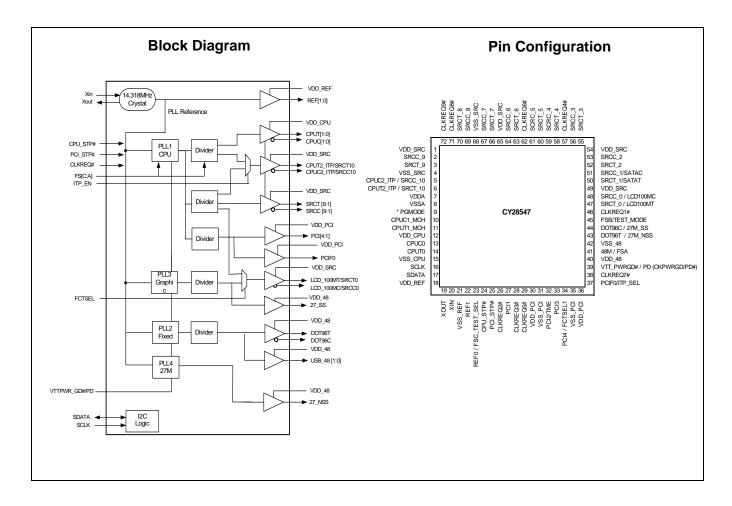


Clock Generator for Intel®CK410M/CK505


Features

- Compliant to Intel® CK410M and CK505
- Selectable CPU frequencies
- Low power differential CPU clock pairs
- 100-MHz low power differential SRC clocks
- 96-MHz low power differential dot clock
- 27-MHz Spread and Non-spread video clock
- 48-MHz USB clock
- SRC clocks independently stoppable through CLKREQ#[1:9]

- 96/100-MHz low power spreadable differential video clock
- 33-MHz PCI clocks
- Buffered Reference Clock 14.318 MHz
- · Low-voltage frequency select inputs
- I²C support with readback capabilities
- Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- 3.3V power supply
- 72-pin QFN package

Table 1. Output Confguration Table

CPU	SRC	PCI	REF	DOT96	USB_48M	LCD	27M
x2/x3	x9/11	x5	x 2	x 1	x 1	x1	x2

Pin Description

Pin No.	Name	Туре	Description			
1, 49, 54, 65	VDD_SRC	PWR	3.3V power supply for outputs.			
2, 3, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 69, 70	SRCT/C[2:9]	O, DIF	100-MHz Differential serial reference clocks.			
4, 68	VSS_SRC	GND	Ground for outputs.			
5, 6	CPUT2_ITP/SRCT10, CPUC2_ITP/SRCC10	O, DIF	Selectable differential CPU or SRC clock output. ITP_SEL = 0 @ pin 39 assertion = SRC10 ITP_SEL = 1 @ pin 39 assertion = CPU2			
7	VDDA	PWR	3.3V power supply for PLL.			
8	VSSA	GND	Ground for PLL.			
9	PGMODE	I, PU	3.3V LVTTL input for selecting the polarity of pin 39 Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low externally if needed			
			PGMODE CLK mode Pin 39			
			0 CK410 VTT_PWRGD#/PD			
			1(default) CK505 CK_PWRGD/PD#			
10, 11	CPUC1_MCH, CPUT1_MCH	O, DIF	Differential CPU clock output to MCH			
12	VDD_CPU	PWR	3.3V power supply for outputs.			
13, 14	CPU[T/C]0	O, DIF	Differential CPU clock output			
15	VSS_CPU	GND	Ground for outputs.			
16	SCLK	I	SMBus-compatible SCLOCK.			
17	SDATA	I/O, OD	SMBus-compatible SDATA.			
18	VDD_REF	PWR	3.3V power supply for outputs.			
19	XOUT	O, SE	14.318-MHz crystal output.			
20	XIN	I	14.318-MHz crystal input.			
21	VSS_REF	GND	Ground for outputs.			
22	REF1	0	Fixed 14.318-MHz clock output.			
23	REF0/FSC_TESTSEL	I/O	Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency selection/Selects test mode if pulled to V _{IMFS_C} when pin 39 is asserted LOW. Refer to DC Electrical Specifications table for V _{ILFS_C} , V _{IMFS_C} , V _{IHFS_C} specifications.			
24	CPU_STP#	I	3.3V LVTTL input for CPU_STP# active LOW During direct clock off to M1 mode transition, a serial load of BSEL data is driven on this pin and sampled on the rising edge of PCI_STP#. See Figure 14.for more information.			
25	PCI_STP#	I	3.3V LVTTL input for PCI_STP# active LOW During direct clock off to M1 mode transition, a serial load of BSEL data is driven on CPU_STP# and sampled on the rising edge of this pin. See Figure 14. for more information.			
26, 28, 29, 38, 46, 57, 62, 71, 72	CLKREQ[1:9]#	I	3.3V LVTTL input for enabling assigned SRC clock (active LOW).			
27	PCI1	O, SE	33MHz clock output			
30, 36	VDD_PCI	PWR	3.3V power supply for outputs.			
31, 35	VSS_PCI	GND	Ground for outputs.			

Pin Description (continued)

Pin No.	Name	Туре	Description			
32	PCI2/TME	I/O, SE	33-MHz clock output/Trusted Mode Enable Strap Strap at pin 39 assertion to determine if the part is in trusted mode or not. Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low externally if needed 0 = Normal mode 1= Trusted mode (default)			
33	PCI3	O, SE	33-MHz clock output			
34	PCI4/FCTSEL1	I/O	33-MHz clock output/3.3V LVTTL input for selecting pins 47,48 (SRC[T/C]0, 100M[T/C]) and pins 43,44 (DOT96[T/C] and 27M Spread and Non-spread) (sampled on pin 39 assertion). Internal pull-down resistor of 100K to GND			
			FCTSEL1 Pin 43 Pin 44 Pin 47 Pin 48			
			0 DOT96T DOT96C 96/100M_T 96/100M_C			
			1 27M_NSS 27M_SS SRCT0 SRCC0			
37	ITP_SEL/PCIF0	I/O,SE	3.3V LVTTL input to enable SRC10 or CPU2_ITP/33-MHz clock output. (sampled on pin 39 assertion). Internal pull-down resistor of 100K to GND 1 = CPU2_ITP, 0 = SRC10			
39	VTT_PWRGD#/PD CKPWRGD/PD#	ı	I 3.3V LVTTL input. This pin is a level sensitive strobe. When asserted, accord to the polarity defined by pin 9 (PGMODE), it latches data on the FSA, FSB, FSF FCTSEL1 and ITP_SEL pins. After assertion, it becomes a real time input fo controlling power down.			
			PGMODE Pin 39			
			0 0 = POWER GOOD (VTT_PWRGD#)			
			0 1 = POWER DOWN (PD)			
			1 0 = POWER DOWN (PD#)			
			1 1 = POWER GOOD (CKPWRGD)			
40	VDD_48	DWD	3.3V power supply for outputs.			
41	48M/FSA	PWR	1 11 2 1			
41	40W/FSA	I/O	Fixed 48-MHz clock output/3.3V-tolerant input for CPU frequency selection Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.			
42	VSS_48	GND	Ground for outputs.			
43, 44	DOT96T/ 27M_NSS DOT96C/ 27M_SS	O, DIF	Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output Selected via FCTSEL1 at pin 39 assertion.			
45	FSB/TEST_MODE	I	3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when in test mode 0 = Tri-state, 1 = Ref/N Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.			
47, 48	SRC[T/C]0/ LCD100M[T/C]	O,DIF	100-MHz differential serial reference clock output/Differential 96/100-MHz SS clock for flat-panel display Selected via FCTSEL1 at pin 39 assertion.			
50, 51	SRCT_1/SATAT, SRCC_1/SATAC	O, DIF	100-MHz Differential serial reference clocks.			

Frequency Select Pins (FSA, FSB, and FSC)

Host clock frequency selection is achieved by applying the appropriate logic levels to FSA, FSB, FSC inputs prior to VTT_PWRGD# assertion (as seen by the clock synthesizer). Upon VTT_PWRGD# being sampled LOW by the clock chip (indicating processor VTT voltage is stable), the clock chip

samples the FSA, FSB, and FSC input values. For all logic levels of FSA, FSB, and FSC, VTT_PWRGD# employs a one-shot functionality in that once a valid LOW on VTT_PWRGD# has been sampled, all further VTT_PWRGD#, FSA, FSB, and FSC transitions will be ignored, except in test mode.

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 3*.

The block write and block read protocol is outlined in *Table 4* while *Table 5* outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h)

Table 2. Frequency Select Table FSA, FSB, and FSC

FSC	FSB	FSA	CPU	SRC	PCIF/PCI	27MHz	REF	DOT96	USB
1	0	1	100 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	0	1	133 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	1	1	166 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz
0	1	0	200 MHz	100 MHz	33 MHz	27 MHz	14.318 MHz	96 MHz	48 MHz

Table 3. Command Code Definition

Bit	Description
7	0 = Block read or block write operation, 1 = Byte read or byte write operation
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'

Table 4. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol		
Bit	Description	Bit	Description		
1	Start	1	Start		
8:2	Slave address–7 bits	8:2	Slave address–7 bits		
9	Write	9	Write		
10	Acknowledge from slave	10	Acknowledge from slave		
18:11	Command Code–8 bits	18:11	Command Code–8 bits		
19	Acknowledge from slave	19	Acknowledge from slave		
27:20	Byte Count–8 bits (Skip this step if I ² C_EN bit set)	20	Repeat start		
28	Acknowledge from slave	27:21	Slave address–7 bits		
36:29	Data byte 1–8 bits	28	Read = 1		
37	Acknowledge from slave	29	Acknowledge from slave		
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits		
46	Acknowledge from slave	38	Acknowledge		
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave–8 bits		
	Data Byte N–8 bits	47	Acknowledge		
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits		
	Stop	56	Acknowledge		
			Data bytes from slave/Acknowledge		
			Data Byte N from slave–8 bits		
			NOT Acknowledge		

Table 4. Block Read and Block Write Protocol (continued)

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
			Stop

Table 5. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave–8 bits
		38	NOT Acknowledge
		39	Stop

Control Registers

Byte 0 Control Register 0

Bit	@Pup	Name	Description
7	0	RESEREVD	RESERVED
6	0	RESEREVD	RESERVED
5	0	RESEREVD	RESERVED
4	0	iAMT_EN	Set via SMBus or by combination of PD, CPU_STP and PCI_STP 0 = Legacy mode, 1 = iAMT enable
3	0	RESEREVD	RESERVED
2	0	RESEREVD	RESERVED
1	0	RESEREVD	RESERVED
0	1	PD_Restore	Save configuration in PD 0 = Configuration cleared, 1 = Configuration saved

Byte 1 Control Register 1

Bit	@Pup	Name	Description
7	1	SRC[T/C]7	SRC[T/C]7 Output Enable 0 = Disabled, 1 = Enabled
6	1	SRC[T/C]6	SRC[T/C]6 Output Enable 0 = Disabled, 1 = Enabled
5	1	SRC[T/C]5	SRC[T/C]5 Output Enable 0 = Disabled, 1 = Enabled
4	1	SRC[T/C]4	SRC[T/C]4 Output Enable 0 = Disabled, 1 = Enabled
3	1	SRC[T/C]3	SRC[T/C]3 Output Enable 0 = Disabled, 1 = Enabled

......Document #: 001-05103 Rev *B Page 5 of 24

Byte 1 Control Register 1 (continued)

Bit	@Pup	Name	Description
2	1	SRC[T/C]2	SRC[T/C]2 Output Enable 0 = Disabled, 1 = Enabled
1	1	SRC[T/C]1	SRC[T/C]1 Output Enable 0 = Disabled, 1 = Enabled
0	1	SRC[T/C]0 /LCD_96_100M[T/C]	SRC[T/C]0/LCD_96_100M[T/C] Output Enable 0 = Disabled, 1 = Enabled

Byte 2 Control Register 2

Bit	@Pup	Name	Description
DIL	@ гир	Name	Description
7	1	PCIF0	PCIF0 Output Enable 0 = Disabled, 1 = Enabled
6	1	27M NSS/DOT_96[T/C]	27M Non-spread and DOT_96 MHz Output Enable 0 = Disable, 1 = Enabled
5	1	48M	48-MHz Output Enable 0 = Disabled, 1 = Enabled
4	1	REF0	REF0 Output Enable 0 = Disabled, 1 = Enabled
3	1	REF1	REF1 Output Enable 0 = Disabled, 1 = Enabled
2	1	CPU[T/C]1	CPU[T/C]1 Output Enable 0 = Disabled, 1 = Enabled
1	1	CPU[T/C]0	CPU[T/C]0 Output Enable 0 = Disabled, 1 = Enabled
0	1	CPU, SRC, PCI, PCIF Spread Enable	PLL1 (CPU PLL) Spread Spectrum Enable 0 = Spread off, 1 = Spread on

Byte 3 Control Register 3

Bit	@Pup	Name	Description
7	1	PCI4	PCI4 Output Enable 0 = Disabled, 1 = Enabled
6	1	PCI3	PCI3 Output Enable 0 = Disabled, 1 = Enabled
5	1	PCI2	PCI2 Output Enable 0 = Disabled, 1 = Enabled
4	1	PCI1	PCI1 Output Enable 0 = Disabled, 1 = Enabled
3	1	RESERVED	RESERVED
2	1	RESERVED	RESERVED
1	1	CPU[T/C]2/SRC[T/C]10	CPU[T/C]2/SRC[T/C]10 Output Enable 0 = Disabled, 1 = Enabled
0	1	RESERVED	RESERVED

Byte 4 Control Register 4

Bit	@Pup	Name	Description
7	0	SRC7	Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
6	0	SRC6	Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
5	0	SRC5	Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
4	0	SRC4	Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#

......Document #: 001-05103 Rev *B Page 6 of 24

Byte 4 Control Register 4 (continued)

Bit	@Pup	Name	Description
3	0	SRC3	Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
2	0	SRC2	Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
1	0	SRC1	Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
0	0	SRC0	Allow control of SRC[T/C]0 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#

Byte 5 Control Register 5

Bit	@Pup	Name	Description
7	0	LCD_96_100M[T/C]	LCD_96_100M[T/C] PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state
6	0	DOT96[T/C]	DOT PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state
5	0	RESERVED	RESERVED, Set = 0
4	0	RESERVED	RESERVED, Set = 0
3	0	PCIF0	Allow control of PCIF0 with assertion of SW and HW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
2	1	CPU[T/C]2	Allow control of CPU[T/C]2 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#
1	1	CPU[T/C]1	Allow control of CPU[T/C]1 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#
0	1	CPU[T/C]0	Allow control of CPU[T/C]0 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP#

Byte 6 Control Register 6

Bit	@Pup	Name	Description
7	0	SRC[T/C]	SRC[T/C] Stop Drive Mode 0 = Driven when PCI_STP# asserted 1 = Tri-state when PCI_STP# asserted
6	0	CPU[T/C]2	CPU[T/C]2 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted
5	0	CPU[T/C]1	CPU[T/C]1 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted
4	0	CPU[T/C]0	CPU[T/C]0 Stop Drive Mode 0 = Driven when CPU_STP# asserted 1 = Tri-state when CPU_STP# asserted
3	0	SRC[T/C][9:1]	SRC[T/C][9:1] PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
2	0	CPU[T/C]2	CPU[T/C]2 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
1	0	CPU[T/C]1	CPU[T/C]1 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted
0	0	CPU[T/C]0	CPU[T/C]0 PWRDWN Drive Mode 0 = Driven when PD asserted 1 = Tri-state when PD asserted

......Document #: 001-05103 Rev *B Page 7 of 24

Byte 7 Control Register 7

Bit	@Pup	Name	Description
7	0	TEST_SEL	REF/N or Tri-state Select 0 = Tri-state, 1 = REF/N Clock
6	0	TEST_MODE	Test Clock Mode Entry Control 0 = Normal operation, 1 = REF/N or Tri-state mode,
5	1	REF1	REF1 Output Drive Strength 0 = Low, 1 = High
4	1	REF0	REF0 Output Drive Strength 0 = Low, 1 = High
3	1	,	SW PCI_STP Function 0 = SW PCI_STP assert, 1= SW PCI_STP deassert When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will be stopped in a synchronous manner with no short pulses. When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will resume in a synchronous manner with no short pulses.
2	HW	FSC	FSC Reflects the value of the FSC pin sampled on power up 0 = FSC was low during VTT_PWRGD# assertion
1	HW	FSB	FSB Reflects the value of the FSB pin sampled on power up 0 = FSB was low during VTT_PWRGD# assertion
0	HW	FSA	FSA Reflects the value of the FSA pin sampled on power up 0 = FSA was low during VTT_PWRGD# assertion

Byte 8 Vendor ID

Bit	@Pup	Name	Description
7	0	Revision Code Bit 3	Revision Code Bit 3
6	0	Revision Code Bit 2	Revision Code Bit 2
5	1	Revision Code Bit 1	Revision Code Bit 1
4	1	Revision Code Bit 0	Revision Code Bit 0
3	1	Vendor ID Bit 3	Vendor ID Bit 3
2	0	Vendor ID Bit 2	Vendor ID Bit 2
1	0	Vendor ID Bit 1	Vendor ID Bit 1
0	0	Vendor ID Bit 0	Vendor ID Bit 0

Byte 9 Control Register 9

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED, Set = 0
6	0	RESERVED	RESERVED, Set = 0
5	0	RESERVED	RESERVED
4	0	RESERVED	RESERVED
3	0	RESERVED	RESERVED
2	1	48M	48-MHz Output Drive Strength 0 = Low, 1 = High
1	1	RESERVED	RESERVED
0	1	PCIF0	PCIF0 Output Drive Strength 0 = Low, 1 = High

Byte 10 Control Register 10

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED
6	0	RESERVED	RESERVED

......Document #: 001-05103 Rev *B Page 8 of 24

Byte 10 Control Register 10 (continued)

Bit	@Pup	Name	Description
5	0	S1	27M_SS/LCD 96_100M SS Spread Spectrum Selection table:
4	0	S0	S[1:0] SS% '00' = -0.5%(Default value) '01' = -1.0% '10' = -1.5% '11' = -2.0%
3	1	RESERVED	RESERVED
2	1	27M_SS	27M Spread Output Enable 0 = Disabled, 1 = Enabled
1	1	27M_SS/LCD_100M Spread Enable	27M_SS/LCD_100M Spread spectrum enable. 0 = Disabled, 1 = Enabled
0	0	RESERVED	RESERVED

Byte 11 Control Register 11

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED
6	0	RESERVED	RESERVED
5	1	SRC[T/C]9	SRC[T/C]9 Output Enable 0 = Disable (Hi-Z), 1 = Enable
4	1	SRC[T/C]8	SRC[T/C]8 Output Enable 0 = Disable (Hi-Z), 1 = Enable
3	1	RESERVED	RESERVED
2	0	SRC[T/C]10	Allow control of SRC[T/C]10 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
1	0	SRC[T/C]9	Allow control of SRC[T/C]9 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
0	0	SRC[T/C]8	Allow control of SRC[T/C]8 with assertion of SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#

Byte 12 Control Register 12

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED, Set = 0
6	HW	RESERVED	RESERVED
5	HW	RESERVED	RESERVED
4	HW	RESERVED	RESERVED
3	0	27M_SS/27M_NSS	27-MHz (spread and non-spread) Output Drive Strength 0 = Low, 1 = High
2	0	RESERVED	RESERVED
1	1	RESERVED	RESERVED, Set = 1
0	HW	RESERVED	RESERVED

Byte 13 Control Register 13

Bit	@Pup	Name	Description	
7	0	CLKREQ#9	CLKREQ#9 Input Enable 0 = Disabled, 1 = Enabled	
6	0	CLKREQ#8	CLKREQ#8 Input Enable 0 = Disabled, 1 = Enabled	
5	0	CLKREQ#7	CLKREQ#7 Input Enable 0 = Disabled, 1 = Enabled	

......Document #: 001-05103 Rev *B Page 9 of 24

Byte 13 Control Register 13 (continued)

Bit	@Pup	Name	Description
4	0	CLKREQ#6	CLKREQ#6 Input Enable 0 = Disabled, 1 = Enabled
3	0	CLKREQ#5	CLKREQ#5 Input Enable 0 = Disabled, 1 = Enabled
2	0	CLKREQ#4	CLKREQ#4 Input Enable 0 = Disabled, 1 = Enabled
1	0	CLKREQ#3	CLKREQ#3 Input Enable 0 = Disabled, 1 = Enabled
0	0	CLKREQ#2	CLKREQ#2 Input Enable 0 = Disabled, 1 = Enabled

Byte 14 Control Register 14

Bit	@Pup	Name	Description
7	0	CLKREQ#1	CLKREQ#1 Input Enable 0 = Disabled, 1 = Enabled
6	1	LCD 96_100M Clock Speed	LCD 96_100M Clock Speed 0 = 96 MHz 1 = 100 MHz
5	1	RESERVED	RESERVED, Set = 1
4	1	RESERVED	RESERVED, Set = 1
3	1	PCI4	PCI4 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
2	1	PCI3	PCI3 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
1	1	PCI2	PCI2 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High
0	1	PCI1	PCI1 (Spread and Non-spread) Output Drive Strength 0 = Low, 1 = High

Byte 15 Control Register 15

Bit	@Pup	Name	Description
7	HW	TME_STRAP	Trusted mode enable strap status, 0 = Normal 1 = No overclocking (default)
6	1	RESERVED	RESERVED
5	1	RESERVED	RESERVED
4	1	RESERVED	RESERVED
3	1	RESERVED	RESERVED
2	0	IO_VOUT2	IO_VOUT[2,1,0]
1	1	IO_VOUT1	000 = 0.63V
0	1	IO_VOUT0	001 = 0.71V 010 = 0.77V 011 = 0.82V (Default) 100 = 0.86V 101 = 0.90V 110 = 0.93V 111 = Reserved

Table 6. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Drive (max.)	Shunt Cap (max.)	Motional (max.)	Tolerance (max.)	Stability (max.)	Aging (max.)
14.31818 MHz	AT	Parallel	20 pF	0.1 mW	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

The CY28547 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the CY28547 to

operate at the wrong frequency and violate the ppm specification. For most applications there is a 300-ppm frequency

shift between series and parallel crystals due to incorrect loading.

Crystal Loading

Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL).

Figure 1 shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the crystal not parallel. It's a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true.

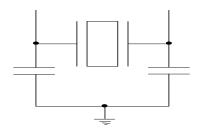


Figure 1. Crystal Capacitive Clarification

Calculating Load Capacitors

In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This means the total capacitance on each side of the crystal must be twice the specified crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitive loading on both sides.

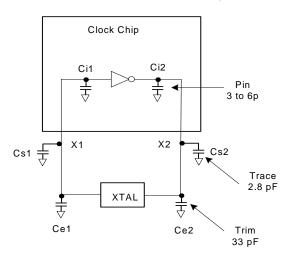


Figure 2. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.

Load Capacitance (each side)

$$Ce = 2 * CL - (Cs + Ci)$$

Total Capacitance (as seen by the crystal)

CLe =
$$\frac{1}{(\frac{1}{\text{Ce1} + \text{Cs1} + \text{Ci1}} + \frac{1}{\text{Ce2} + \text{Cs2} + \text{Ci2}})}$$

CL.......Crystal load capacitance
CLe......Actual loading seen by crystal using standard value trim capacitors
Ce......External trim capacitors
Cs.....Stray capacitance (terraced)
Ci.....Internal capacitance

(lead frame, bond wires etc.) CLK_REQ# Description

The CLKREQ# signals are active LOW inputs used for clean enabling and disabling selected SRC outputs. The outputs controlled by CLKREQ# are determined by the settings in register byte 8. The CLKREQ# signal is a de-bounced signal in that it's state must remain unchanged during two consecutive rising edges of SRCC to be recognized as a valid assertion or deassertion. (The assertion and deassertion of this signal is absolutely asynchronous.)

CLK_REQ[1:9]# Assertion (CLKREQ# -> LOW)

All differential outputs that were stopped are to resume normal operation in a glitch-free manner. The maximum latency from the assertion to active outputs is between 2 and 6 SRC clock periods (2 clocks are shown) with all SRC outputs resuming simultaneously. All stopped SRC outputs must be driven HIGH within 10 ns of CLKREQ# deassertion to a voltage greater than 200 mV.

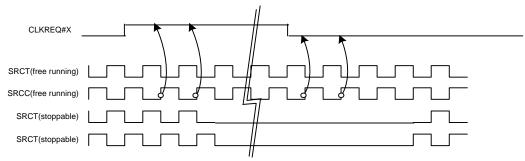


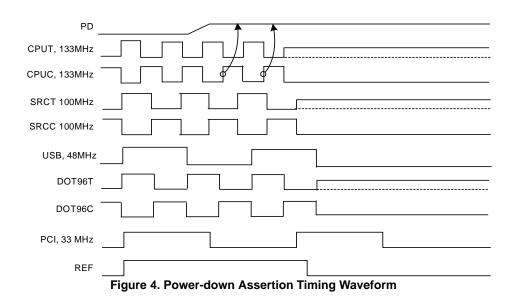
Figure 3. CLK_REQ#[1:9] Deassertion/Assertion Waveform

CLK_REQ[1:9]# Deassertion (CLKREQ# -> HIGH)

The impact of deasserting the CLKREQ# pins is that all SRC outputs that are set in the control registers to stoppable via deassertion of CLKREQ# are to be stopped after their next transition. The final state of all stopped SRC clocks is Low/Low.

PD (Power-down) Clarification

The VTT_PWRGD#/PD pin is a dual-function pin. During initial power-up, the pin functions as VTT_PWRGD#. Once VTT_PWRGD# has been sampled LOW by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active HIGH input used to shut off all clocks cleanly prior to shutting off power to the device. This signal is synchronized internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted HIGH, all clocks need to be driven to a LOW value and held prior to turning off the VCOs and the crystal oscillator.


PD (Power-down) Assertion

When PD is sampled HIGH by two consecutive rising edges of CPUC, all single-ended outputs will be held LOW on their next HIGH-to-LOW transition and differential clocks must be held HIGH or tri-stated (depending on the state of the control register drive mode bit) on the next diff clock# HIGH-to-LOW transition within 4 clock periods. When the SMBus PD drive mode bit corresponding to the differential (CPU, SRC, and

DOT) clock output of interest is programmed to '0', the clock outputs are held with "Diff clock" pin driven HIGH, and "Diff clock#" tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to "1", then both the "Diff clock" and the "Diff clock#" are tri-state. Note that Figure 4 shows CPUT = 133 MHz and PD drive mode = '1' for all differential outputs. This diagram and description is applicable to valid CPU frequencies 100, 133, 166, and 200 MHz. In the event that PD mode is desired as the initial power-on state, PD must be asserted HIGH in less than 10 µs after asserting Vtt_PwrGd#. It should be noted that 96_100_SSC will follow the DOT waveform when selected for 96 MHz and the SRC waveform when in 100-MHz mode.

PD Deassertion

The power-up latency is less than 1.8 ms. This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are output from the clock chip. All differential outputs stopped in a three-state condition resulting from power down will be driven high in less than 300 µs of PD deassertion to a voltage greater than 200 mV. After the clock chip's internal PLL is powered up and locked, all outputs will be enabled within a few clock cycles of each other. Figure 5 is an example showing the relationship of clocks coming up. It should be noted that 96_100_SSC will follow the DOT waveform when selected for 96 MHz and the SRC waveform when in 100-MHz mode.

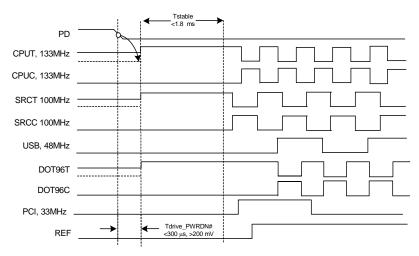


Figure 5. Power-down Deassertion Timing Waveform

CPU_STP# Assertion

The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are

set with the SMBus configuration to be stoppable via assertion of CPU_STP# will be stopped within two-six CPU clock periods after being sampled by two rising edges of the internal CPUC clock. The final state of all stopped CPU clocks is High/Low when driven, Low/Low when tri-stated.

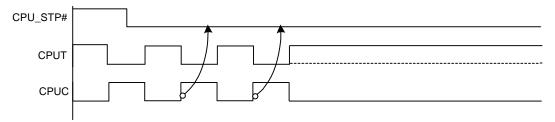


Figure 6. CPU_STP# Assertion Waveform

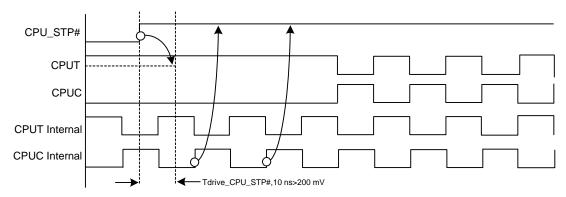


Figure 7. CPU_STP# Deassertion Waveform

PCI STP# Assertion

The PCI_STP# signal is an active LOW input used for synchronous stopping and starting the PCI outputs and SRC outputs if they are set to be stoppable in SMbus while the rest of the clock generator continues to function. The set-up time for capturing PCI_STP# going LOW is 10 ns (t_{SU}). (See Figure 9.) The PCIF clocks will not be affected by this pin if their corresponding control bit in the SMBus register is set to allow them to be free running. All stopped PCI outputs are

driven Low, SRC outputs are High/Low if set to driven and Low/Low if set to tri-state.

PCI_STP# Deassertion

The deassertion of the PCI_STP# signal will cause all PCI and stoppable PCIF clocks to resume running in a synchronous manner within two PCI clock periods after PCI_STP# transitions to a HIGH level

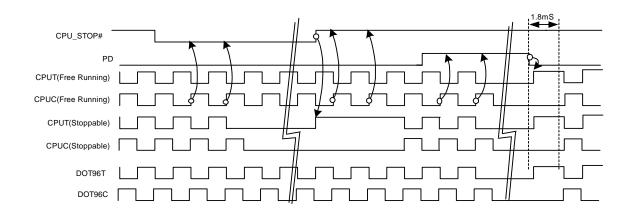


Figure 8. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state

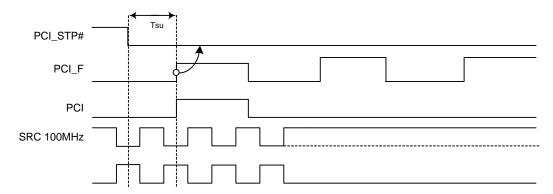


Figure 9. PCI STP# Assertion Waveform

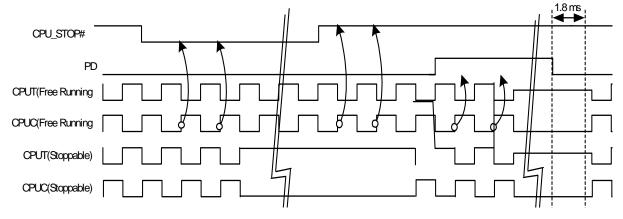


Figure 10. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven

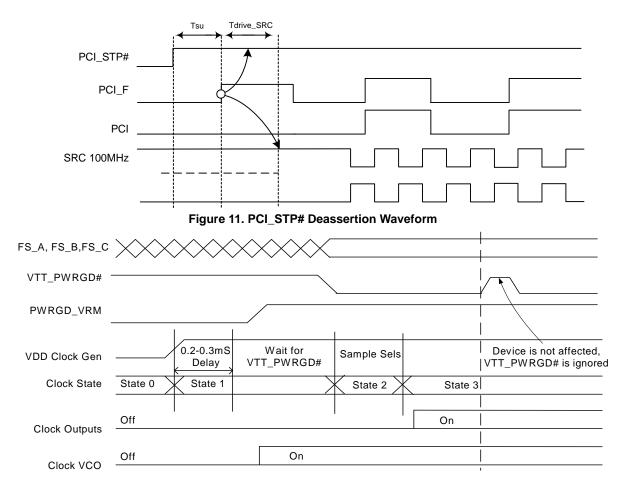


Figure 12. VTTPWRGD# Timing Dlagram

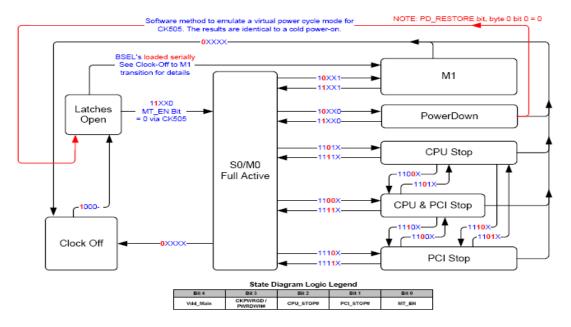


Figure 13. CY28547 State Diagram

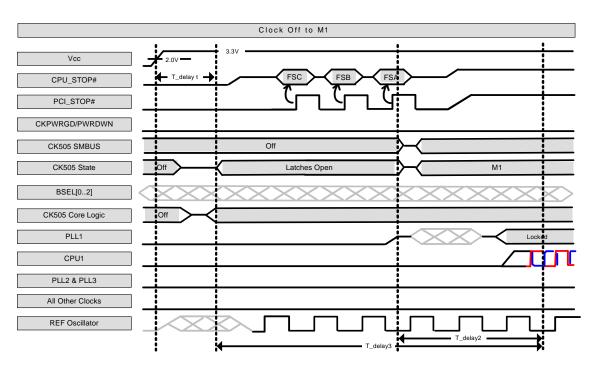


Figure 14. BSEL Serial Latching

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V_{DD}	Core Supply Voltage		-0.5	4.6	V
V_{DD_A}	Analog Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	$V_{DD} + 0.5$	VDC
T _S	Temperature, Storage	Non-functional	-65	150	°C
T _A	Temperature, Operating Ambient	Functional	0	85	°C
TJ	Temperature, Junction	Functional	_	150	°C
Ø _{JC}	Dissipation, Junction to Case	Mil-STD-883E Method 1012.1	_	20	°C/W
Ø _{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	_	60	°C/W
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	_	V
UL-94	Flammability Rating	At 1/8 in.	V	- 0	
MSL	Moisture Sensitivity Level			1	

Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
All VDDs	3.3V Operating Voltage	3.3 ± 5%	3.135	3.465	V
V _{ILI2C}	Input Low Voltage	SDATA, SCLK	_	1.0	V
V _{IHI2C}	Input High Voltage	SDATA, SCLK	2.2	_	V
V_{IL_FS}	FS_[A,B] Input Low Voltage		V _{SS} -0.3	0.35	V
V_{IH_FS}	FS_[A,B] Input High Voltage		0.7	V _{DD} + 0.5	V
V _{ILFS_C}	FS_C Input Low Voltage		V _{SS} -0.3	0.35	V
V _{IMFS_C}	FS_C Input Middle Voltage		0.7	1.7	V
V _{IHFS_C}	FS_C Input High Voltage		2.0	V _{DD} + 0.5	V
V_{IL}	3.3V Input Low Voltage		V _{SS} - 0.3	0.8	V
V _{IH}	3.3V Input High Voltage		2.0	V _{DD} + 0.3	V
I _{IL}	Input Low Leakage Current	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	- 5	5	μΑ
I _{IH}	Input High Leakage Current	Except internal pull-down resistors, $0 < V_{IN} < V_{DD}$	_	5	μΑ
V _{OL}	3.3V Output Low Voltage	I _{OL} = 1 mA	_	0.4	V
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1 \text{ mA}$	2.4	_	V
I _{OZ}	High-impedance Output Current		-10	10	μΑ
C _{IN}	Input Pin Capacitance		3	5	pF
C _{OUT}	Output Pin Capacitance		3	6	pF
L _{IN}	Pin Inductance		_	7	nΗ
V_{XIH}	Xin High Voltage		0.7V _{DD}	V_{DD}	V
V_{XIL}	Xin Low Voltage		0	0.3V _{DD}	V
I _{DD3.3V}	Dynamic Supply Current	In low drive mode per <i>Figure 15</i> and <i>Figure 17</i> @133 MHz	_	250	mA
I _{PD3.3V}	Power-down Supply Current	PD asserted, Outputs Driven	-	30	mA
I _{PD3.3V}	Power-down Supply Current	PD asserted, Outputs Tri-state	_	5	mΑ

AC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
Crystal			L	L	
T _{DC}	XIN Duty Cycle	The device will operate reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification	47.5	52.5	%
T _{PERIOD}	XIN Period	When XIN is driven from an external clock source	69.841	71.0	ns
T_R/T_F	XIN Rise and Fall Times	Measured between 0.3V _{DD} and 0.7V _{DD}	_	10.0	ns
T _{CCJ}	XIN Cycle to Cycle Jitter	As an average over 1-µs duration	_	500	ps
CPU					
T _{DC}	CPUT and CPUC Duty Cycle	Measured at 0V differential at 0.1s	45	55	%
T _{PERIOD}	100 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	9.99900	10.0100	ns
T _{PERIOD}	133 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	7.49925	7.50075	ns
T _{PERIOD}	166 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	5.99940	6.00060	ns
T _{PERIOD}	200 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	4.99950	5.00050	ns
T _{PERIOD}	266 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	3.74963	3.75038	ns
T _{PERIOD}	333 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	2.99970	3.00030	ns
T _{PERIOD}	400 MHz CPUT and CPUC Period	Measured at 0V differential at 0.1s	2.49975	2.50025	ns
T _{PERIODSS}	100 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	10.02406	10.02607	ns
T _{PERIODSS}	133 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	7.51804	7.51955	ns
T _{PERIODSS}	166 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	6.01444	6.01564	ns
T _{PERIODSS}	200 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	5.01203	5.01303	ns
T _{PERIODSS}	266 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	3.75902	3.75978	ns
T _{PERIODSS}	333 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	3.00722	3.00782	ns
T _{PERIODSS}	400 MHz CPUT and CPUC Period, SSC	Measured at 0V differential at 0.1s	2.50601	2.50652	ns
T _{PERIODAbs}	100 MHz CPUT and CPUC Absolute period	Measured at 0V differential at 1 clock	9.91400	10.0860	ns
T _{PERIODAbs}	133 MHz CPUT and CPUC Absolute period	Measured at 0V differential at 1 clock	7.41425	7.58575	ns
T _{PERIODAbs}	166 MHz CPUT and CPUC Absolute period	Measured at 0V differential @ 1 clock	5.91440	6.08560	ns
T _{PERIODAbs}	200 MHz CPUT and CPUC Absolute period	Measured at 0V differential @ 1 clock	4.91450	5.08550	ns
T _{PERIODAbs}	266 MHz CPUT and CPUC Absolute period	Measured at 0V differential @ 1 clock	3.66463	3.83538	ns
T _{PERIODAbs}	333 MHz CPUT and CPUC Absolute period	Measured at 0V differential @ 1 clock	2.91470	3.08530	ns
T _{PERIODAbs}	400 MHz CPUT and CPUC Absolute period	Measured at 0V differential @ 1 clock	2.41475	2.58525	ns
T _{PERI-}	100 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	9.91406	10.1362	ns
T _{PERI-}	133 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	7.41430	7.62340	ns

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
T _{PERI} - ODSSAbs	166 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	5.91444	6.11572	ns
T _{PERI-} ODSSAbs	200 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	4.91453	5.11060	ns
T _{PERI} - ODSSAbs	266 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	3.66465	3.85420	ns
T _{PERI} - ODSSAbs	333 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	2.91472	3.10036	ns
T _{PERI} - ODSSAbs	400 MHz CPUT and CPUC Absolute period, SSC	Measured at 0V differential @ 1 clock	2.41477	2.59780	ns
T _{CCJ}	CPU Cycle to Cycle Jitter	Measured at 0V differential	_	85	ps
T _{CCJ2}	CPU2_ITP Cycle to Cycle Jitter	Measured at 0V differential	_	125	ps
L _{ACC}	Long-term Accuracy	Measured at 0V differential	_	100	ppm
T _{SKEW}	CPU0 to CPU1 Clock Skew	Measured at 0V differential	-	100	ps
T _{SKEW2}	CPU2_ITP to CPU0 Clock Skew	Measured at 0V differential	-	150	ps
T_R/T_F	CPU Rising/Falling Slew rate	Measured differentially from ±150 mV	2.5	8	V/ns
T _{RFM}	Rise/Fall Matching	Measured single-endedly from ±75 mV	_	20	%
V _{HIGH}	Voltage High			1.15	V
V_{LOW}	Voltage Low		-0.3	_	V
V _{OX}	Crossing Point Voltage at 0.7V Swing		300	550	mV
SRC at 0.7V			L	L	
T _{DC}	SRC Duty Cycle	Measured at 0V differential	45	55	%
T _{PERIOD}	100 MHz SRC Period	Measured at 0V differential @ 0.1s	9.99900	10.0010	ns
T _{PERIODSS}	100 MHz SRC Period, SSC	Measured at 0V differential @ 0.1s	10.02406	10.02607	ns
T _{PERIODAbs}	100 MHz SRC Absolute Period	Measured at 0V differential @ 1 clock	9.87400	10.1260	ns
T _{PERI} -	100 MHz SRC Absolute Period, SSC	Measured at 0V differential @ 1 clock	9.87406	10.1762	ns
T _{SKEW(windo} w)	Any SRC Clock Skew from the earliest bank to the latest bank	Measured at 0V differential	_	3.0	ns
T _{CCJ}	SRC Cycle to Cycle Jitter	Measured at 0V differential	_	125	ps
L _{ACC}	SRC Long Term Accuracy	Measured at 0V differential	_	100	ppm
T _R / T _F	SRC Rising/Falling Slew Rate	Measured differentially from ±150 mV	2.5	8	V/ns
T _{RFM}	Rise/Fall Matching	Measured single-endedly from ±75 mV	_	20	%
V _{HIGH}	Voltage High			1.15	V
V _{LOW}	Voltage Low		-0.3	_	V
V _{OX}	Crossing Point Voltage at 0.7V Swing		300	550	mV
DOT96 at 0.7	7V		L		
T _{DC}	DOT96 Duty Cycle	Measured at 0V differential	45	55	%
T _{PERIOD}	DOT96 Period	Measured at 0V differential at 0.1s	10.4156	10.4177	ns
T _{PERIODAbs}	DOT96 Absolute Period	Measured at 0V differential at 0.1s	10.1656	10.6677	ns
T _{CCJ}	DOT96 Cycle to Cycle Jitter	Measured at 0V differential at 1 clock		250	ps
L _{ACC}	DOT96 Long Term Accuracy	Measured at 0V differential at 1 clock	_	100	ppm
T _R / T _F	DOT96 Rising/Falling Slew Rate	Measured differentially from ±150 mV	2.5	8	V/ns
T _{RFM}	Rise/Fall Matching	Measured single-endedly from ±75 mV	_	20	%
V _{HIGH}	Voltage High	<u> </u>		1.15	V
пип					<u> </u>

AC Electrical Specifications (continued)

TPERIODSS	Parameter	Description	Condition	Min.	Max.	Unit
Vox Crossing Point Voltage at 0.7V Swing 300 550 LCD_10D_SSC at 0.7V LCD_10D Uty Cycle Measured at 0V differential at 0.1s 9.99900 10.0010 TPERIODS 100 MHz LCD_100 Period, SCC -0.5% Measured at 0V differential at 0.1s 9.99900 10.00260 6 7 TPERIODADS 100 MHz LCD_100 Absolute Period, SSC Measured at 0V differential at 1 clock 9.74900 10.2510 0 0 7 7 7 7 7 7 7 7 8 100 MHz LCD_100 Absolute Period, SSC Measured at 0V differential at 1 clock 9.74906 10.3012 0 0 7 7 7 7 7 7 7 7 7 8 6 7 7 9 10.000 10.0260 6 7 9 7 9 9 10.0260 6 7 9 7 9 10.0260 10.0260 10.0260 8 7 10.0260 10.0260 10.0260 10.0260 10.0260 10.0260 10.0260 10.0260 <	LOW	Voltage Low		-0.3	_	V
Toc LCD_100 Duty Cycle Measured at 0V differential 45 55 T _{PERIOD} 100 MHz LCD_100 Period Measured at 0V differential at 0.1s 9.99900 10.0010 T _{PERIODSS} 100 MHz LCD_100 Period, SSC Measured at 0V differential at 1 clock 9.74900 10.260 T _{PERIODAbs} 100 MHz LCD_100 Absolute Period Measured at 0V differential at 1 clock 9.74900 10.250 T _{PERIODAbs} SSC 100 MHz LCD_100 Absolute Period, Measured at 0V differential at 1 clock 9.74906 10.3012 ODSSAbs SSC 100 MHz LCD_100 Absolute Period, Measured at 0V differential 1 clock 9.74906 10.3012 ODSSAbs SSC LCD_100 Cycle to Cycle ditter Measured at 0V differential 1 clock 9.74906 10.3012 LACC LCD_100 Cing Term Accuracy Measured at 0V differential 1 clock 9.74906 10.3012 T _{RC} T _F LCD_100 Rising/Falling Slew Rate Measured at 0V differential 1 clock 1		Crossing Point Voltage at 0.7V Swing		300	550	mV
TPERIOD 100 MHz LCD_100 Period Measured at 0V differential at 0.1s 9.99900 10.0010	CD_100_SS	SC at 0.7V			<u> </u>	
Toperion Toperion	DC	LCD_100 Duty Cycle	Measured at 0V differential	45	55	%
Periodology	PERIOD	100 MHz LCD_100 Period	Measured at 0V differential at 0.1s	9.99900	10.0010	ns
Territorial Decision Decis	PERIODSS		Measured at 0V differential at 0.1s		10.0260 7	ns
SSC	PERIODAbs	100 MHz LCD_100 Absolute Period	Measured at 0V differential at 1 clock	9.74900	10.2510 0	ns
L _{ACC} LCD_100 Long Term Accuracy Measured at 0V differential − 100 T _R / T _F LCD_100 Rising/Falling Slew Rate Measured differentially from ±150 mV 2.5 8 T _{RFM} Rise/Fall Matching Measured single-endedly from ±75 mV − 20 V _{HIGH} Voltage High 1.15 − − 3 − V _{LOW} Voltage Low − − 0.3 − − 0.3 − 0.3 − 0.3 − 0.3 0.500 550 DECI/PCIF at 3.3V − − 0.3 0.550 DECI/PCIF at 3.3V √ 45 55 5 5 T _{PERIOD} Spread Disabled PCIF/PCI Period Measurement at 1.5V 45 55 5 7 PERIODSS Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.0303 30.5030 30.58421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421 30.28421			Measured at 0V differential @ 1 clock	9.74906	10.3012	ns
TR/TF LCD_100 Rising/Falling Slew Rate Measured differentially from ±150 mV 2.5 8 TRFM Rise/Fall Matching Measured single-endedly from ±75 mV − 20 VHIGH Voltage High − − 20 VLOW Voltage Low − − 3 − V _{OX} Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V TpC PCI Duty Cycle Measurement at 1.5V 45 55 TPERIOD Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.0300 TPERIODABS Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.58421 TPERIODABS Spread Enabled PCIF PCI Period Measurement at 2.V 12.2709 16.2798 5 TLOW Spread Enabled PCIF and PCI high time Measurement at 2.V 11.8709 16.0798 5 5 5 TLOW Spread Disabled PCIF and PCI low time Measurement at 2.V 11.2736 16.2798 5 5 5 5 </td <td>CCJ</td> <td>LCD_100 Cycle to Cycle Jitter</td> <td>Measured at 0V differential</td> <td>_</td> <td>250</td> <td>ps</td>	CCJ	LCD_100 Cycle to Cycle Jitter	Measured at 0V differential	_	250	ps
TRFM Rise/Fall Matching Measured single-endedly from ±75 mV − 20 V _{HIGH} Voltage High 1.1.15 V _{LOW} Voltage Low −0.3 − V _{OX} Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V TpC PCI Duty Cycle Measurement at 1.5V 29.99700 30.0300 TPERIOD Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.00300 TPERIODAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.08421 ODSSAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF and PCI high time Measurement at 2.V 12.2709 16.2799 T _{LOW} Spread Enabled PCIF and PCI low time Measurement at 2.V 11.8709 16.2766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 2.V 11.8736 16.2766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 1.5V 11.0 4.0	-ACC	LCD_100 Long Term Accuracy	Measured at 0V differential	_	100	ppm
VHigh Voltage High 1.15 V _{LOW} Voltage Low −0.3 − V _{OX} Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V T _{DC} PCI Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.00300 T _{PERIODAbs} Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.5030 T _{PERI-} OSDSSAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 0DSSAbs Spread Enabled PCIF and PCI high time Measurement at 2.V 12.2709 16.2799 T _{HIGH} Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.2796 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.2766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 1.5V 12.2736 16.2766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 1.5V 11.8736 16.0766 <td></td> <td>LCD_100 Rising/Falling Slew Rate</td> <td>Measured differentially from ±150 mV</td> <td>2.5</td> <td>8</td> <td>V/ns</td>		LCD_100 Rising/Falling Slew Rate	Measured differentially from ±150 mV	2.5	8	V/ns
VLOW Voltage Low −0.3 − V _{OX} Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V T _{DC} PCI Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.0300 T _{PERIODAbs} Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.5030 T _{PERIODAbs} Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 0DSSAbs Spread Enabled PCIF and PCI high time Measurement at 2.V 29.56617 30.58421 T _{LOW} Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.2799 T _{HIGH} Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.0796 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 2.V 12.2736 16.2766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 1.5V 11.8736 16.0766 T _R / T _F PCIF/PCI Rising/Falling Slew Rate <	RFM	Rise/Fall Matching	Measured single-endedly from ±75 mV	_	20	%
V _{LOW} Voltage Low −0.3 −0.3 −5.5 V _{OX} Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V T _{DC} PCI Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.00300 T _{PERIODAbs} Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.50300 T _{PERIODAbs} Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 0DSSAbs Spread Enabled PCIF and PCI Iowing time Measurement at 2.V 12.2709 16.2799 5 T _{LOW} Spread Enabled PCIF and PCI Iowing time Measurement at 0.8V 11.8709 16.0790 5 5 T _{HIGH} Spread Disabled PCIF and PCI Iow time Measurement at 0.8V 11.8709 16.0790 5 5 5 6 5 6 5 6 5 6 5 6 5 6 7 6 5 6 5 6	HIGH	Voltage High			1.15	V
VOX Crossing Point Voltage at 0.7V Swing 300 550 PCI/PCIF at 3.3V TDC PCI Duty Cycle Measurement at 1.5V 45 55 TPERIOD Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.0300 TPERIODSS Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.5030 TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF PCI Period Measurement at 1.5V 29.56617 30.58421 THIGH Spread Enabled PCIF and PCI high time Measurement at 2.V 12.2709 16.2799 5 5 TLOW Spread Disabled PCIF and PCI high time Measurement at 0.8V 11.8709 16.0766 5 5 5 7 12.2736 16.2796 5 5 7 1 12.2736 16.2796 5 5 5 7 1 12.2736 16.2796 5 5 5 7 1 1 12.2736 16.2796		Voltage Low		-0.3	_	V
TDC PCI Duty Cycle Measurement at 1.5V 45 55 TPERIOD Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.00300 TPERIODSS Spread Enabled PCIF/PCI Period Measurement at 1.5V 30.08421 30.23455 TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.50300 TPERIODSSAbs Spread Enabled PCIF PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF and PCI high time Measurement at 2.V 12.2709 16.2799 TLOW Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.0799 TLOW Spread Disabled PCIF and PCI low time Measurement at 2.V 12.2736 16.2766 TLOW Spread Disabled PCIF and PCI low time Measurement at 2.V 11.8736 16.0766 TLOW Spread Disabled PCIF and PCI low time Measurement at 1.5V 11.0 4.0 TSKEW Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 TCCJ PCIF and PCI Cycle to Cycle Jitter<		Crossing Point Voltage at 0.7V Swing		300	550	mV
TPERIOD Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.99700 30.00300 TPERIODSS Spread Enabled PCIF/PCI Period Measurement at 1.5V 30.08421 30.23458 TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.50300 TPERIODASS Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF and PCI low Itime Measurement at 2.V 12.2709 16.2799 TLOW Spread Enabled PCIF and PCI low Itime Measurement at 0.8V 11.8709 16.0799 THIGH Spread Disabled PCIF and PCI high Itime Measurement at 2.V 12.2736 16.2766 TLOW Spread Disabled PCIF and PCI low Itime Measurement at 0.8V 11.8736 16.0766 TLOW Spread Disabled PCIF and PCI low Itime Measurement at 1.5V 1.0 4.0 TSKEW Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 TCCJ PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 LACC PCIF/PCI Long Term Accuracy<	CI/PCIF at 3	3.3V				
TPERIODSS Spread Enabled PCIF/PCI Period Measurement at 1.5V 30.08421 30.23455 TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.50300 TPERIODAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF and PCI high time Measurement at 2V 12.2709 16.2799 TLOW Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.0799 THIGH Spread Disabled PCIF and PCI high time Measurement at 2.V 12.2736 16.2766 TLOW Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 16.0766 TLOW Spread Disabled PCIF and PCI low time Measurement at 1.5V 1.0 4.0 T _{PC} / T _F PCIF/PCI Rising/Falling Slew Rate Measurement at 1.5V - 1000 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V Measurement at 1	DC	PCI Duty Cycle	Measurement at 1.5V	45	55	%
TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V 29.49700 30.50300 TPERIODAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 ODSSAbs Spread Enabled PCIF and PCI high time Measurement at 2V 12.2709 16.2799 TLOW Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.0799 THIGH Spread Disabled PCIF and PCI low time Measurement at 2.V 12.2736 16.2766 TLOW Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 16.0766 TLOW Spread Disabled PCIF and PCI low time Measurement at 1.5V 10.0766 10.0766 TR / TF PCIF/PCI Rising/Falling Slew Rate Measurement at 1.5V 1.0 4.0 TSKEW Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 500 LACC PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V TDC Duty Cycle Measurement at 1.5V 20.83125 20.83125 20.83125 20.83125 20.83125 </td <td>PERIOD</td> <td>Spread Disabled PCIF/PCI Period</td> <td>Measurement at 1.5V</td> <td>29.99700</td> <td>30.00300</td> <td>ns</td>	PERIOD	Spread Disabled PCIF/PCI Period	Measurement at 1.5V	29.99700	30.00300	ns
TPERI- ODSSAbs Spread Enabled PCIF/PCI Period Measurement at 1.5V 29.56617 30.58421 THIGH Spread Enabled PCIF and PCI high time Measurement at 2V 12.2709 16.2799 TLOW Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 16.0799 THIGH Spread Disabled PCIF and PCI high time Measurement at 2.V 12.2736 16.2766 TLOW Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 16.0766 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 1.5V 10.0766 10.0766 T _R / T _F PCIF/PCI Rising/Falling Slew Rate Measurement at 1.5V - 1000 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	PERIODSS	Spread Enabled PCIF/PCI Period	Measurement at 1.5V	30.08421	30.23459	ns
ODSSAbs Spread Enabled PCIF and PCI high time Measurement at 2V 12.2709 5 16.2799 5 T _{LOW} Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 5 16.0799 5 T _{LOW} Spread Disabled PCIF and PCI high time Measurement at 2.V 12.2736 5 16.2766 5 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 5 16.0766 5 T _R / T _F PCIF/PCI Rising/Falling Slew Rate Measured between 0.8V and 2.0V 1.0 4.0 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V — 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V — 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V — 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Abs Absolute Period Measurement at 1.5V 20.48125 21.18542	PERIODAbs	Spread Disabled PCIF/PCI Period	Measurement at 1.5V	29.49700	30.50300	ns
time 5 5 T _{LOW} Spread Enabled PCIF and PCI low time Measurement at 0.8V 11.8709 5 16.0799 5 T _{HIGH} Spread Disabled PCIF and PCI high time Measurement at 2.V 12.2736 5 16.2766 5 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 16.0766 5 T _R / T _F PCIF/PCI Rising/Falling Slew Rate Measurement at 0.8V and 2.0V 1.0 4.0 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542		Spread Enabled PCIF/PCI Period	Measurement at 1.5V	29.56617	30.58421	ns
time 5 5 T _{HIGH} Spread Disabled PCIF and PCI high time Measurement at 2.V 12.2736 5 16.2766 5 T _{LOW} Spread Disabled PCIF and PCI low time Measurement at 0.8V 11.8736 5 16.0766 5 T _R /T _F PCIF/PCI Rising/Falling Slew Rate Measured between 0.8V and 2.0V 1.0 4.0 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	111011		Measurement at 2V		16.2799 5	ns
time 5 5 5 T _{LOW} Spread Disabled PCIF and PCI low time 5 6 5 T _R / T _F PCIF/PCI Rising/Falling Slew Rate Measured between 0.8V and 2.0V 1.0 4.0 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542			Measurement at 0.8V		16.0799 5	ns
time 5 5 5 T _R / T _F PCIF/PCI Rising/Falling Slew Rate Measured between 0.8V and 2.0V 1.0 4.0 T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542			Measurement at 2.V		16.2766 5	ns
T _{SKEW} Any PCI clock to Any PCI clock Skew Measurement at 1.5V - 1000 T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V - 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V - 100 48_M at 3.3V T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542			Measurement at 0.8V		16.0766 5	ns
T _{CCJ} PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V – 500 L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V – 100 48_M at 3.3V TDC Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	$_{R}/T_{F}$	PCIF/PCI Rising/Falling Slew Rate	Measured between 0.8V and 2.0V	1.0	4.0	V/ns
L _{ACC} PCIF/PCI Long Term Accuracy Measurement at 1.5V – 100 48_M at 3.3V TDC Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	SKEW	Any PCI clock to Any PCI clock Skew	Measurement at 1.5V	_	1000	ps
48_M at 3.3V TDC Duty Cycle Measurement at 1.5V 45 55 TPERIOD Period Measurement at 1.5V 20.83125 20.83542 TPERIODAbs Absolute Period Measurement at 1.5V 20.48125 21.18542	CCJ	PCIF and PCI Cycle to Cycle Jitter	Measurement at 1.5V	_	500	ps
T _{DC} Duty Cycle Measurement at 1.5V 45 55 T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	-ACC	PCIF/PCI Long Term Accuracy	Measurement at 1.5V	_	100	ppm
T _{PERIOD} Period Measurement at 1.5V 20.83125 20.83542 T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	8_M at 3.3V	1				•
T _{PERIODAbs} Absolute Period Measurement at 1.5V 20.48125 21.18542	DC	Duty Cycle	Measurement at 1.5V	45	55	%
1 ENGOLOG	PERIOD	Period	Measurement at 1.5V	20.83125	20.83542	ns
	PERIODAbs	Absolute Period	Measurement at 1.5V	20.48125	21.18542	ns
		48_M High time	Measurement at 2V	8.216563	11.15198	ns
T _{LOW} 48_M Low time Measurement at 0.8V 7.816563 10.95198		48_M Low time	Measurement at 0.8V	7.816563	10.95198	ns
T _R / T _F Rising and Falling Edge Rate Measured between 0.8V and 2.0V 1.0 2.0		Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0	2.0	V/ns
T _{CCJ} Cycle to Cycle Jitter Measurement at 1.5V – 350		Cycle to Cycle Jitter	Measurement at 1.5V	-	350	ps
L _{ACC} 48M Long Term Accuracy Measurement at 1.5V – 100		48M Long Term Accuracy	Measurement at 1.5V	_	100	ppm

AC Electrical Specifications (continued)

Description	Condition	Min.	Max.	Unit
7M_SS at 3.3V		1		
Duty Cycle	Measurement at 1.5V	45	55	%
Spread Disabled 27M Period	Measurement at 1.5V	37.0359 4	37.0381 3	ns
Spread Enabled 27M Period	Measurement at 1.5V	37.0359 4	37.0381 3	ns
Rising and Falling Edge Rate	Measured between 0.4V and 2.0V	1.0	4.0	V/ns
Cycle to Cycle Jitter	Measurement at 1.5V	_	200	ps
27_M Long Term Accuracy	Measured at crossing point V _{OX}	_	50	ppm
		1		
REF Duty Cycle	Measurement at 1.5V	45	55	%
REF Period	Measurement at 1.5V	69.82033	69.86224	ns
REF Absolute Period	Measurement at 1.5V	68.83429	70.84826	ns
REF High time	Measurement at 2V	29.97543	38.46654	ns
REF Low time	Measurement at 0.8V	29.57543	38.26654	ns
REF Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0	4.0	V/ns
REF Clock to REF Clock	Measurement at 1.5V	_	500	ps
REF Cycle to Cycle Jitter	Measurement at 1.5V	_	1000	ps
Long Term Accuracy	Measurement at 1.5V	_	100	ppm
SABLE and SET-UP	•			
Clock Stabilization from Power-up		_	1.8	ms
Stopclock Set-up Time		10.0	_	ns
	Duty Cycle Spread Disabled 27M Period Spread Enabled 27M Period Rising and Falling Edge Rate Cycle to Cycle Jitter 27_M Long Term Accuracy REF Duty Cycle REF Period REF Absolute Period REF High time REF Low time REF Rising and Falling Edge Rate REF Clock to REF Clock REF Cycle to Cycle Jitter Long Term Accuracy SABLE and SET-UP Clock Stabilization from Power-up	Duty Cycle Spread Disabled 27M Period Measurement at 1.5V Spread Enabled 27M Period Measurement at 1.5V Rising and Falling Edge Rate Measurement at 1.5V Cycle to Cycle Jitter Measurement at 1.5V 27_M Long Term Accuracy Measurement at 1.5V REF Duty Cycle Measurement at 1.5V REF Absolute Period Measurement at 1.5V REF High time Measurement at 2V REF Low time Measurement at 0.8V REF Clock to REF Clock Measurement at 1.5V REF Clock to REF Clock Measurement at 1.5V Measurement at 1.5V	Duty Cycle Measurement at 1.5V 45 Spread Disabled 27M Period Measurement at 1.5V 37.0359 4 Spread Enabled 27M Period Measurement at 1.5V 37.0359 4 Rising and Falling Edge Rate Measured between 0.4V and 2.0V 1.0 Cycle to Cycle Jitter Measurement at 1.5V - 27_M Long Term Accuracy Measurement at 1.5V - REF Duty Cycle Measurement at 1.5V 45 REF Period Measurement at 1.5V 69.82033 REF Absolute Period Measurement at 1.5V 68.83429 REF High time Measurement at 2V 29.97543 REF Low time Measurement at 0.8V 29.57543 REF Clock to REF Clock Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - Measurement at 1.5V - Measurement at 1.5V - REF Cycle to Cycle Jitter Measurement at 1.5V - Measurement at 1.5V - Measurement at 1.5V - Neasurement	7M_SS at 3.3V Duty Cycle Measurement at 1.5V 45 55 Spread Disabled 27M Period Measurement at 1.5V 37.0359 37.0359 37.0381 Spread Enabled 27M Period Measurement at 1.5V 37.0359 37.0359 37.0381 Rising and Falling Edge Rate Measured between 0.4V and 2.0V 1.0 4.0 Cycle to Cycle Jitter Measurement at 1.5V - 200 27_M Long Term Accuracy Measured at crossing point V _{OX} - 50 REF Duty Cycle Measurement at 1.5V 45 55 REF Period Measurement at 1.5V 69.82033 69.86224 REF Absolute Period Measurement at 1.5V 68.83429 70.84826 REF High time Measurement at 2V 29.97543 38.46654 REF Low time Measurement at 0.8V 29.57543 38.26654 REF Rising and Falling Edge Rate Measurement at 1.5V - 500 REF Clock to REF Clock Measurement at 1.5V - 500 REF Cycle to Cycle Jitter Measurement at 1.5V - </td

Test and Measurement Set-up

For Single-ended Signals and Reference

The following diagram shows test load configurations for the single-ended PCI, USB, and REF output signals.

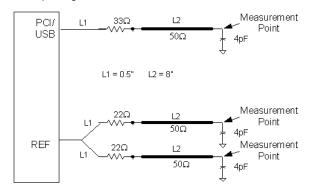


Figure 15.Single-ended Load Configuration Low Drive Option

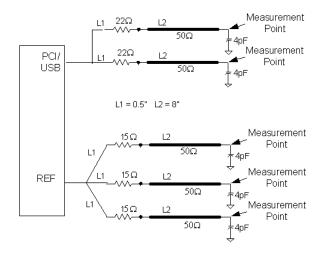


Figure 16. Single-ended Load Configuration High Drive Option

The following diagram shows the test load configuration for the differential CPU and SRC outputs.

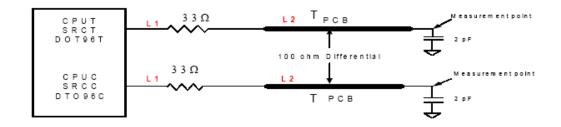


Figure 17. 0.8V Differential Load Configuration

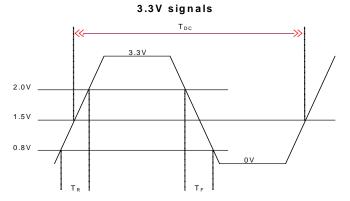
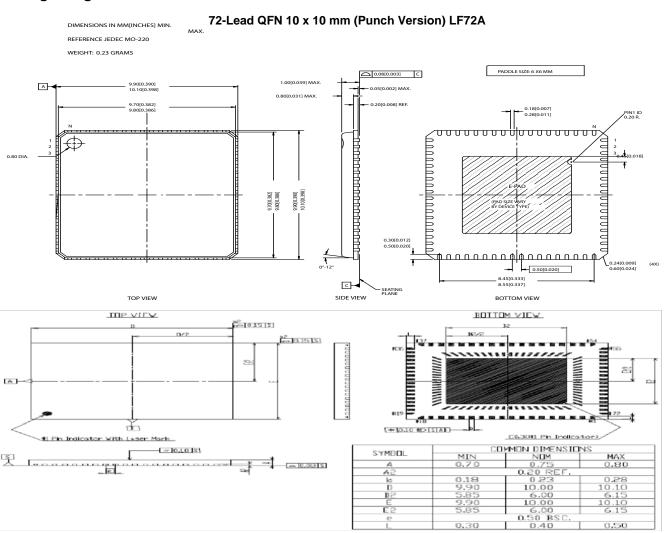


Figure 18. Single-ended Output Signals (for AC Parameters Measurement)

Ordering Information


Part Number	Package Type	Product Flow
Lead-free		
CY28547LFXC	72-pin QFN	Commercial, 0° to 85°C

Ordering Information

CY28547LFXCT	72-pin QFN-Tape and Reel	Commercial, 0° to 85°C
--------------	--------------------------	------------------------

Package Diagram

Document History Page

REV.	Issue Date	Orig. of Change	Description of Change
1.0	See ECN	RGL	New data sheet
1.1	See ECN	RGL/XLZ	Modify the definition of pin 9, 27, 32 and 39 Re-arrange control register map Update AC Electrical Specifications table
1.2	See ECN	RGL	Modify the pin description table Update the default values in the control register bytes 7, 8, 9, 11, 12, 14, and 15
1.3	12/28/06	JMA	1. Modified Revision ID Bit from 0010 to 0011 2. Set Byte 12 <7> from DIAG_EN to Reserved 3. Set Byte 12 <6> from CPU_PLL Status to Reserved 4. Set Byte 12 <5> from Video_PLL Status to Reserved 5. Set Byte 12 <4> from Fixed_PLL Status to Reserved 6. Edited Figure 15 and 16 Terminationa Resistor for double load 12-ohm to 22-ohm 7. Edited Figure 15 and 16 Load from 5pF to 4pF. 8. Changed CPU Vox_min from 250ps to 300ps 9. Changed SRC Vox_min from 180ps to 300ps 10. Changed LCD Vox_min from 250ps to 300ps 11. Changed DOTVox_min from 250ps to 300ps
1.4	10/31/07	JMA	Added Mitsui package

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.