

FDD1600N10ALZD BoostPak (N-Channel PowerTrench[®] MOSFET + Diode) **100 V, 6.8 A, 160 m**Ω

Features

- $R_{DS(on)} = 124 \text{ m}\Omega \text{ (Typ.)} \otimes V_{GS} = 10 \text{ V}, I_D = 3.4 \text{ A}$
- R_{DS(on)} = 175 mΩ (Typ.)@ V_{GS} = 5.0 V, I_D = 2.1 A
- Low Gate Charge (Typ.2.78 nC)
- Low C_{rss} (Typ. 2.04 pF)
- · Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor®'s PowerTrench® process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

The NP diode is hyperfast rectifier with low forward voltage drop and excellent switching performance.

ž

04.5

Applications

- LED Monitor Backlight
- LED TV Backlight
- LED Lighting
- Consumer Appliances, DC-DC converter (Step up & Step down)

Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol		Parameter	FDD1600N10ALZD	Unit	
V _{DSS}	Drain to Source Voltage			100	V
V _{GSS}	Gate to Source Voltage			±20	V
ID	Drain Current	- Continuous (T _C = 25°C)		6.8	- A
	Drain Current	- Continuous (T _C = 100°C)	4.3		
I _{DM}	Drain Current	Drain Current - Pulsed (Note 1)			
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			5.08	mJ
dv/dt	Peak Diode Recovery dv/dt (6.0	V/ns
P _D	Dewer Dissinction	$(T_{C} = 25^{\circ}C)$		14.9	W
	Power Dissipation - Derate above 25°C			0.12	W/ºC
I _F	Diode Continuous Forward Current (T _C = 124 ^o C)			4	A
FM	Diode Maximum Forward Current			40	A
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FDD1600N10ALZD	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case for MOSFET, Max	8.4	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case for Diode, Max	3.3	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max	87	

July 2013

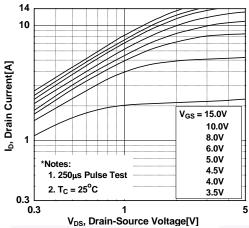
EDD1600N10ALZD Cteristics of th Parameter Source Breakdown Volta wn Voltage Temperature ource Leakage Current Source Leakage Current Source Leakage Current Source On Resistant Transconductance Source On Resistant Transfer Capacitance Elated Output Capacitance Source at 10V Source Charge at 5V	age	FET $T_{C} = 25^{\circ}($ Test $I_{D} = 250 \ \mu\text{A}, \ V_{C}$ $I_{D} = 250 \ \mu\text{A}, \ R_{C}$ $V_{DS} = 80 \ V, \ V_{G}$ $V_{DS} = 80 \ V, \ V_{G}$ $V_{GS} = \pm 20 \ V, \ V$ $V_{GS} = 10 \ V, \ I_{D}$ $V_{GS} = 5 \ V, \ I_{D} =$ $V_{DS} = 10 \ V, \ I_{D}$ $V_{DS} = 50 \ V, \ V_{C}$ $f = 1 \ \text{MHz}$ $V_{DS} = 50 \ V, \ V_{C}$ $V_{GS} = 10 \ V$	Conditions $_{3S} = 0 V$ eferenced to $_{S} = 0 V$ $_{S} = 0 V$, T_{C} $_{DS} = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $_{3S} = 0 V$	erwise not	2mm red Min. 100 - - - 1.4 - - - - - - - - - - - - -	Typ. - 0.1 - - 2.1 124 175 19.6 169 43 - -	2500 Max. - - 1 500 ±10 2.8 160 375 - 225 55	Unit V V/°C μΑ μΑ V mΩ S pF
Parameter Source Breakdown Volta vn Voltage Temperature tt e Voltage Drain Current cource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics pacitance apacitance apacitance elated Output Capacitance e Charge at 10V	age	Test $I_D = 250 \ \mu A, \ V_G$ $I_D = 250 \ \mu A, \ R_G$ $V_{DS} = 80 \ V, \ V_G$ $V_{DS} = 80 \ V, \ V_G$ $V_{GS} = \pm 20 \ V, \ V$ $V_{GS} = 10 \ V, \ I_D$ $V_{GS} = 5 \ V, \ I_D =$ $V_{DS} = 50 \ V, \ V_G$ $f = 1 \ MHz$ $V_{DS} = 50 \ V, \ V_G$ $V_{GS} = 10 \ V$	Conditions $_{3S} = 0 V$ eferenced to $_{S} = 0 V$ $_{S} = 0 V$, T_{C} $_{DS} = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $_{3S} = 0 V$	9 25°C	Min. 100 - - - 1.4 - - - - - - - - - - - - -	- 0.1 - - 2.1 124 175 19.6 169 43	- 1 500 ±10 2.8 160 375 - 225	V V/°C μΑ μΑ V mΩ S
Source Breakdown Volta vn Voltage Temperature nt e Voltage Drain Current cource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics pacitance apacitance apacitance elated Output Capacitance elated Output Capacitance e Charge at 10V	ance	$I_{D} = 250 \ \mu\text{A}, \ V_{C}$ $I_{D} = 250 \ \mu\text{A}, \ R_{C}$ $V_{DS} = 80 \ V, \ V_{C}$ $V_{GS} = 80 \ V, \ V_{C}$ $V_{GS} = 20 \ V, \ V_{C}$ $V_{GS} = 10 \ V, \ I_{D}$ $V_{GS} = 5 \ V, \ I_{D} =$ $V_{DS} = 10 \ V, \ I_{D}$ $V_{DS} = 50 \ V, \ V_{C}$ $I_{DS} = 50 \ V, \ V_{C}$ $V_{DS} = 50 \ V, \ V_{C}$ $V_{DS} = 50 \ V, \ V_{C}$	$S_{S} = 0 V$ $S = 0 V$ $S = 0 V, T_{C}$ $S = 0 V, T_{C}$ $S = 0 V$ $S = 0 V$ $S = 250 \mu A$ $S = 3.4 A$ $S = 6.8 A$ $S = 0 V$		100 - - - - 1.4 - - -	- 0.1 - - 2.1 124 175 19.6 169 43	- 1 500 ±10 2.8 160 375 - 225	V V/°C μΑ μΑ V mΩ S
vn Voltage Temperature nt e Voltage Drain Current iource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics vacitance apacitance apacitance elated Output Capacitance e Charge at 10V	ance	$I_{D} = 250 \ \mu\text{A}, \text{ Re}$ $V_{DS} = 80 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 40 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$	eferenced to $_{S} = 0 V$ $_{DS} = 0 V, T_{C}$ $_{DS} = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $_{SS} = 0 V$		- - - - 1.4 - - -	- - - 2.1 124 175 19.6 169 43	500 ±10 2.8 160 375 - 225	 V/°C μA μA ν mΩ S pF
vn Voltage Temperature nt e Voltage Drain Current iource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics vacitance apacitance apacitance elated Output Capacitance e Charge at 10V	ance	$I_{D} = 250 \ \mu\text{A}, \text{ Re}$ $V_{DS} = 80 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 40 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$	eferenced to $_{S} = 0 V$ $_{DS} = 0 V, T_{C}$ $_{DS} = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $_{SS} = 0 V$		- - - - 1.4 - - -	- - - 2.1 124 175 19.6 169 43	500 ±10 2.8 160 375 - 225	 V/°C μA μA ν mΩ S pF
vn Voltage Temperature nt e Voltage Drain Current iource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics vacitance apacitance apacitance elated Output Capacitance e Charge at 10V	ance	$I_{D} = 250 \ \mu\text{A}, \text{ Re}$ $V_{DS} = 80 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 40 \ \text{V}, \ \text{V}_{G}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{GS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 10 \ \text{V}, \ \text{I}_{D}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$ $V_{DS} = 50 \ \text{V}, \ \text{V}_{C}$	eferenced to $_{S} = 0 V$ $_{DS} = 0 V, T_{C}$ $_{DS} = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $_{SS} = 0 V$		- - - - 1.4 - - -	- - - 2.1 124 175 19.6 169 43	500 ±10 2.8 160 375 - 225	- μΑ μΑ V mΩ S
nt e Voltage Drain Current cource Leakage Current eshold Voltage ain to Source On Resista Transconductance istics vacitance apacitance elated Output Capacitance elated Output Capacitance e Charge at 10V	ance	$V_{DS} = 80 \text{ V}, V_{G}$ $V_{DS} = 80 \text{ V}, V_{G}$ $V_{GS} = \pm 20 \text{ V}, V$ $V_{GS} = 10 \text{ V}, I_{D}$ $V_{GS} = 5 \text{ V}, I_{D} =$ $V_{DS} = 10 \text{ V}, I_{D}$ $V_{DS} = 50 \text{ V}, V_{G}$ $f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, V_{G}$	S = 0 V $S = 0 V, T_C$ $D_S = 0 V$ $= 250 \mu A$ = 3.4 A 2.1 A = 6.8 A $S_S = 0 V$		- - 1.4 - - -	- - - 2.1 124 175 19.6 169 43	500 ±10 2.8 160 375 - 225	- μΑ μΑ V mΩ S
source Leakage Current eshold Voltage ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V	ance	$V_{DS} = 80 V, V_{G}$ $V_{GS} = \pm 20 V, V_{G}$ $V_{GS} = V_{DS}, I_{D} = V_{DS} = 10 V, I_{D}$ $V_{GS} = 5 V, I_{D} = V_{DS} = 10 V, I_{D}$ $V_{DS} = 50 V, V_{C}$ $f = 1 MHz$ $V_{DS} = 50 V, V_{G}$ $V_{GS} = 10 V$	S = 0 V, T _C DS = 0 V = 250 μA = 3.4 A 2.1 A = 6.8 A SS = 0 V	= 125°C	- - 1.4 - - -	2.1 124 175 19.6 169 43	500 ±10 2.8 160 375 - 225	μΑ - mΩ - S
source Leakage Current eshold Voltage ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V	ance	$V_{GS} = \pm 20 \text{ V}, \text{ V}$ $V_{GS} = V_{DS}, I_{D} = 0 \text{ V}_{GS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}, I_{D} = 0 \text{ V}_{DS} = 10 \text{ V}$	= 250 μA = 3.4 A 2.1 A = 6.8 A	= 125°C	- 1.4 - - -	2.1 124 175 19.6 169 43	±10 2.8 160 375 - 225	μΑ - mΩ - S
eshold Voltage ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V	ance	$V_{GS} = V_{DS}, I_{D} = V_{GS} = 10 \text{ V}, I_{D}$ $V_{GS} = 5 \text{ V}, I_{D} = V_{DS} = 10 \text{ V}, I_{D}$ $V_{DS} = 50 \text{ V}, V_{C}$ $f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, V_{G}$ $V_{GS} = 10 \text{ V}$	= 250 μA = 3.4 A 2.1 A = 6.8 A = 6.8 A		1.4 - - -	2.1 124 175 19.6 169 43	2.8 160 375 - 225	V - mΩ S pF
ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$V_{GS} = 10 \text{ V}, \text{ I}_{D}$ $V_{GS} = 5 \text{ V}, \text{ I}_{D} =$ $V_{DS} = 10 \text{ V}, \text{ I}_{D}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $V_{GS} = 10 \text{ V}$	= 3.4 A 2.1 A = 6.8 A			124 175 19.6 169 43	160 375 - 225	- mΩ S
ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$V_{GS} = 10 \text{ V}, \text{ I}_{D}$ $V_{GS} = 5 \text{ V}, \text{ I}_{D} =$ $V_{DS} = 10 \text{ V}, \text{ I}_{D}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $V_{GS} = 10 \text{ V}$	= 3.4 A 2.1 A = 6.8 A			124 175 19.6 169 43	160 375 - 225	- mΩ S
ain to Source On Resist Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$V_{GS} = 10 \text{ V}, \text{ I}_{D}$ $V_{GS} = 5 \text{ V}, \text{ I}_{D} =$ $V_{DS} = 10 \text{ V}, \text{ I}_{D}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $V_{GS} = 10 \text{ V}$	= 3.4 A 2.1 A = 6.8 A			124 175 19.6 169 43	160 375 - 225	- mΩ S
Transconductance istics pacitance apacitance Transfer Capacitance elated Output Capacitance e Charge at 10V		$V_{GS} = 5 V, I_D = V_{DS} = 10 V, I_D$ $V_{DS} = 50 V, V_C$ f = 1 MHz $V_{DS} = 50 V, V_C$ $V_{GS} = 10 V$	2.1 A = 6.8 A		-	175 19.6 169 43	375 - 225	S pF
istics pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$V_{DS} = 10 \text{ V}, \text{ I}_{D}$ $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ f = 1 MHz $V_{DS} = 50 \text{ V}, \text{ V}_{C}$ $V_{GS} = 10 \text{ V}$	= 6.8 A _{SS} = 0 V			169 43	225	pF
pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$V_{DS} = 50 V, V_{C}$ f = 1 MHz $V_{DS} = 50 V, V_{C}$ $V_{GS} = 10 V$	_{9S} = 0 V		-	43		
pacitance apacitance Transfer Capacitance elated Output Capacitan e Charge at 10V		$f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{G}$ $V_{GS} = 10 \text{ V}$		-	-	43		
apacitance Transfer Capacitance elated Output Capacitar e Charge at 10V		$f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{G}$ $V_{GS} = 10 \text{ V}$		-	-	43		
Transfer Capacitance elated Output Capacitar e Charge at 10V		$f = 1 \text{ MHz}$ $V_{DS} = 50 \text{ V}, \text{ V}_{G}$ $V_{GS} = 10 \text{ V}$			-	-	55	- - -
elated Output Capacitat e Charge at 10V	nce	V_{GS} = 10 V	_S = 0 V					pF
e Charge at 10V		V_{GS} = 10 V	S = 0 V			2.04 85	-	pF pF
-						2.78	3.61	nC
5 Onlarge at 6 V		$V_{00} = 5 V$	$V_{DD} = 50 V,$ $I_{D} = 6.8 A$ (Note 4)			1.5	1.95	nC
ource Gate Charge		165-01			-	0.72	-	nC
rain "Miller" Charge					-	0.56	-	nC
eau Volatge					-	4.02	-	V
e Charge Sync.		V _{DS} = 0 V, I _D = 3.4 A (Note 5)		-	2.5	-	nC	
Output Charge		$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-	5.2	-	nC
eristics								
						7	24	ns
Turn-On Delay Time Turn-On Rise Time		V _{DD} = 50 V, I _D = 6.8 A				2	14	ns
Delay Time		V _{GS} = 10 V, R _{GEN} = 4.7 Ω		-			ns	
Fall Time				-	2	14	ns	
Equivalent Series Resistance (G-S)		f = 1 MHz			-	2.1	-	Ω
Characteristics				L				1
		Forward Curro	nt		_		6.8	А
								A
					-			V
Recovery Time	0			= 50 V	-	37	-	ns
				5 - 00 V	-	42	-	nC
	all Time Series Resistance (G- Characteristics Continuous Drain to So Pulsed Drain to Source purce Diode Forward V	all Time Series Resistance (G-S) Characteristics Continuous Drain to Source Diode Pulsed Drain to Source Diode Forvource Diode Forward Voltage ecovery Time	all Time f = 1 MHz Series Resistance (G-S) f = 1 MHz Characteristics Continuous Drain to Source Diode Forward Current Pulsed Drain to Source Diode Forward Current purce Diode Forward Voltage V _{GS} = 0 V, I _{SD} v _{GS} = 0 V, I _{SD}	all Time f = 1 MHz Series Resistance (G-S) f = 1 MHz Characteristics Continuous Drain to Source Diode Forward Current Pulsed Drain to Source Diode Forward Current purce Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 6.8 A$ ecovery Time $V_{GS} = 0 V$, $I_{SD} = 6.8 A$, V_{DS}	all Time (Note 4) Series Resistance (G-S) $f = 1 \text{ MHz}$ Characteristics Continuous Drain to Source Diode Forward Current Pulsed Drain to Source Diode Forward Current Pulsed Drain to Source Diode Forward Current purce Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 6.8 \text{ A}$ ecovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 6.8 \text{ A}, V_{DS} = 50 \text{ V}$	all Time (Note 4) all Time (Note 4) Series Resistance (G-S) $f = 1 \text{ MHz}$ Characteristics Continuous Drain to Source Diode Forward Current Pulsed Drain to Source Diode Forward Current - Pulsed Drain to Source Diode Forward Current - purce Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 6.8 \text{ A}$ ecovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 6.8 \text{ A}, V_{DS} = 50 \text{ V}$	Image: Note of the second	IntermediateIntermediateIntermediateall Time(Note 4)-214Series Resistance (G-S)f = 1 MHz-2.1-CharacteristicsContinuous Drain to Source Diode Forward Current6.8Pulsed Drain to Source Diode Forward Current13.6Pulsed Drain to Source Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 6.8 A$ 1.3ecovery Time $V_{GS} = 0 V$, $I_{SD} = 6.8 A$, $V_{DS} = 50 V$ -37-

1. Repetitive Rating: Pulse width limited by maximum ju 2. L = 1mH, I_{AS} = 3.18A, R_G = 25 Ω , Starting T_J = 25°C

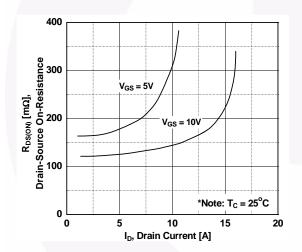
3. $I_{SD} \le 6.8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

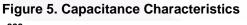
4. Essentially Independent of Operating Temperature Typical Characteristics

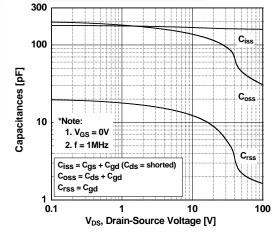
5. See the test circuit in page 10

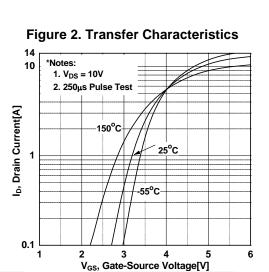

Symbol	Parameter	Test Con	Test Conditions		Тур.	Max.	Unit	
V _R	DC Blocking Voltage	I _R = 1 mA	: 1 mA			-	V	
\/			$T_{C} = 25^{\circ}C$	-	-	2.5	V	
V _{FM}	Maximum Instantaneous Forward Voltage	$I_F = 4 A$	T _C = 125°C	-	1.01	-	V	
	Maximum Instantaneous Reverse Current @ rated VR		$T_{C} = 25^{\circ}C$	-	-	50		
RM	Maximum instantaneous Reverse Current o		$T_{C} = 125^{\circ}C$	-	-	1000	uA	
•	Diada Bayaraa Basayary Tima		$T_{C} = 25^{\circ}C$	-	12.7	26	– ns – A	
L _{LL}	Diode Reverse Recovery Time		T _C = 125°C	-	17.1	-		
1	Diode Peak Reverse Recovery Current $I_F = 4 \text{ A}$ dl/dt = 200 A/p		$T_{C} = 25^{\circ}C$	-	2.6	6		
Irr		$di/dt = 200 A/\mu s$	T _C = 125°C	-	3.8	-		
0	Diada Davaras Dasavary Charge		$T_{C} = 25^{\circ}C$	-	18.3	-	nC	
Q _{rr}	Diode Reverse Recovery Charge		$T_{C} = 125^{\circ}C$	-	35.7	-		
W _{AVL}	Avalanche Energy (L=40mH)		10	-	-	mJ		

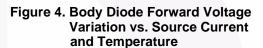

Electrical Characteristics of DIODE T_C = 25°C unless otherwise noted




Typical Performance Characteristics - MOSFET







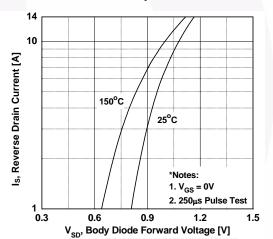
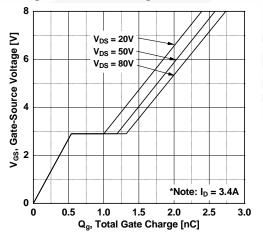
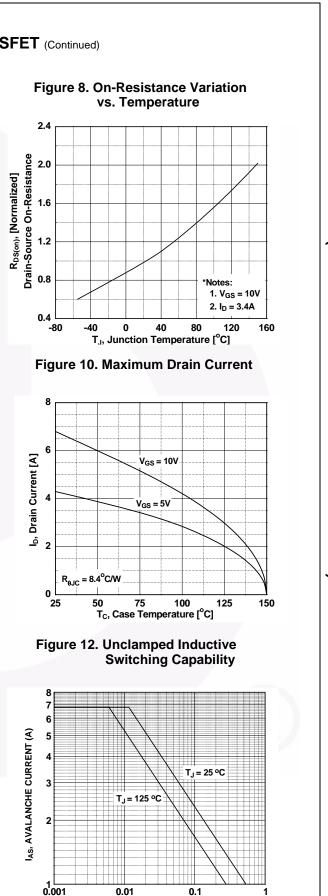
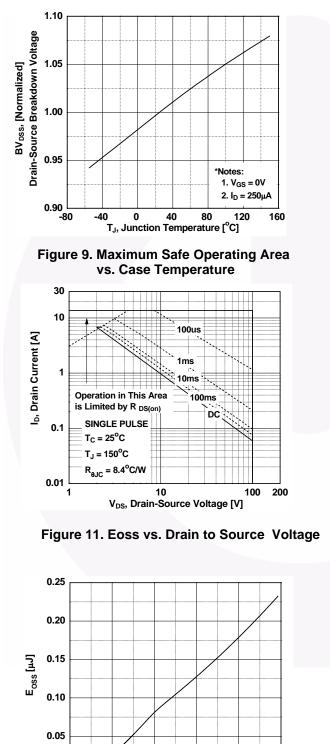




Figure 6. Gate Charge Characteristics

0.01

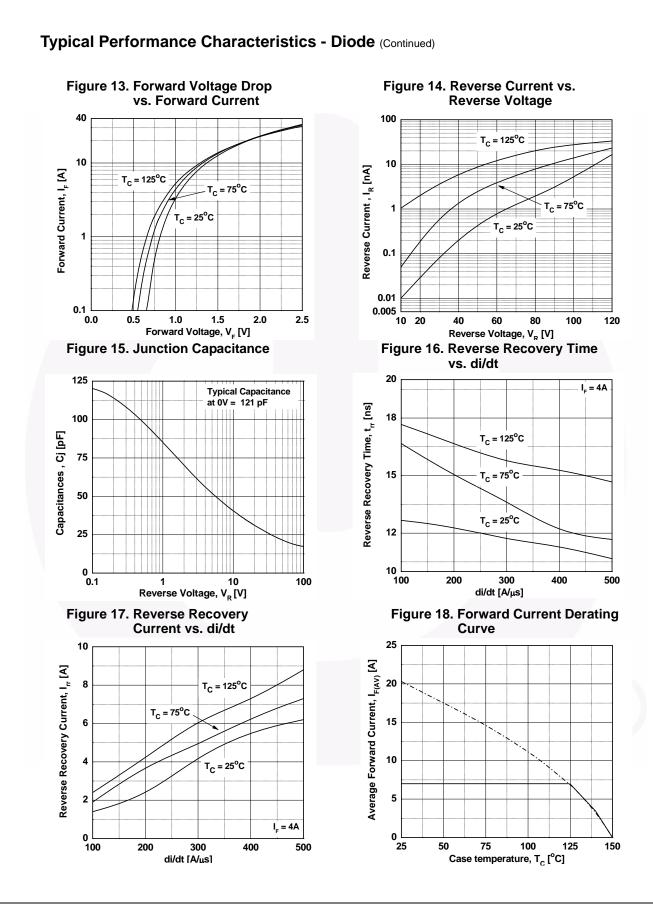
t_{AV}, TIME IN AVALANCHE (ms)

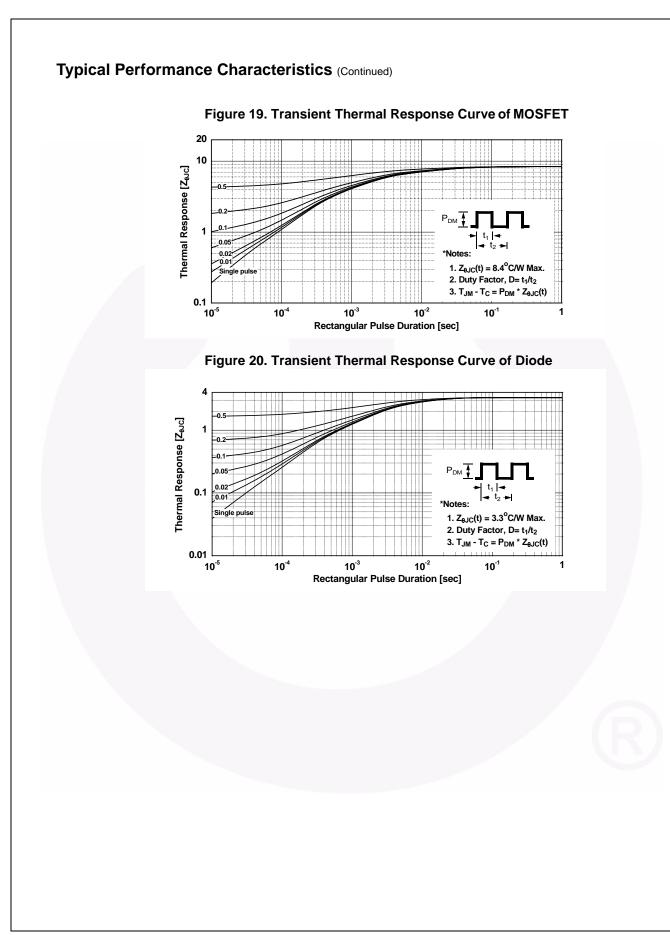

0.1

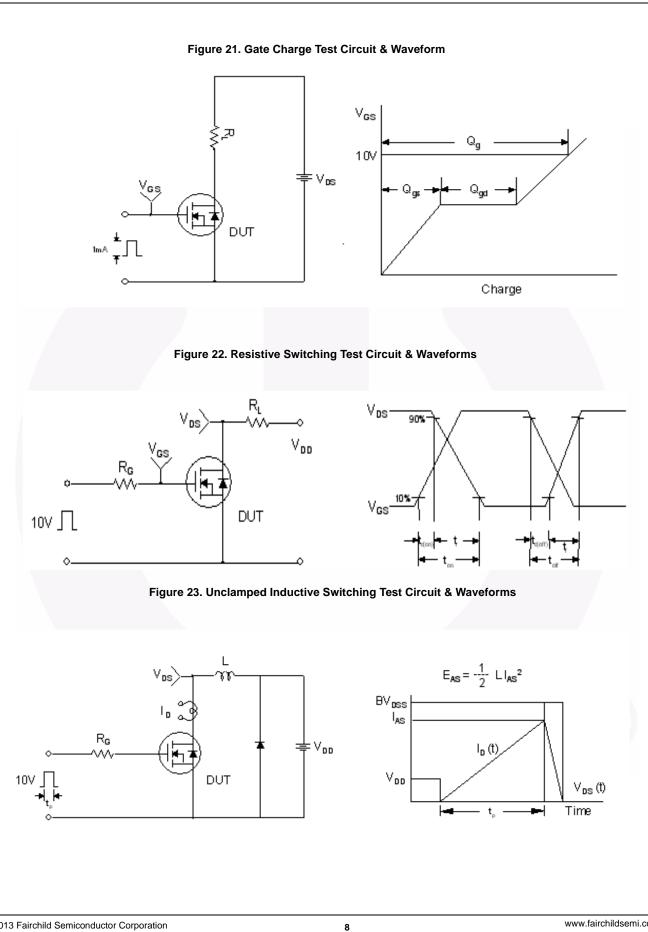
Typical Performance Characteristics - MOSFET (Continued)

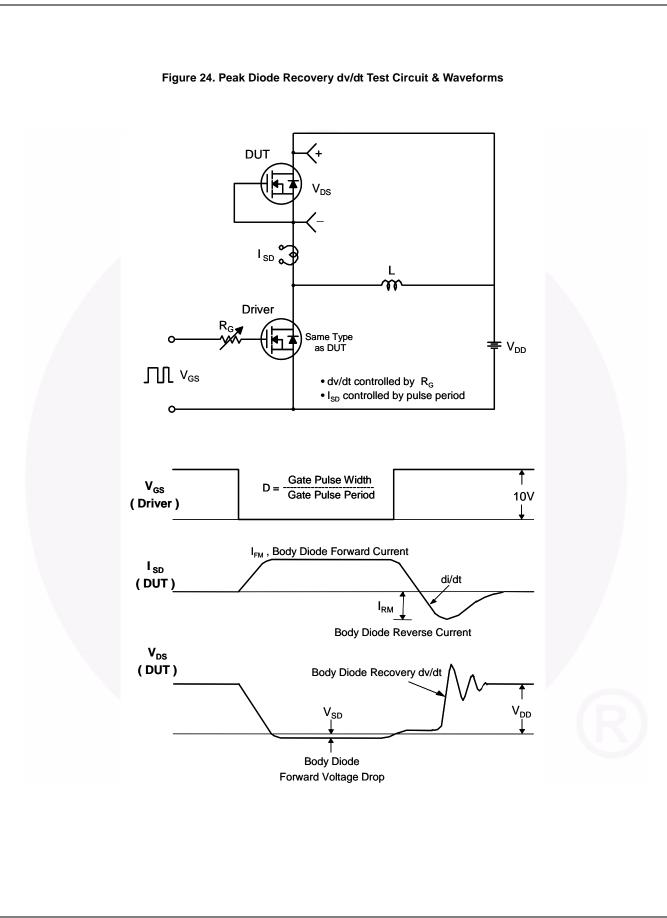
Figure 7. Breakdown Voltage Variation

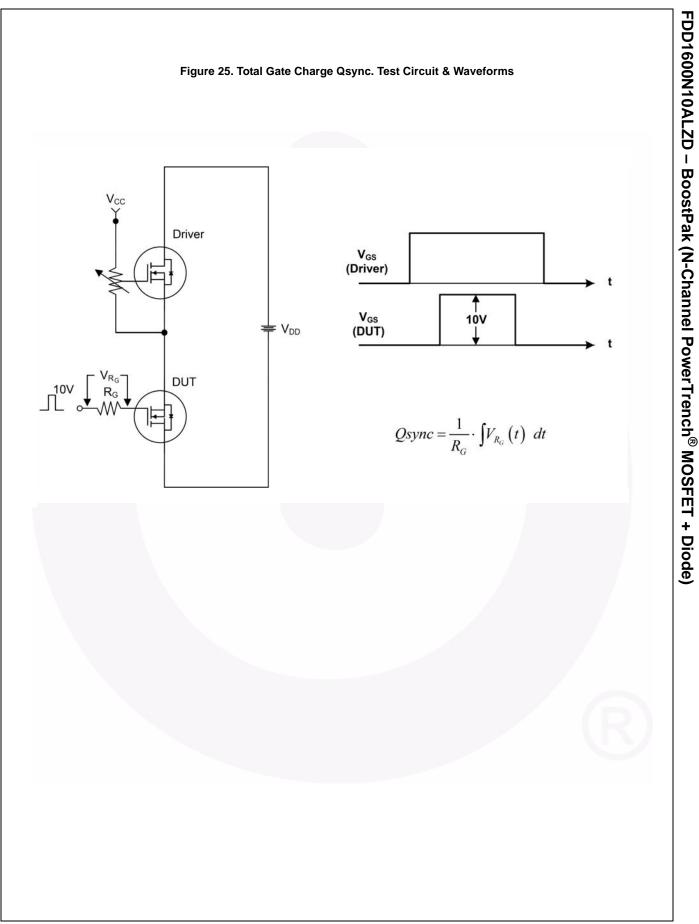
vs. Temperature


20 40 60 80 V_{DS}, Drain to Source Voltage [V]


©2013 Fairchild Semiconductor Corporation FDD1600N10ALZD Rev. C1


0


0


100

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST® FastvCore™ FETBench™

FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC®**

FPS™

F-PFS™

()_® PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

SYSTEM^{®'} TinvBoost[†] TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* uSerDes™ UHC® Ultra FRFET™ **UniFET**[™] VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev