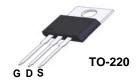


March 2013

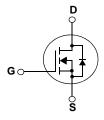
# FCP7N60N / FCPF7N60NT N-Channel SupreMOS® MOSFET

**600** V, 6.8 A, 520 m $\Omega$ 

## **Features**


- $R_{DS(on)} = 460 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V, } I_D = 3.4 \text{ A}$
- Ultra Low Gate Charge (Typ.Q<sub>g</sub> = 17.8 nC)
- Low Effective Output Capacitance (Typ.  $C_{oss}$ .eff = 91 pF)
- 100% Avalanche Tested
- · RoHS Compliant

# **Application**


- LCD/LED TV and Monitor
- Lighting
- · Solar Inverter
- AC-DC Power Supply

# **Description**

The SupreMOS® MOSFET is Fairchild Semiconductor® s next generation of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiates it from the conventional SJ MOSFETs. This advanced technology and precise process control provides lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.







# MOSFET Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                            |                                                                              | Parameter                            |          | FCP7N60N | FCPF7N60NT | Unit |  |
|-----------------------------------|------------------------------------------------------------------------------|--------------------------------------|----------|----------|------------|------|--|
| V <sub>DSS</sub>                  | Drain to Source Voltage                                                      | Drain to Source Voltage              |          |          | 600        |      |  |
| V <sub>GSS</sub>                  | Gate to Source Voltage                                                       |                                      |          | :        | ±30        | V    |  |
| 1                                 | Drain Current                                                                | -Continuous (T <sub>C</sub> = 25°C)  |          | 6.8      | 6.8*       | Α    |  |
| ID                                | Drain Current                                                                | -Continuous (T <sub>C</sub> = 100°C) |          | 4.3      | 4.3*       | А    |  |
| $I_{DM}$                          | Drain Current                                                                | - Pulsed                             | (Note 1) | 20.4     | 20.4       | Α    |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)                                      |                                      |          | 2) 79.4  |            | mJ   |  |
| I <sub>AR</sub>                   | Avalanche Current                                                            |                                      |          | 6.8      |            | Α    |  |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                                                  |                                      |          | 0.6      |            | mJ   |  |
| dv/dt                             | MOSFET dv/dt Ruggednes                                                       | ss                                   |          | 100      |            | V/ns |  |
| uv/ut                             | Peak Diode Recovery dv/d                                                     | lt                                   | (Note 3) |          | 4.9        | V/ns |  |
| D                                 | Dawer Dissination                                                            | $(T_C = 25^{\circ}C)$                |          | 64.1     | 30.5       | W    |  |
| $P_{D}$                           | Power Dissipation                                                            | - Derate above 25°C                  |          | 0.51     | 0.24       | W/oC |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range -55 to +150                          |                                      |          | °C       |            |      |  |
| T <sub>L</sub>                    | Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds |                                      |          | ;        | 300        | °C   |  |

<sup>\*</sup>Drain current limited by maximum junction temperature

#### **Thermal Characteristics**

| Symbol          | Parameter                                       |      | FCPF7N60NT | Unit |
|-----------------|-------------------------------------------------|------|------------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction to Case            | 1.95 | 4.1        |      |
| $R_{\theta CS}$ | Thermal Resistance, Case to Heak Sink (Typical) | 0.5  | 0.5        | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient         | 62.5 | 62.5       |      |

# **Package Marking and Ordering Information**

| Device Marking | Device     | Package  | Reel Size | Tape Width | Quantity |
|----------------|------------|----------|-----------|------------|----------|
| FCP7N60N       | FCP7N60N   | TO-220AB | -         | -          | 50       |
| FCPF7N60NT     | FCPF7N60NT | TO-220F  | =         | =          | 50       |

# **Electrical Characteristics** $T_C = 25^{\circ}C$ unless otherwise noted

| Symbol                               | Parameter                                    | Test Conditions                                                             | Min. | Тур. | Max. | Unit |
|--------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| Off Charac                           | eteristics                                   |                                                                             |      |      |      |      |
| BV <sub>DSS</sub>                    | Drain to Source Breakdown Voltage            | $I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}, T_C = 25^{\circ}\text{C}$        | 600  | -    | -    | V    |
| $\frac{\Delta BV_{DSS}}{\Delta T_J}$ | Breakdown Voltage Temperature<br>Coefficient | I <sub>D</sub> = 1 mA, Referenced to 25°C                                   | -    | 0.6  | -    | V/°C |
|                                      | Zero Gate Voltage Drain Current              | V <sub>DS</sub> = 480 V, V <sub>GS</sub> = 0 V                              | -    | -    | 10   | ^    |
| IDSS                                 | Zero Gate voltage Drain Current              | $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$ | -    | -    | 100  | μΑ   |
| I <sub>GSS</sub>                     | Gate to Body Leakage Current                 | $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$                           | -    | -    | ±100 | nA   |

## **On Characteristics**

| V <sub>GS(th)</sub> | Gate Threshold Voltage               | $V_{GS} = V_{DS}, I_{D} = 250 \mu\text{A}$     | 2.0 | -    | 4.0  | V |
|---------------------|--------------------------------------|------------------------------------------------|-----|------|------|---|
| R <sub>DS(on)</sub> | Static Drain to Source On Resistance | $V_{GS} = 10 \text{ V}, I_D = 3.4 \text{ A}$   | -   | 0.46 | 0.52 | Ω |
| 9 <sub>FS</sub>     | Forward Transconductance             | $V_{DS} = 20 \text{ V}, I_{D} = 3.4 \text{ A}$ | İ   | 8.5  | -    | S |

# **Dynamic Characteristics**

| C <sub>iss</sub>     | Input Capacitance                  | V 400 V V 0 V                                                     | - | 719  | 960  | pF |
|----------------------|------------------------------------|-------------------------------------------------------------------|---|------|------|----|
| C <sub>oss</sub>     | Output Capacitance                 | $V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$                    | - | 30   | 40   | pF |
| C <sub>rss</sub>     | Reverse Transfer Capacitance       | I = I IVIDZ                                                       |   | 2.1  | 3.2  | pF |
| C <sub>oss</sub>     | Output Capacitance                 | $V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | - | 17   | -    | pF |
| C <sub>oss</sub> eff | Effective Output Capacitance       | $V_{DS} = 0 \text{ V to } 380 \text{ V}, V_{GS} = 0 \text{ V}$    | - | 91   | -    | pF |
| Q <sub>g(tot)</sub>  | Total Gate Charge at 10V           | $V_{DS} = 380 \text{ V}, I_{D} = 3.4 \text{ A}$                   | - | 17.8 | 35.6 | nC |
| Q <sub>gs</sub>      | Gate to Source Gate Charge         | V <sub>GS</sub> = 10 V                                            | - | 3.2  | 6.3  | nC |
| $Q_{gd}$             | Gate to Drain "Miller" Charge      | (Note 4)                                                          | - | 6.0  | 11.9 | nC |
| ESR                  | Equivalent Series Resistance (G-S) | Drain Open                                                        | - | 2.5  | -    | Ω  |

# **Switching Characteristics**

| t <sub>d(on)</sub>  | Turn-On Delay Time  |                                               | - | 12 | 24 | ns |
|---------------------|---------------------|-----------------------------------------------|---|----|----|----|
| t <sub>r</sub>      | Turn-On Rise Time   | $V_{DD} = 380 \text{ V}, I_D = 3.4 \text{ A}$ | - | 6  | 22 | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time | $R_G = 4.7 \Omega$                            | - | 35 | 80 | ns |
| t <sub>f</sub>      | Turn-Off Fall Time  | (Note 4)                                      | - | 12 | 24 | ns |

# **Drain-Source Diode Characteristics**

| I <sub>S</sub>  | Maximum Continuous Drain to Source Diode Forward Current |                                                |   | -   | 6.8  | Α  |
|-----------------|----------------------------------------------------------|------------------------------------------------|---|-----|------|----|
| $I_{SM}$        | Maximum Pulsed Drain to Source Diode Forward Current     |                                                | - | -   | 20.4 | Α  |
| $V_{SD}$        | Drain to Source Diode Forward Voltage                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> =3.4 A  | - | -   | 1.2  | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 3.4 A | - | 211 | -    | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge                                  | $dI_F/dt = 100 A/\mu s$                        | - | 1.8 | -    | μС |

- **Notes:**1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2.  $I_{AS}$  = 2.3 A,  $R_{G}$  = 25  $\Omega$ , Starting  $T_{J}$  = 25°C
- 3. I\_{SD}  $\leq 6.8$  A, di/dt  $\leq 200$  A/ $\mu$ s, V\_{DD}  $\leq 380$  V, Starting T\_J = 25°C
- 4. Essentially Independent of Operating Temperature Typical Characteristics

# **Typical Performance Characteristics**

Figure 1. On-Region Characteristics

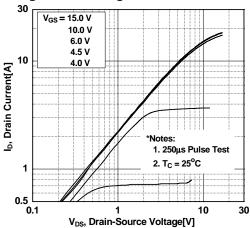



Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

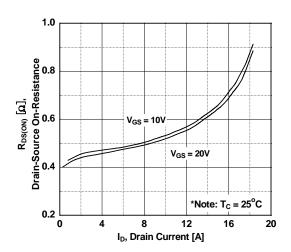



Figure 5. Capacitance Characteristics

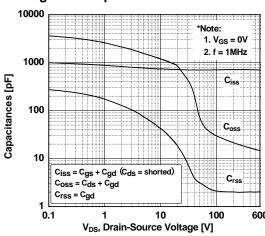



Figure 2. Transfer Characteristics

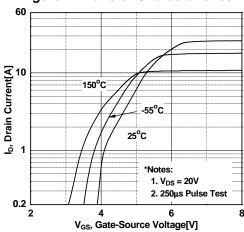



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

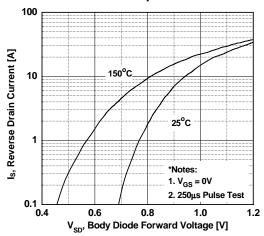
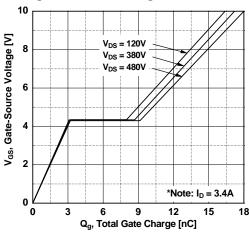




Figure 6. Gate Charge Characteristics



# Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

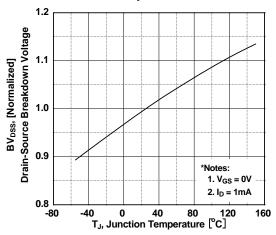



Figure 9. Maximum Safe Operating Area \_ FCP7N60N

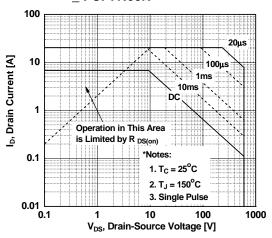



Figure 11. Maximum Drain Current vs. Case Temperature

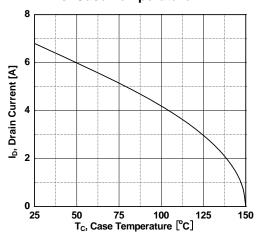



Figure 8. On-Resistance Variation vs. Temperature

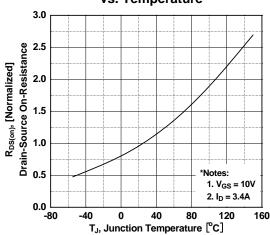
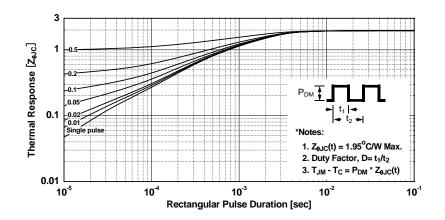
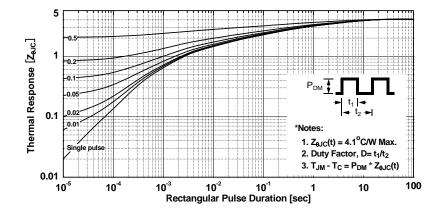
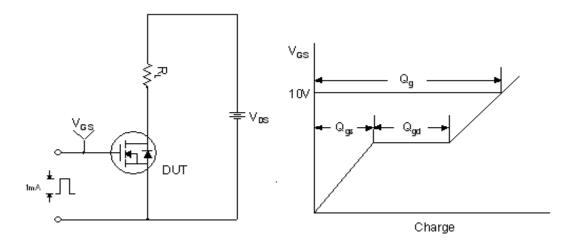


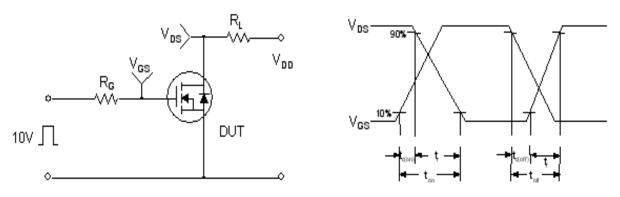

Figure 10. Maximum Safe Operating Area FCPF7N60NT



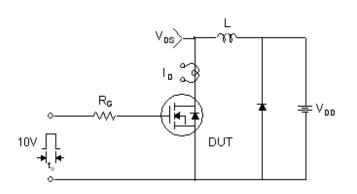
# **Typical Performance Characteristics** (Continued)

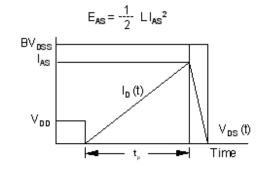
Figure 12. Transient Thermal Response Curve \_ FCP7N60N

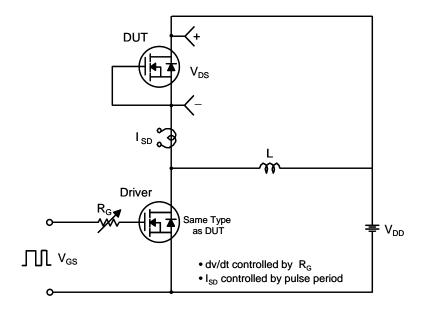


Figure 13. Transient Thermal Response Curve \_ FCPF7N60NT

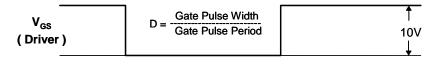


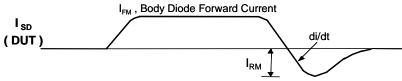

# **Gate Charge Test Circuit & Waveform**



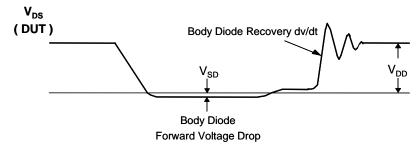

# **Resistive Switching Test Circuit & Waveforms**





**Unclamped Inductive Switching Test Circuit & Waveforms** 

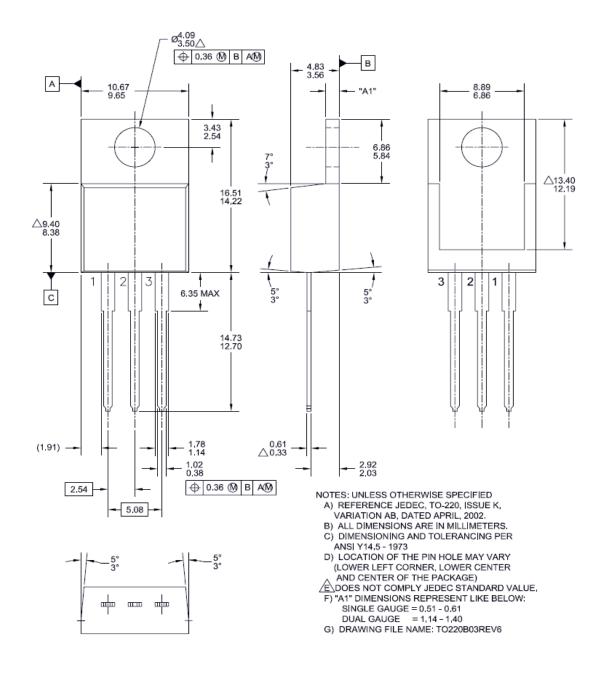






## Peak Diode Recovery dv/dt Test Circuit & Waveforms








Body Diode Reverse Current



# **Mechanical Dimensions**

# TO-220



**Dimensions in Millimeters** 

# **Mechanical Dimensions TO-220F** 2.74 2.34 10.36 Α 9.96 Ø3.28 7.00 3.40 3.08 (0.70) 3.20 SEE NOTE "F" SEE NOTE "F" 6.88 6.48 $\oplus$ 1 X 45° 16.07 15.67 16.00 15.60 (3.23) B 3 1.47 2.96 1.24 2.14 2.56 0.90 10.05 0.70 9.45 ⊕ 0.50 M 30° 0.45 0.60 0.25 0.45 2.54 2.54 NOTES: A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A. B DOES NOT COMPLY EIAJ STD. VALUE. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. 4.90 B 4.50 E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. F. OPTION 1 - WITH SUPPORT PIN HOLE. OPTION 2 - NO SUPPORT PIN HOLE. G. DRAWING FILE NAME: TO220M03REV3 **Dimensions in Millimeters**





#### **TRADEMARKS**

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

2Cool™ FPS™ AccuPower™ F-PFS™ AX-CAP® FRFET® Global Power Resource<sup>SM</sup> BitSiC™

Build it Now™ Green Bridge™ CorePLUS™ Green FPS™

CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™ CTL™ GTO™

Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™

Dual Cool™ Marking Small Speakers Sound Louder EcoSPARK® and Better™

MegaBuck™ EfficentMax™ MICROCOUPLER™ ESBC™ MicroFET™

MicroPak™ MicroPak2™ Fairchild<sup>®</sup> MillerDrive™ Fairchild Semiconductor®  $MotionMax^{TM}$ FACT Quiet Series™ mWSaver™ FACT<sup>®</sup> FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

PowerTrench® PowerXS™

Programmable Active Droop™

QFET®  $QS^{TM}$ Quiet Series™ RapidConfigure™

ng our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3

SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

SYSTEM®'
GENERAL
TipyPos-177 TinvBoost<sup>T</sup> TinyBuck™ TinyCalc™ TinyLogic<sup>®</sup> TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®\* uSerDes™

**UHC®** Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XS™

\*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS **Definition of Terms**

| Datasheet Identification                  | Product Status | Definition                                                                                                                                                                                          |
|-------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information Formative / In Design |                | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary First Production              |                | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed Full Production  |                | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete Not In Production                |                | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. 164