

Tested Ultra-Low-Power 8 kB Flash Capacitive Sensing MCU Die in Wafer Form

Ultra Low Power Consumption

- 150 µA/MHz in active mode (24.5 MHz clock)
- 2 µs wakeup time
- 10 nA sleep mode with memory retention
- 50 nA sleep mode with brownout detector
- 300 nA sleep mode with LFO
- 600 nA sleep mode with external crystal

Supply Voltage 1.8 to 3.6 V

- Built-in LDO regulator allows a high analog supply voltage and low digital core voltage
- 2 built-in supply monitors (brownout detector) for sleep mode and active modes

12-Bit or 10-Bit Analog to Digital Converter

- ±1 LSB INL (10-bit mode); ±1.5 LSB INL (12-bit mode) no missing codes
- Programmable throughput up to 300 ksps (10-bit mode) or 75 ksps (12-bit mode)
- 10 external inputs
- On-chip voltage reference; 0.5x gain allows measuring voltages up to twice the reference voltage
- 16-bit auto-averaging accumulator with burst mode provides increased ADC resolution
- Data dependent windowed interrupt generator
- Built-in temperature sensor

Capacitive Sense Interface

- Supports buttons, sliders, wheels, and capacitive proximity sensing
- Fast 40 µs per channel conversion time
- 16-bit resolution, 14 input channels
- Auto scan and wake-on-touch
- Auto-accumulate up to 64x samples

Analog Comparator

- Programmable hysteresis and response time
- Configurable as wake-up or reset source

6-Bit Programmable Current Reference

- Up to $\pm 500~\mu\text{A},$ can be used as a bias or for generating a custom reference voltage
- PWM enhanced resolution mode

High-Speed 8051 µC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler

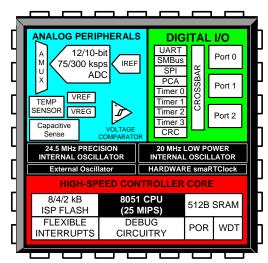
Memory

- 512 bytes RAM
- 8 kB Flash; in-system programmable

Digital Peripherals

- 17 port I/O; high sink current and programmable drive strength
 Hardware SMBus[™]/I²C[™], SPI[™], and UART serial ports available concurrently
- Four general purpose 16-bit counter/timers
- Programmable 16-bit counter/timer array with three capture/compare modules and watchdog timer

Clock Sources


- Internal oscillators: 24.5 MHz, 2% accuracy supports UART operation; 20 MHz low power oscillator requires very little bias current.
- External oscillator: Crystal, RC, C, or CMOS Clock
- SmaRTClock oscillator: 32 kHz Crystal or internal
- Can switch between clock sources on-the-fly; useful in implementing various power saving modes

On-Chip Debug

- On-chip debug circuitry facilitates full-speed, nonintrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping
- Inspect/modify memory and registers
- Complete development kit

Temperature Range: -40 to +85 °C Full Technical Data Sheet

- C8051F99x-C8051F98x

1. Ordering Information

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)	RAM (Bytes)	SmaRTClock Real Time Clock	SMBus/I ² C, UART, Enhanced SPI	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	Analog-to-Digital Converter Inputs	ADC with Internal Voltage Reference and Temperature Sensor	Capacitive Touch (QuickSense TM) Inputs	Programmable Current Reference	Analog Comparators	Package
C8051F996-GDI	25	8	512	✓	✓	4	•	17	10	12-bit	14	✓	1	Tested Die in Wafer Form

Table 1.1. Product Selection Guide

2. Pin Definitions

Table 2.1 lists the pin definitions for the C8051F996-GDI. For a full description of each pin, refer to the C8051F99x-C8051F98x data sheet.

Name	Physical Pad Number	Туре	Description	
V _{DD}	3	P In	Power Supply Voltage. Must be 1.8 to 3.6 V.	
GND	2	G	Required Ground.	
RST/	6	D I/O	Device Reset. Open-drain output of internal POR or V _{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 μ s. A 1 k Ω to 5 k Ω pullup to V _{DD} is recommended.	
C2CK		D I/O	Clock signal for the C2 Debug Interface.	
P2.7/	7	D I/O	Port 2.7. This pin can only be used as GPIO. The Crossbar cannot route signals to this pin and it cannot be configured an analog input.	
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.	
P1.6/	9	D I/O	Port 1.6.	
XTAL3		A In	SmaRTClock Oscillator Crystal Input.	
P1.7/	8	D I/O	Port 1.7.	
XTAL4		A Out	SmaRTClock Oscillator Crystal Output.	
P0.0/	1	D I/O or A In	Port 0.0.	
V _{REF}		A In	External V _{REF} Input.	
P0.1/	25	D I/O or A In	Port 0.1.	
AGND		G	Optional Analog Ground.	

Table 2.1. Pin Definitions for the C8051F996-GDI

Name	Physical Pad Number	Туре	Description					
P0.2/	24	D I/O or A In	Port 0.2.					
XTAL1/		A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator.					
RTCOUT		D Out	Buffered SmaRTClock oscillator output.					
P0.3/	23	D I/O or A In	Port 0.3.					
XTAL2/		A Out	External Clock Output. This pin is the excitation driver for an external crystal or resonator.					
		D In	External Clock Input. This pin is the external clock input in external CMOS clock mode.					
		A In	External Clock Input. This pin is the external clock input in capacitor or RC oscillator configurations.					
WAKEOUT		D Out	Wake-up request signal to wake up external devices.					
P0.4/	22	D I/O or A In	Port 0.4.					
тх		D Out	UART TX Pin.					
P0.5/	21	D I/O or A In	Port 0.5.					
RX		D In	UART RX Pin.					
P0.6/	20	D I/O or A In	Port 0.6.					
CNVSTR		D In	External Convert Start Input for ADC0.					
P0.7/	19	D I/O or A In	Port 0.7.					
IREF0		A Out	IREF0 Output.					
P1.0	16	D I/O or A In	Port 1.0. May also be used as SCK for SPI1.					
CP0+		A In	Comparator0 positive input.					

Table 2.1. Pin Definitions for the C8051F996-GDI (Continued)

Name	Physical Pad Number	Туре	Description
P1.1	14	D I/O or A In	Port 1.1.
CP0-		A In	Comparator0 negative input.
P1.2	13	D I/O or A In	Port 1.2.
P1.3	12	D I/O or A In	Port 1.3.
P1.4	11	D I/O or A In	Port 1.4.
P1.5	10	D I/O or A In	Port 1.5.

Table 2.1. Pin Definitions for the C8051F996-GDI (Continued)

3. Bonding Instructions

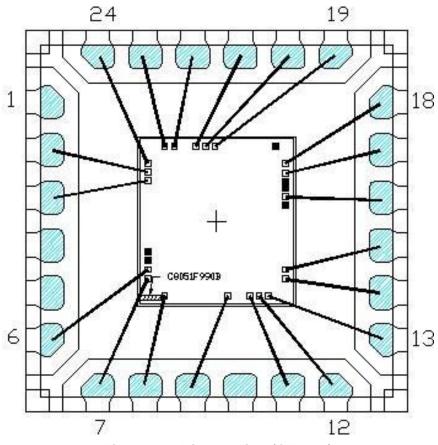


Figure 3.1. Die Bonding (QFN-24)

Physical Pad Number	Example Package Pin Number (QFN-24)	Package Pin Name	Physical Pad X (µm)	Physical Pad Y (µm)				
1	24	P0.0/VREF	-724	606				
	1	NC						
2	2	GND	-724	515				
3	3	VDD	-724	429				
4	Reserved	—	-724	-322				
5	Reserved	—	-724	-413				
6	6	/RST/C2CK	-724	-506				
7	7	P2.7/C2D	-724	-606				
*Note: Pins marked	Note: Pins marked "Reserved" should not be connected.							

Physical Pad Number	Example Package Pin Number (QFN-24)	Package Pin Name	Physical Pad X (µm)	Physical Pad Y (µm)
8	8	P1.7/XTAL4	-545	-785
9	9	P1.6/XTAL3	117	-785
	10	NC		
10	11	P1.5	345	-785
11	12	P1.4	445	-785
12	13	P1.3	545	-785
13	14	P1.2	724	-606
14	15	P1.1/CP0-	724	-506
15	Reserved	_	724	168
16	16	P1.0/CP0+	724	256
17	Reserved	_	724	343
18	Reserved	—	724	418
19	17	P0.7/IREF0	724	506
20	18	P0.6/CNVSTR	724	606
21	Reserved	_	618	785
22	19	P0.5/RX	-17	785
23	20	P0.4/TX	-117	785
24	21	P0.3/XTAL2	-217	785
25	22	P0.2/XTAL1	-445	785
26	23	P0.1/AGND	-545	785

Table 3.1. Bond Pad Coordinates (Relative to Center of Die) (Continued)

Wafer ID	C8051F990B				
Wafer Dimensions	8 in				
Die Dimensions	1.65 mm x 1.78 mm				
Wafer Thickness	12 mil ±1 mil				
Wafer Identification	Notch				
Scribe Line Width	80 µm				
Die Per Wafer*	Contact Sales for info				
Passivation	Standard				
Wafer Packaging Detail	Wafer Jar				
Bond Pad Dimensions	60 µm x 60 µm				
Maximum Processing Temperature	250 °C				
Electronic Die Map Format	.txt				
Bond Pad Pitch Minimum	75 mil				
*Note: This is the Expected Known Good Die yielded per wafer and represents the batch order quantity (one wafer).					

Table 3.2. Wafer and Die Information

4. Wafer Storage Guidelines

It is necessary to conform to appropriate wafer storage practices to avoid product degradation or contamination.

- Wafers may be stored for up to 18 months in the original packaging supplied by Silicon Labs.
- Wafers must be stored at a temperature of 18–24 °C.
- Wafers must be stored in a humidity-controlled environment with a relative humidity of <30%.
- Wafers should be stored in a clean, dry, inert atmosphere (e.g. nitrogen or clean, dry air).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

 Changed Wafer Packaging Detail to "Wafer Jar" in Table 3.2 on page 8.

NOTES:

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

