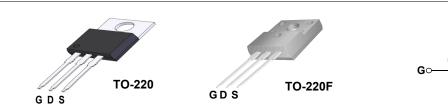


FCP9N60N / FCPF9N60NT N-Channel SupreMOS[®] MOSFET

600 V, 9 A, 385 m Ω

Features


- $R_{DS(on)}$ = 330 m Ω (Typ.)@ V_{GS} = 10 V, I_D = 4.5 A
- Ultra low gate charge (Typ. Q_g = 22 nC)
- Low effective output capacitance (Typ. C_{oss}.eff = 106 pF)
- 100% avalanche tested
- RoHS compliant

Application

- LCD/LED/PDP TV
- Lighting
- Solar Inverter
- AC-DC Power Supply

Description

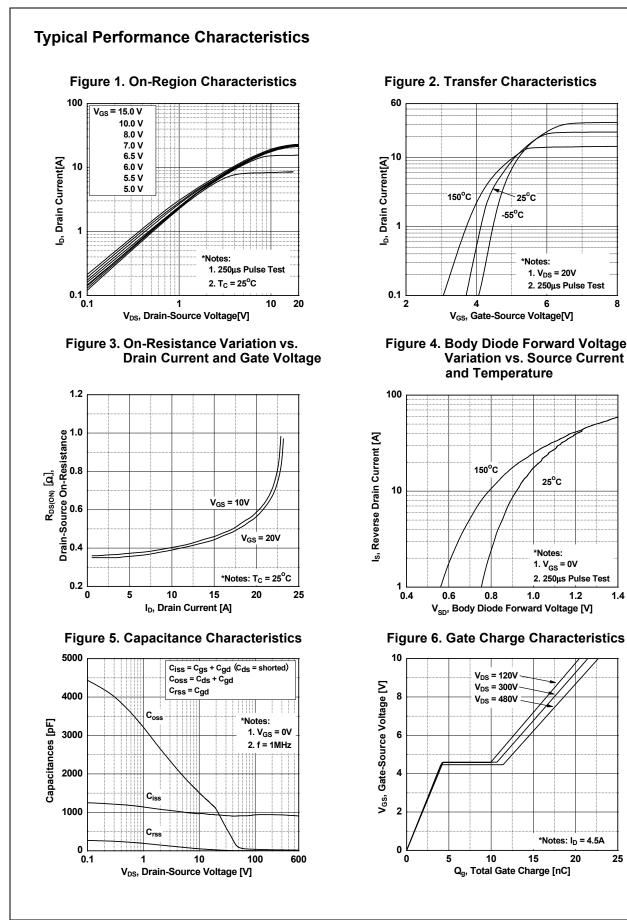
The SupreMOS[®] MOSFET is Fairchild Semiconductor[®], s nextgeneration of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiate it from the conventional MOSFETs. This advanced technology and precise process control provide lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol			FCP9N60N	FCPF9N60NT	Unit		
V _{DSS}	Drain to Source Voltage	(V				
V _{GSS}	Gate to Source Voltage			:	V		
ID	Drain Current	-Continuous (T _C = 25 ^o C)		9.0	9.0*	•	
		-Continuous (T _C = 100 ^o C)		5.7	5.7*	A	
I _{DM}	Drain Current	- Pulsed (Note 1)		27	27*	А	
E _{AS}	Single Pulsed Avalanche Energ	Single Pulsed Avalanche Energy (Note 2)				mJ	
I _{AR}	Avalanche Current				3		
E _{AR}	Repetitive Avalanche Energy		C	mJ			
	MOSFET dv/dt Ruggedness		100		V/ns		
dv/dt	Peak Diode Recovery dv/dt	(Nc	ote 3)		20	V/ns	
P _D	Dower Dissinction	$(T_{\rm C} = 25^{\rm o}{\rm C})$		83.3	29.8	W	
	Power Dissipation	- Derate above 25°C		0.67	0.24	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150		°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300		°C	
*Drain current li	imited by maximum junction temperatu	ire			1		

Thermal Characteristics

Symbol	Parameter	FCP9N60N	FCPF9N60NT	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.5	4.2	
$R_{\theta CS}$	Thermal Resistance, Case to Heat Sink (Typical)	0.5	0.5	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	62.5	


Т
$\overline{\mathbf{O}}$
Ţ
9
~
õ
ž
_
ä
H
Ť
ö
9N60N
6
Õ
Ζ
-
7
Ţ
$\overline{\mathbf{O}}$
ž
an
JUE
ē
-
Ζ
MOSFE
ŭ
Ť
ΠÏ
-
-

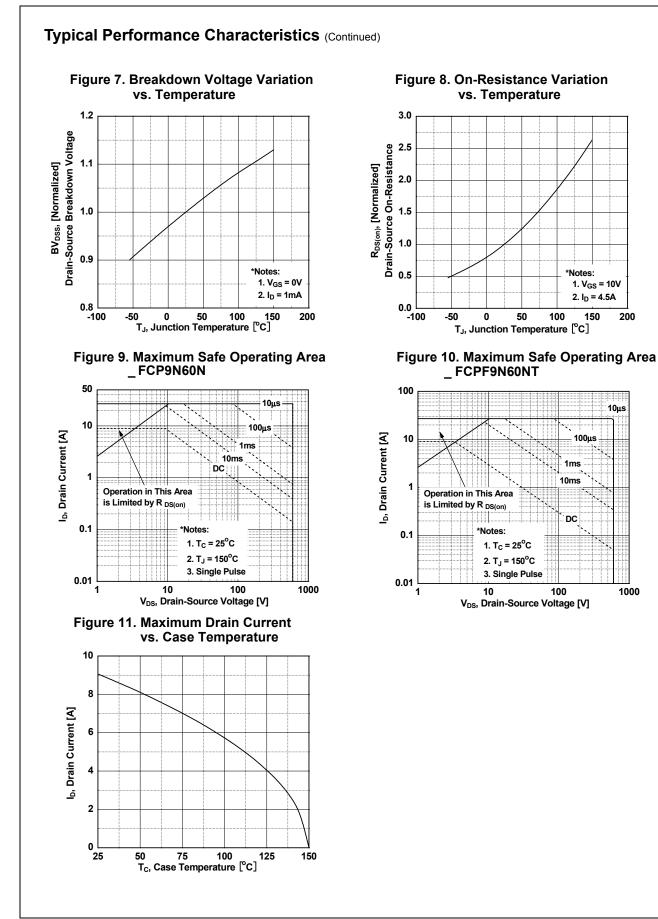
.

Device Marking Device Pac		Packa	age Reel Size Tape		e Width		Quantity	y		
FCP9N60N FCP9N60N TO-		TO-22	20	-				50	0	
FCPF9N60NT FCPF9N60NT TO-2		TO-22	20F -		-		50	50		
Electrica	l Char	racteristics ⊤ _c =	25°C unless	otherwi	se noted					
Symbol		Parameter		Test Conditions			Min.	Тур.	Max.	Unit
Off Chara	cteristic	S								I.
3V _{DSS}	Drain to	o Source Breakdown V	oltage	I _D = 1 mA, V _{GS} = 0 V, T _C = 25°C			600	-	-	V
ΔBV _{DSS} ΔT _J		kdown Voltage Temperature		$I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$			-	0.72	-	V/°C
Ŭ				V _{DS} = 480 V, V _{GS} = 0 V		-	-	10		
DSS	Zero G	Zero Gate Voltage Drain Current			$V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$			-	100	μA
GSS	Gate to	te to Body Leakage Current		-	±30 V, V _{DS} = 0 V		-	-	±100	nA
On Charao	teristic	S								
/ _{GS(th)}	Gate Threshold Voltage			V _{GS} = V _{DS} , I _D = 250 μA			2.0	-	4.0	V
R _{DS(on)}		Drain to Source On Res	sistance		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.5 \text{ A}$			0.33	0.385	Ω
JFS	Forwar	d Transconductance			40 V, I _D = 4.5 A		-	7.5	-	S
)ynamic (C _{iss}		eristics apacitance		V = 100 V V = 0 V		-	930	1240	pF	
C _{oss}	-	t Capacitance se Transfer Capacitance		— V _{DS} = 100 V, V _{GS} = 0 V f = 1 MHz		-	35	50	pF	
C _{rss}	Revers					-	2	4	pF	
Coss	Output	It Capacitance		V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MHz			-	20	-	pF
C _{oss} eff.		tive Output Capacitance		V_{DS} = 0 V to 480 V, V_{GS} = 0 V		-	106	-	pF	
⊋ _{g(tot)}	Total G	Gate Charge at 10V to Source Gate Charge		$V_{DS} = 380V, I_D = 4.5A,$		-	22.0	29	nC	
ጋ _{gs}	Gate to					-	4.1	-	nC	
ସୁ _{gd}	Gate to	Drain "Miller" Charge	ain "Miller" Charge		V _{GS} = 10 V (Note 4)			7.1	-	nC
ESR	Equival	ivalent Series Resistance (G-S)		Drain Open				2.9		Ω
Switching	Charac	teristics								1
d(on)		n Delay Time			-	12.7	35.4	ns		
r	Turn-O	rn-On Rise Time		V _{DD} = 380 V, I _D = 4.5 A		-	8.7	27.4	ns	
d(off)	Turn-Of	ff Delay Time	ay Time		$R_{G} = 4.7 \Omega$			36.9	83.8	ns
f	Turn-Of	Irn-Off Fall Time		(Note 4)			-	10.2	30.4	ns
·	rce Dio	de Characteristic	e				I			
s	Maximum Continuous Drain to Source Diode Forward Current					-	-	9.0	A	
SM		kimum Pulsed Drain to Source Diode F				-	-	27	A	
/ _{SD}	Drain to	n to Source Diode Forward Voltage		$V_{GS} = 0 V, I_{SD} = 4.5 A$			-	-	1.2	V
rr		verse Recovery Time		$V_{GS} = 0 V, I_{SD} = 4.5 A$			-	213	-	ns
<u>קריי</u>		everse Recovery Charge		$dI_{\rm F}/dt = 100 {\rm A}/{\mu {\rm s}}$			-	2.2	-	μC
		, ,		·					1	

8

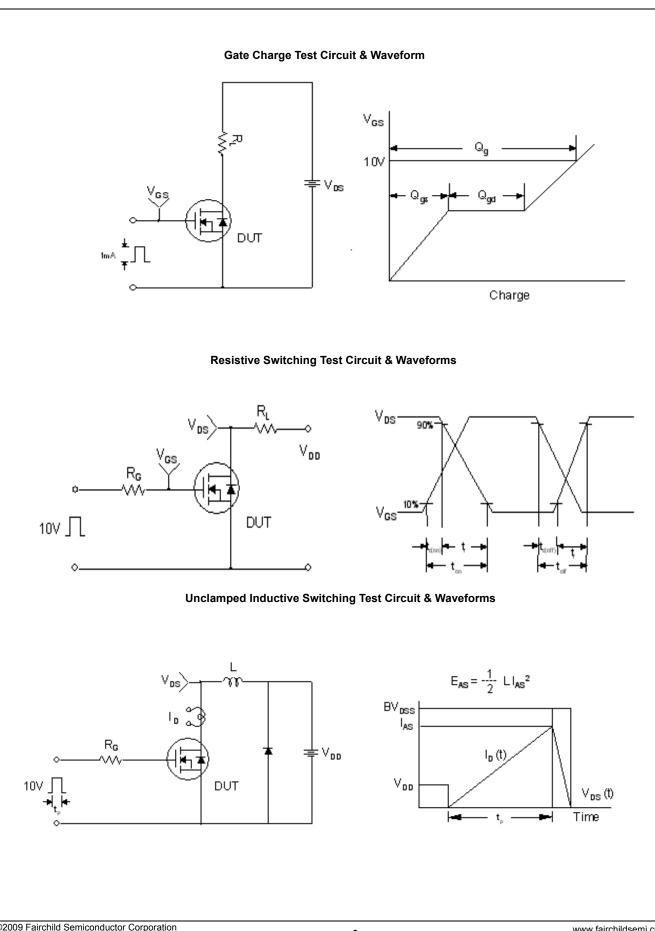
1.4

©2009 Fairchild Semiconductor Corporation FCP9N60N / FCPF9N60NT Rev. C0

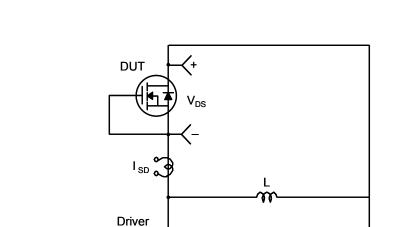

25

150

200


10µs

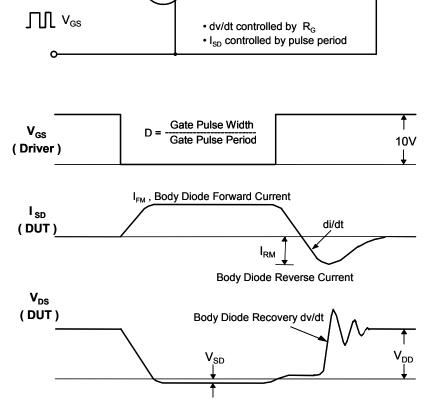
1000


©2009 Fairchild Semiconductor Corporation FCP9N60N / FCPF9N60NT Rev. C0

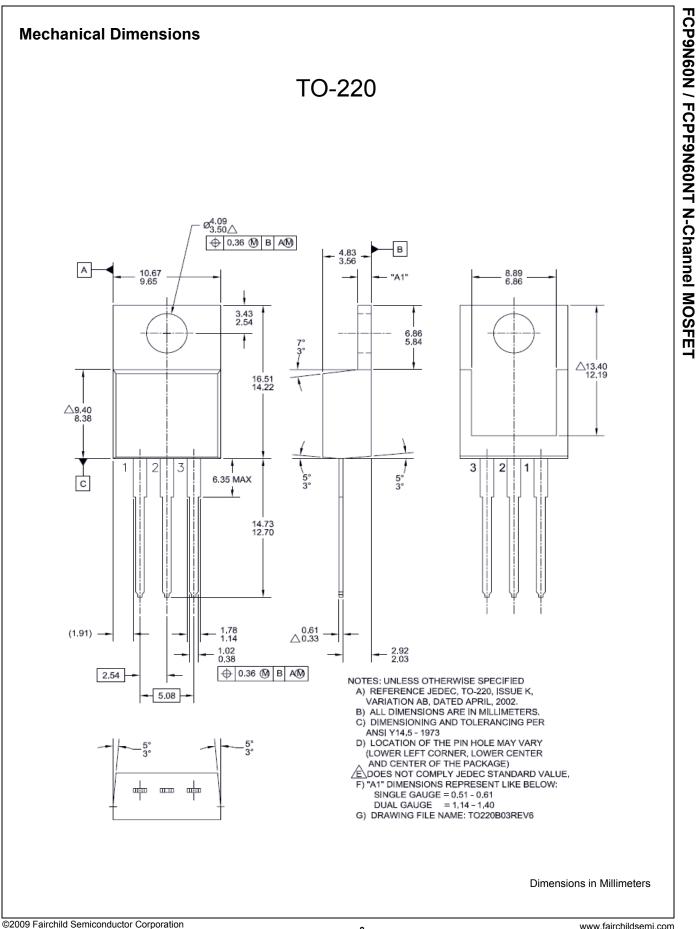
Typical Performance Characteristics (Continued) Figure 12. Transient Thermal Response Curve _ FCP9N60N 2 1 Thermal Response [Z_{euc}] PDM 0.1 *Notes: 1. $Z_{\theta JC}(t) = 1.5^{\circ}C/W$ Max. 2. Duty Factor, $D = t_1/t_2$ 0.01 3. $T_{JM} - T_C = P_{DM} * Z_{\theta JC}(t)$ 0.005 10⁻¹ 10⁻⁵ 10 10⁻³ 10⁻² 1 Rectangular Pulse Duration [sec] Figure 13. Transient Thermal Response Curve _ FCPF9N60NT 5 Thermal Response [Z_{euc}] 1 0.1 1. $Z_{\theta,JC}(t) = 4.2^{\circ}C/W$ Max. 2. Duty Factor, D= t₁/t₂ 3. $T_{JM} - T_C = P_{DM} * Z_{\theta JC}(t)$ 0.01 **10⁻⁵ 10**⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10 10² 1 Rectangular Pulse Duration [sec]

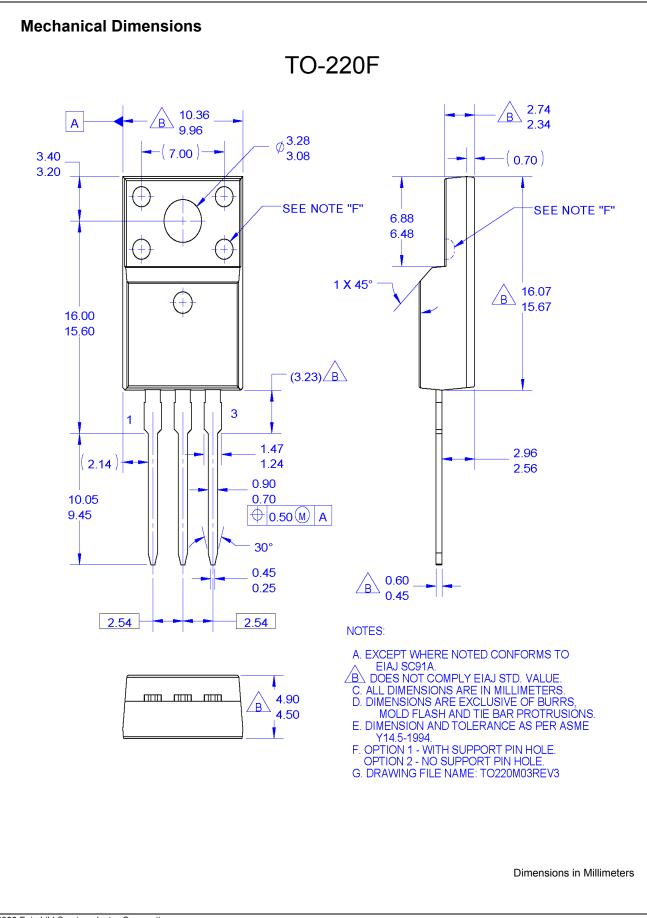
©2009 Fairchild Semiconductor Corporation FCP9N60N / FCPF9N60NT Rev. C0

FCP9N60N / FCPF9N60NT N-Channel MOSFET



Same Type as DUT


 V_{DD}


 R_{G}

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Forward Voltage Drop

FCP9N60N / FCPF9N60NT N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST® FastvCore™ FETBench™

FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SvncFET™

SYSTEM^{®'} GENERAL TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ **UHC**[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.