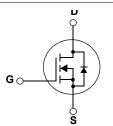


FCH76N60N N-Channel SupreMOS[®] MOSFET

600 V, 76 A, 36 m Ω

Features

- $R_{DS(on)}$ = 28 m Ω (Typ.)@ V_{GS} = 10 V, I_D = 38 A
- Ultra Low Gate Charge (Typ.Q_g = 218 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 914 pF)
- 100% Avalanche Tested
- RoHS Compliant


Application

- Solar Inverter
- AC-DC Power Supply

Description

The SupreMOS[®] MOSFET is Fairchild Semiconductor[®]'s next generation of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiates it from the conventional SJ MOSFETs. This advanced technology and precise process control provides lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

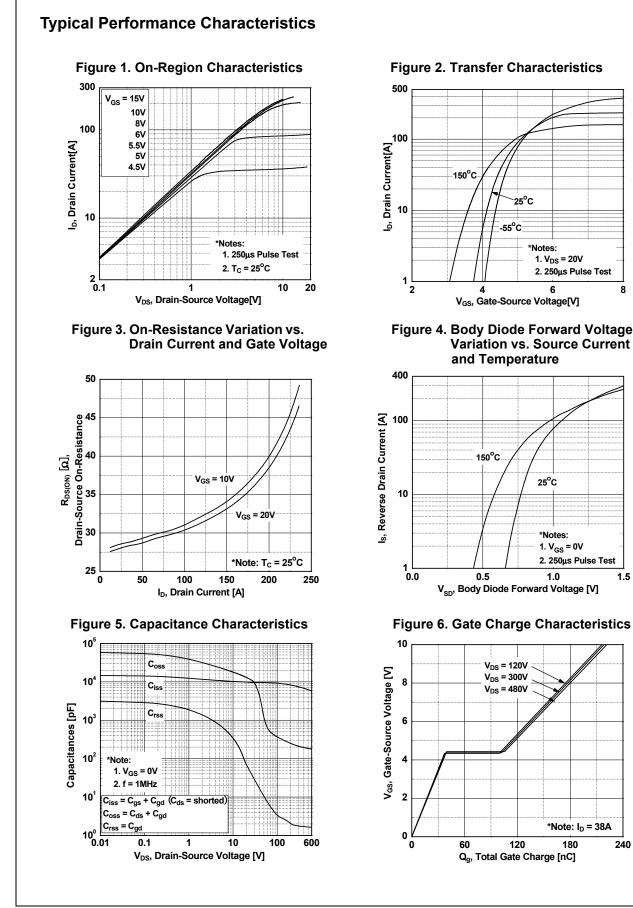
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Parameter		FCH76N60N	Unit	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Gate to Source Voltage			±30	V	
1	Drain Current	-Continuous (T _C = 25 ^o C)		76		
I _D	Drain Current	-Continuous (T _C = 100 ^o C)		48.1	— A	
I _{DM}	Drain Current	- Pulsed	- Pulsed (Note 1)			
E _{AS}	Single Pulsed Avalanche E	(Note 2)	8022	mJ		
I _{AR}	Avalanche Current		25.3	А		
E _{AR}	Repetitive Avalanche Ener		5.43	mJ		
dv/dt	MOSFET dv/dt Ruggednes		100	V/ns		
	Peak Diode Recovery dv/d	t	(Note 3)	20	v/ns	
П	Dower Dissinction	(T _C = 25°C)		543	W	
P _D	Power Dissipation	- Derate above 25 ^o C		4.34	W/ºC	
T _J , T _{STG}	Operating and Storage Ter	nperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	Ratings		
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.23		
$R_{\theta CS}$	Thermal Resistance, Case to Heat Sink (Typical)	0.24	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	40		

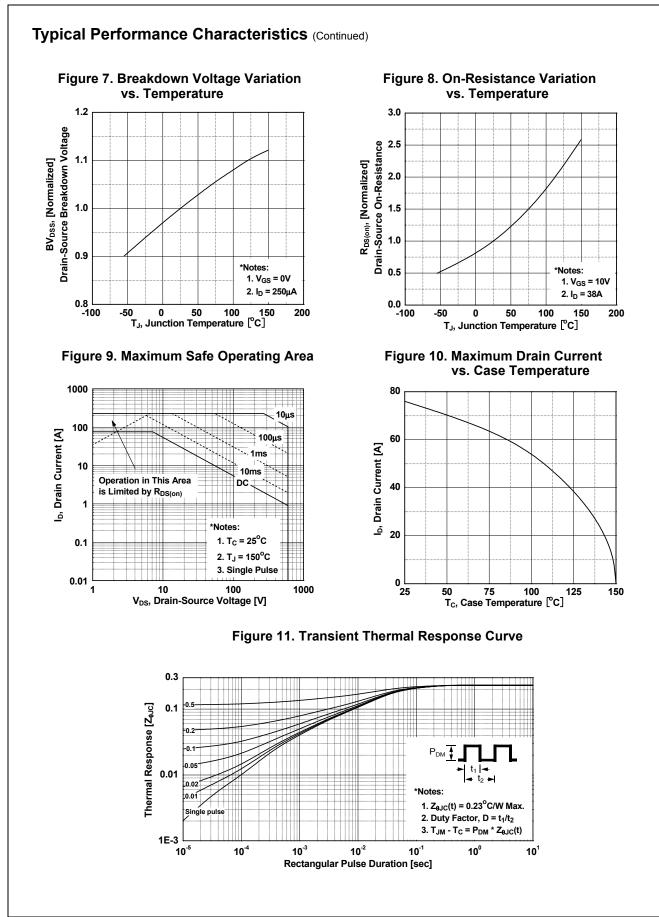
FCH76N60N N-Channel MOSFET

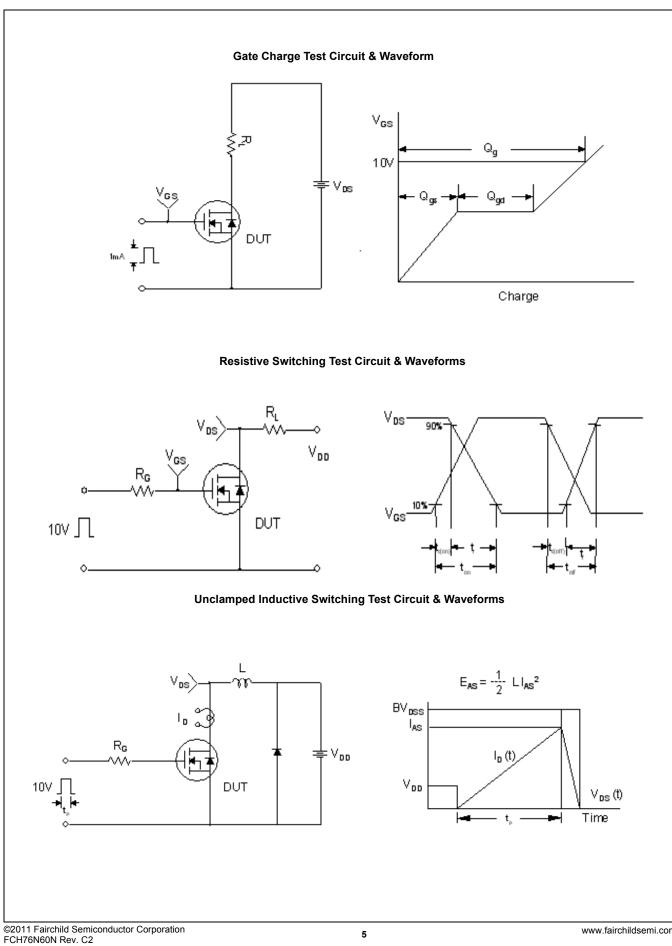

FCH76N60N
N-Channel
MOSFET

Electrical Characteristics T _c = 25°C unless otherwise noted Symbol Parameter Test Conditions Min. Typ. Max. L Off Characteristics SVpss Drain to Source Breakdown Voltage $I_D = 250 \ \mu$ A, $V_{GS} = 0 \ V$, $T_C = 25^{\circ}C$ 600 - - Nax. V ABV _{DSS} Breakdown Voltage Temperature $I_D = 250 \ \mu$ A, Referenced to $25^{\circ}C$ - 0.73 - V DSS Zero Gate Voltage Drain Current $V_{DS} = 480 \ V, V_{GS} = 0 \ V$ - - 100 Gast Gate to Body Leakage Current $V_{DS} = 480 \ V, V_{GS} = 0 \ V$ - - 4.0 On Characteristics VGS $V_{GS} = 10 \ V, I_D = 38 \ A$ - 228 36 $100 \ V_{CS} = 20 \ V_{1D} = 38 \ A$ - $90 \ -$ - Optamic Characteristics VDM - $9310 \ 12385 \ Cass$ $200 \ V, OS = 00 \ V, OS = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V, V_{CS} = 0 \ V \ AS = 380 \ V \ AS = 300 \ V \ AS = 0 \ V \ AS = 380 \ V \ AS = 380 \ V \ AS = 300 \ V \ AS = 380 \ V \ AS = 300 \ V $	Device M	•	Device	Packa	•	Reel Size	Таре	e Width		Quantity	y	
Dr / f CharacteristicsBVDSS ATy ATyDrain to Source Breakdown Voltage Ibe at Source Dreakdown Voltage Temperature Ibe 250 µA, Referenced to 25°C600ABVDSS ATy CoefficientBreakdown Voltage Temperature Ibe 250 µA, Referenced to 25°C-0.73-VIbessZero Gate Voltage Drain CurrentVDS = 480 V, VGS = 0 V100VDS IdessGate to Body Leakage CurrentVDS = 480 V, VGS = 0 V100VGS(h)Gate Threshold VoltageVGS = VDS, Ib = 250 µA2.0-4.0PRS(on)Static Drain to Source On ResistanceVDS = 100 V, VDS = 0 V-2.836nOptamic CharacteristicsVDS = 100 V, VDS = 0 V, Ib = 38 A-90Dynamic CharacteristicsVDS = 100 V, VDS = 0 V-931012385-CessInput CapacitanceVDS = 100 V, VGS = 0 V-931012385-CessOutput CapacitanceVDS = 380 V, VGS = 0 V, f = 1 MHz195GessOutput CapacitanceVDS = 380 V, VGS = 0 V-914-GessGate to Source Gate ChargeVDS = 380 V, Ib = 38 A-39-GessGate to Source Gate ChargeVDS = 380 V, Ib = 38 A-39-GessGate to Source Gate ChargeVDS = 380 V, Ib = 38 A-3274OrdinuTurn-On Rise TimeRes = 25 Ω3478GessEquivalent	FCH/6N	160N	FCH76N60N	10-24	17	-		-		30		
Dr CharacteristicsBVDSS ATJ CoefficientDrain to Source Breakdown Voltage Ib = 250 μ A, VGS = 0 V, T _C = 25°C Ib = 250 μ A, Referenced to 25°C C Coefficient0.73-V VGS = 480 V, VGS = 0 V V CS = 0 V-10Ibss CoefficientZero Gate Voltage Drain CurrentVDS = 480 V, VGS = 0 V VDS = 480 V, VGS = 0 V VGS = 0 V-100IbssZero Gate Voltage Drain CurrentVDS = 480 V, VGS = 0 V VDS = 480 V, VGS = 0 V-100IbssGate to Body Leakage CurrentVGS = 430 V, VDS = 0 V-24.0PGS(m)Static Drain to Source On ResistanceVGS = 10 V, VDS = 0 V-24.0PGS(m)Static Drain to Source On ResistanceVDS = 100 V, VGS = 0 V-2836nOptamic CharacteristicsDispectationeVDS = 100 V, VGS = 0 V-931012385-CossOutput CapacitanceVDS = 100 V, VGS = 0 V-931012385-CossOutput CapacitanceVDS = 380 V, VGS = 0 V, f = 1 MHz195CossOutput CapacitanceVDS = 380 V, VGS = 0 V, f = 1 MHz195OgaGate to Source Gate ChargeVDS = 380 V, VGS = 0 V, f = 1 MHz195OgaGate to Source Gate ChargeVDS = 380 V, VGS = 0 V-914OgaGate to Drain TMIIIer' ChargeVDS = 380 V, ID = 38 A-39OggGate to Drain TMIIIer' ChargeVDS = 380 V, ID = 38 A	Electrica	l Char	acteristics T _c =	25°C unless	otherwis	se noted						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Off Charac	teristic	6									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	oltago	1 - 28	$50 \mu \Lambda V_{ab} = 0 V T_{ab}$	- 25 ⁰ C	600			V	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-				000	-	-		
	ΔT_{1}		0 1	ure	I _D = 25	50 μ A, Referenced to	25°C	-	0.73	-	V/°C	
					V _{DS} =	480 V, V _{GS} = 0 V		-	-	10		
	DSS	Zero Ga	ite Voltage Drain Curre	ent			= 125 ^o C	-	-	100	μA	
VGS(th) Gate Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$ 2.0 - 4.0 RDS(on) Static Drain to Source On Resistance $V_{GS} = 10 \ V, I_D = 38 \ A$ - 28 36 1 GFS Forward Transconductance $V_{DS} = 20 \ V, I_D = 38 \ A$ - 90 - 1 Oppamic Characteristics VDS = 100 V, $V_{GS} = 0 \ V$ - 9310 12385 - Criss Input Capacitance $V_{DS} = 100 \ V, V_{GS} = 0 \ V$ - 9310 12385 - - 3.1 5 - - 3.1 5 - - - 3.1 5 - - 3.1 5 - - - 3.1 5 - - - 3.1 5 - - - 3.1 5 - - - 3.1 5 - - - 2.18 2.85 - - 3.1 5 - - 2.18 2.85 - - 3.1 5 - - 2.18 2.85 - - 2.18	GSS	Gate to	Body Leakage Curren	t	V _{GS} =	±30 V, V _{DS} = 0 V		-	-	±100	nA	
VGS(h) Gate Threshold Voltage VGS = VDS, ID = 250 μ A 2.0 - 4.0 RDS(on) Static Drain to Source On Resistance VGS = 10 V, ID = 38 A - 28 36 1 GFS Forward Transconductance VDS = 20 V, ID = 38 A - 90 - 4.0 Optimic Characteristics VDS = 100 V, VGS = 0 V - 9310 12385 - Ciss Input Capacitance VDS = 100 V, VGS = 0 V - 9310 12385 - Coss Output Capacitance VDS = 380 V, VGS = 0 V, f = 1 MHz - 195 - - 3.1 5 - - 3.1 5 - - - 14 - - - 14 - - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.000000 - 0.000000 - 0.0000000 <td>)n Charac</td> <td>toriotio</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>)n Charac	toriotio										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			V 1 050 A		0.0		4.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	!- t				-		-	V	
Dynamic CharacteristicsCissInput Capacitance $V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$ -931012385CosesOutput Capacitance $f = 1 \text{ MHz}$ -370495CressReverse Transfer Capacitance-3.15CossOutput Capacitance $V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ -195-CossOutput Capacitance $V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}$ -914-Cosseff.Effective Output Capacitance $V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}$ -914-Cosseff.Gate to Surce Gate Charge $V_{DS} = 380 \text{ V}, I_D = 38 \text{ A},$ -39-Cg(tot)Total Gate Charge at 10V $V_{CS} = 10 \text{ V}$ -666-CageGate to Drain "Miller" Charge $V_{CS} = 10 \text{ V}$ -666-CageGate to Drain "Miller" Charge $V_{CS} = 10 \text{ V}$ -666-CageCasteristics-1Switching Characteristicsd(orf)Turn-On Rise Time $V_{DD} = 380 \text{ V}, I_D = 38 \text{ A}$ -235480 f Turn-Off Fall Time(Note 4)-3274Chain-Source Diode CharacteristicssMaximum Continuous Drain to Source Diode Forward Current228 f_{SD} Drain to Source Diode Forward Current228 f_{SD} Drain to Source Diode Forward Current1.2 <td></td> <td colspan="2"></td> <td>sistance</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>mΩ</td>				sistance					-		mΩ	
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	9 _{FS}	Forward	Transconductance		v _{DS} =	20 V, I _D = 38 A		-	90	-	S	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic (Characte	eristics									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ciss	Input Capacitance						-	9310	12385	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-				_	-	370	495	pF	
Coses CosesOutput Capacitance $V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MHz$ -195-Cosse Gosseff.Effective Output Capacitance $V_{DS} = 0 V$ to $380 V, V_{GS} = 0 V$ -914-CagtorTotal Gate Charge at 10V $V_{DS} = 0 V$ to $380 V, V_{GS} = 0 V$ -914-CagsGate to Source Gate Charge $V_{DS} = 380 V, I_D = 38 A, V_{GS} = 10 V$ -218285CagdGate to Drain "Miller" Charge $V_{CS} = 10 V$ -66-Equivalent Series Resistance(G-S)Drain Open-1-Switching CharacteristicsrTurn-On Delay Time $V_{DD} = 380 V, I_D = 38 A$ -2458rTurn-Off Delay Time $V_{DD} = 380 V, I_D = 38 A$ -235480rTurn-Off Fall Time $V_{DD} = 380 V, I_D = 38 A$ -2458rTurn-Off Fall Time $V_{DD} = 380 V, I_D = 38 A$ -235480rTurn-Off Fall Time $V_{DD} = 380 V, I_D = 38 A$ -2235480rTurn-Off Fall Time $V_{CS} = 0 V, I_{SD} = 38 A$ 228sMaximum Continuous Drain to Source Diode Forward Current76SMMaximum Pulsed Drain to Source Diode Forward Current228 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2 <td></td> <td>-</td> <td></td> <td>9</td> <td>-1 = 1 N</td> <td>IHZ</td> <td>_</td> <td>-</td> <td>3.1</td> <td>5</td> <td>pF</td>		-		9	-1 = 1 N	IHZ	_	-	3.1	5	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•		V _{DS} =	380 V, V _{GS} = 0 V, f =	1 MHz	-	195	-	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-						-	914	-	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-	218	285	nC	
$\begin{array}{c c c c c c c c c } \hline Q_{GS} & Gate to Drain "Miller" Charge & V_{GS} = 10 V & & - & 66 & - & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$		Gate to	Source Gate Charge				-	-	39	-	nC	
ESREquivalent Series Resistance(G-S)Drain Open-1-Switching Characteristics $t_{d(on)}$ Turn-On Delay Time t_r $V_{DD} = 380 V, I_D = 38 A$ $R_{GEN} = 25 \Omega$ -3478 $t_{d(off)}$ Turn-Off Delay Time t_f V_{DD} = 380 V, I_D = 38 A $R_{GEN} = 25 \Omega$ -235480 t_f Turn-Off Fall Time(Note 4)-3274Orain-Source Diode Characteristics t_S Maximum Continuous Drain to Source Diode Forward Current76 l_S Maximum Pulsed Drain to Source Diode Forward Current1.2 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2 t_{rr} Reverse Recovery Time $V_{GS} = 0 V, I_{SD} = 38 A$ -612- Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ -16- $Repetitive Rating: Pulse width limited by maximum junction temperature:1.6-t_{A_S} = 25.3 A, R_G = 25 \Omega, Starting T_J = 25^{\circ}C::::$		Gate to	Drain "Miller" Charge		V _{GS} =			-	66	-	nC	
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 380 \text{ V}, I_D = 38 \text{ A}$ $ 34$ 78 t_r Turn-On Rise Time $V_{DD} = 380 \text{ V}, I_D = 38 \text{ A}$ $ 24$ 58 $t_{d(off)}$ Turn-Off Delay Time $ 235$ 480 t_r Turn-Off Fall Time $(Note 4)$ $ 32$ 74 Orain-Source Diode CharacteristicsIsMaximum Continuous Drain to Source Diode Forward Current $ 76$ IsMaximum Pulsed Drain to Source Diode Forward Current $ 228$ VSDDrain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 38 \text{ A}$ $ 1.2$ t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 38 \text{ A}$ $ 1.2$ Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A/µs}$ $ 612$ $-$ Isegettive Rating: Pulse width limited by maximum junction temperature $Starting T_J = 25^{\circ}C$		Equivale	ent Series Resistance	G-S)	Drain			-	1	-	Ω	
Turn-On Delay Time trVDD = 380 V, ID = 38 A-3478trTurn-On Rise Time td(off)Turn-Off Delay Time Turn-Off Fall TimeVDD = 380 V, ID = 38 A-2458r235480tfTurn-Off Fall Time(Note 4)-3274Orain-Source Diode CharacteristicsIsMaximum Continuous Drain to Source Diode Forward Current76IsMaximum Pulsed Drain to Source Diode Forward Current228VSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 38 A1.2trrReverse Recovery TimeVGS = 0 V, ISD = 38 A-612-QrrReverse Recovery ChargedIF/dt = 100 A/µs-16-Notes:Notes:Lage 25.0, Starting TJ = 25°C)								
u(n)Turn-On Rise Time $V_{DD} = 380$ V, $I_D = 38$ A-2458 $t_{d(off)}$ Turn-Off Delay TimeR_{GEN} = 25 \Omega-235480 t_{f} Turn-Off Fall Time(Note 4)-3274Orain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current76 I_{SM} Maximum Pulsed Drain to Source Diode Forward Current228 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0$ V, $I_{SD} = 38$ A1.2 t_{rr} Reverse Recovery Time $V_{GS} = 0$ V, $I_{SD} = 38$ A-612- Q_{rr} Reverse Recovery Charge $dI_F/dt = 100$ A/ μ s-16-Notes:. Repetitive Rating: Pulse width limited by maximum junction temperatureL $I_{AS} = 25.3$ A, $R_G = 25 \Omega$, Starting $T_J = 25^{\circ}$ C	Switching	Charact	teristics									
td(off)Turn-Off Delay Time $R_{GEN} = 25 \Omega$ -235480 t_{f} Turn-Off Fall Time $(Note 4)$ -3274Orain-Source Diode Characteristics l_S Maximum Continuous Drain to Source Diode Forward Current76 l_{SM} Maximum Pulsed Drain to Source Diode Forward Current228 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2 t_{rr} Reverse Recovery Time $V_{GS} = 0 V, I_{SD} = 38 A$ -612- Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ -16-Notes:. Repetitive Rating: Pulse width limited by maximum junction temperature. $I_{AS} = 25.3 A, R_G = 25 \Omega, Starting T_J = 25°C$	d(on)	Turn-On	Delay Time				-	34	78	ns		
Interform Turn-Off Fall Time Interform Inter	r	Turn-On	Rise Time				_	-	24	58	ns	
Drain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current - - 76 I_{SM} Maximum Pulsed Drain to Source Diode Forward Current - - 228 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 38 A$ - - 1.2 t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_{SD} = 38 A$ - 612 - Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ - 16 - Issue width limited by maximum junction temperature As $_S = 25.0$, Starting $T_J = 25^{\circ}C$	t _{d(off)}				R _{GEN}	= 25 Ω	_	-	235	480	ns	
InstructionMaximum Continuous Drain to Source Diode Forward Current76ISMMaximum Pulsed Drain to Source Diode Forward Current228VSDDrain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2trrReverse Recovery Time $V_{GS} = 0 V, I_{SD} = 38 A$ -612-QrrReverse Recovery Charge $dI_F/dt = 100 A/\mu s$ -16-IntersectionRepetitive Rating: Pulse width limited by maximum junction temperatureIntersectionIntersectionIntersectionIntersectionReverse Recovery ChargeIntersection <td colsp<="" td=""><td>f</td><td>Turn-Off</td><td>Fall Time</td><td></td><td></td><td>(Note 4)</td><td></td><td>-</td><td>32</td><td>74</td><td>ns</td></td>	<td>f</td> <td>Turn-Off</td> <td>Fall Time</td> <td></td> <td></td> <td>(Note 4)</td> <td></td> <td>-</td> <td>32</td> <td>74</td> <td>ns</td>	f	Turn-Off	Fall Time			(Note 4)		-	32	74	ns
InstructionMaximum Continuous Drain to Source Diode Forward Current76ISMMaximum Pulsed Drain to Source Diode Forward Current228VSDDrain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 38 A$ 1.2trrReverse Recovery Time $V_{GS} = 0 V, I_{SD} = 38 A$ -612-QrrReverse Recovery Charge $dI_F/dt = 100 A/\mu s$ -16-IntersectionRepetitive Rating: Pulse width limited by maximum junction temperatureIntersectionIntersectionIntersectionIntersectionReverse Recovery ChargeIntersection <td colsp<="" td=""><td>Drain-Sou</td><td>rce Dior</td><td>le Characteristic</td><td>s</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>Drain-Sou</td> <td>rce Dior</td> <td>le Characteristic</td> <td>s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Drain-Sou	rce Dior	le Characteristic	s							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						rd Curropt				76	А	
											A	
Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 38 \text{ A}$ - 612 - Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A}/\mu \text{s}$ - 16 - lotes: . Repetitive Rating: Pulse width limited by maximum junction temperature . $I_{AS} = 25.3 \text{ A}, R_G = 25.\Omega, Starting T_J = 25^{\circ}C$									-		V	
Reverse Recovery Charge $dI_F/dt = 100 \text{ A}/\mu \text{s}$ - 16 - Iotes: .<				a voilage		-			612		ns	
Intersection of the section of the sectin of the section of the section of the section of the							F			-	μC	
. Repetitive Rating: Pulse width limited by maximum junction temperature . I_{AS} = 25.3 A, R_G = 25 Ω , Starting T_J = 25°C					F. ***	F				1	μΟ	
		-		temperature								
		-		c								
. I _{SD} \leq 76 A, di/dt \leq 200 A/µs, V _{DD} \leq 380 V, Starting T _J = 25°C . Essentially Independent of Operating Temperature Typical Characteristics												

6

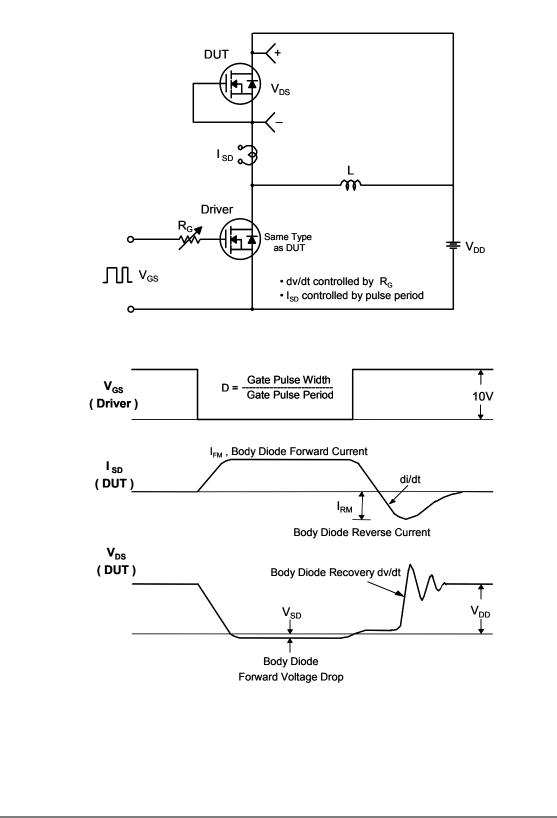
8


1.5

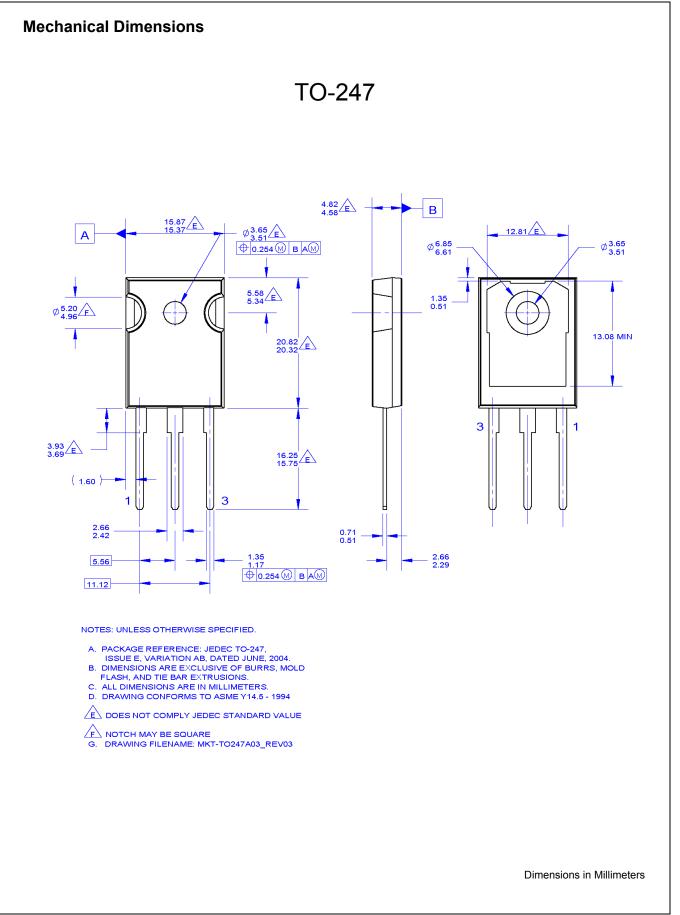

©2011 Fairchild Semiconductor Corporation FCH76N60N Rev. C2

240

180



FCH76N60N N-Channel MOSFET



FCH76N60N N-Channel MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

6

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST® FastvCore™ FETBench™

Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

F-PFS™

FRFET®

()® PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SvncFET™

SYSTEM^{®'} GENERAL TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ **UHC**[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
-	First Production