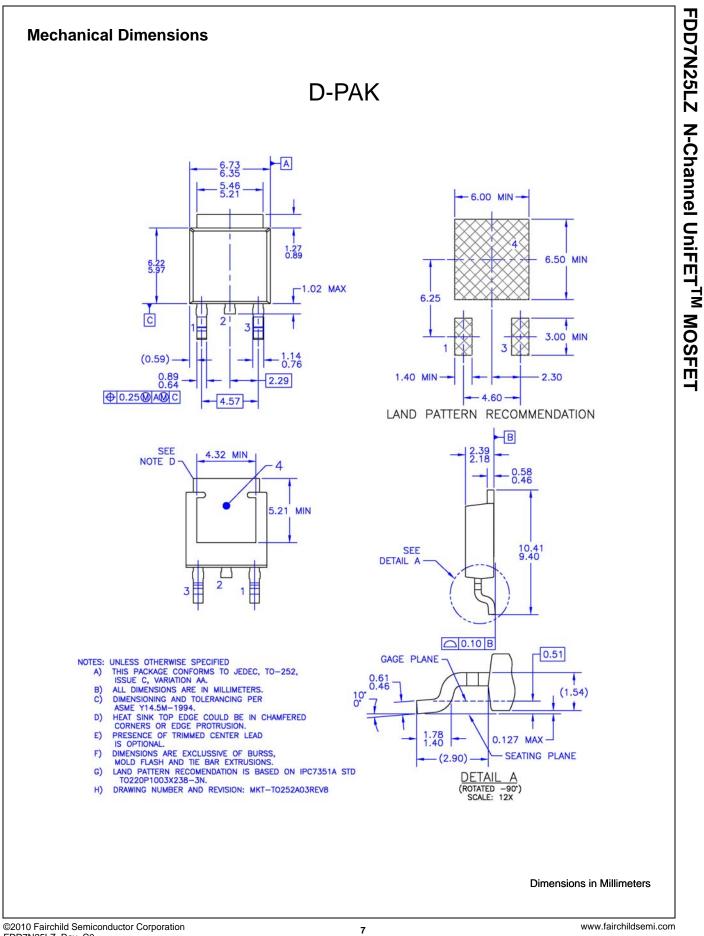

Symbol	Parameter	FDD7N20LZ	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	2.2	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	110	°C/W


March 2013

FDD7N2	Device MarkingDevicePackaFDD7N25LZFDD7N25LZD-PA		ge	Reel Size	Тар	e Width		Quantit	y		
			<	380mm	1	6mm		2500			
Electrica	I Chara	acteristics T _c =	25°C unless	otherwis	se noted						
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit	
Off Charac	teristics	5									
BV _{DSS}	Drain to	Source Breakdown V	oltage	ln = 25	ομΑ, V _{GS} = 0V, T _C =	= 25°C	250	-	-	V	
	BV _{DSS} Breakdown Voltage Temperature					0.05		N/00			
ΔT_J				$I_D = 250\mu A$, Referenced to $25^{\circ}C$		-	0.25	-	V/°C		
I _{DSS}	Zero Ga	te Voltage Drain Curr	ent	-	250V, V _{GS} = 0V		-	-	1	μA	
.032	Zero Gate Voltage Drain Current		-	200V, T _C = 125 ^o C		-	-	10	<i>pu</i> ,		
I _{GSSF}		Gate to Body Leakage Current, Forward			20V, V _{DS} = 0V		-	-	10	μA	
I _{GSSR}	Gate to	Body Leakage Curren	it, Reverse	$V_{GS} =$	-20V, V _{DS} = 0V		-	-	-10	μA	
On Charac	teristics	5									
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} =	V _{DS} , I _D = 250μA		1.0	-	2.0	V	
	Otatic D				10V, I _D = 3.1A		-	0.43	0.43 0.55		
R _{DS(on)}	Static Di	rain to Source On Res	sistance	$V_{GS} =$	5V, I _D = 3.1A		-	0.45	0.57	57 ^Ω	
9 _{FS}	Forward	Transconductance		$V_{\rm DS} = 20V, I_{\rm D} = 3.1A$			-	7	-	S	
)vnomio (horooto	riction									
Dynamic C								400	005		
C _{iss}	-	pacitance			V _{DS} = 25V, V _{GS} = 0V		-	480	635	pF	
C _{oss}	-	Capacitance		f = 1MHz		-	65	85	pF		
C _{rss}		Transfer Capacitance	3				-	8	12	pF	
Q _{g(tot)}		te Charge at 10V		V/ 250V/1 0.0A		-	-	12	16	nC	
Q _{gs}		Source Gate Charge		$V_{DS} = 250V I_D = 6.2A$ $V_{GS} = 10V$			-	1.5	-	nC	
Q _{gd}	Gate to	Drain "Miller" Charge		(Note 4)		-	4	-	nC		
Switching	Charact	eristics									
t _{d(on)}		Delay Time					-	10	30	ns	
t _r		Rise Time			250V, I _D = 6.2A		-	15	40	ns	
t _{d(off)}		Delay Time		$V_{GS} = 10V, R_{G} = 25\Omega$		-	75	160	ns		
t _f		Fall Time		_		(Note 4)	-	30	70	ns	
	T	le Characteristic									
l _S		n Continuous Drain to					-	-	5.5	A	
SM		imum Pulsed Drain to Source Diode Forward Current n to Source Diode Forward Voltage $V_{CS} = 0V$, $I_{SD} = 6.2A$			-	-	20	A V			
\/		Recovery Time	u voltage	$V_{GS} = 0V, I_{SD} = 6.2A$			-	-	1.4		
	Reverse	Recovery Time Recovery Charge			0V, I _{SD} = 6.2A = 100A/μs	-	-	130	-	ns	
V _{SD} t _{rr} Q _{rr}	Dovoroo			urF/ut -	- 100Αγμ3		-	0.6	-	μC	

©2010 Fairchild Semiconductor Corporation FDD7N25LZ Rev. C0




©2010 Fairchild Semiconductor Corporation FDD7N25LZ Rev. C0

FDD7N25LZ N-Channel UniFETTM MOSFET

FDD7N25LZ N-Channel UniFETTM MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

interfueu to be all exhausi
2Cool™
AccuPower™
AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™_
EcoSPARK [®]
EfficentMax™
ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPSTM

PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®]

Sync-Lock™ SYSTEM ®' GENERAL TinyBoost¹ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

DD7N25LZ N-Channel UniFETTM MOSFET

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			