

C8051F912-GDI Tested Single/Dual Battery, 0.9–3.6 V, 16 kB Flash,

SmaRTClock, 12/10-Bit ADC MCU Die in Wafer Form

Ultra-Low Power

- 160 µA/MHz in active mode (24.5 MHz clock)
- 2 µs wake-up time (two-cell mode)
- 10 nA sleep mode with memory retention
- 50 nA sleep mode with brownout detector
- 300 nA sleep mode with LFO
- 600 nA sleep mode with external crystal

Supply Voltage 0.9 to 3.6 V

- One-cell mode supports 0.9 to 3.6 V operation
- Two-cell mode supports 1.8 to 3.6 V operation
- Built-in dc-dc converter with 1.8 to 3.3 V output for use in one-cell mode
- Built-in LDO regulator allows a high analog supply voltage and low digital core voltage

2 built-in supply monitors (brownout detectors)

12 or 10-Bit Analog-to-Digital Converter

- ±1 LSB INL no missing codes (10-bit mode)
- Programmable throughput up to 300 ksps (10-bit mode)
- 12-bit extended resolution mode provides ±1.5 LSB INL at up to 75 ksps throughput
- 15 external inputs
- On-chip voltage reference
- On-chip PGA allows measuring voltages up to twice the reference voltage
- 16-bit auto-averaging accumulator with burst mode provides increased ADC resolution
- Data dependent windowed interrupt generator
- Built-in temperature sensor

Two Comparators

- Programmable hysteresis and response time
- Configurable as wake-up or reset source

6-Bit Programmable Current Reference

- Up to \pm 500 μ A. Can be used as a bias or for generating a custom reference voltage
- PWM Enhanced Mode provides additional resolution

High-Speed 8051 µC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- 25 MIPS throughput with 25 MHz clock

Expanded interrupt handler

Memory

768 bytes RAM

16 kB Flash; In-system programmable

- **Digital Peripherals**
- 16 port I/O; All 5 V tolerant with high sink current and
- programmable drive strength Hardware SMBusTM (l^2C^{TM} Compatible), 2 x SPITM, and UART serial ports available concurrently
- Four general purpose 16-bit counter/timers
- Programmable 16-bit counter/timer array with six capture/compare modules and watchdog timer

Clock Sources

- Internal oscillators: 24.5 MHz, 2% accuracy supports UART operation; 20 MHz low power oscillator requires very little bias current
- External oscillator: Crystal, RC, C, or CMOS Clock
- SmaRTClock oscillator: 32 kHz crystal or internal LFO
- Can switch between clock sources on-the-fly: useful in implementing various power saving modes

On-Chip Debug

- On-chip debug circuitry facilitates full-speed, non-intrusive in-system debug (no emulator required)
- Provides 4 breakpoints, single stepping
- Inspect/modify memory and registers
- Complete development kit

Temperature range: -40 to +85° C **Full Technical Data Sheet**

C8051F91x-C8051F90x

1. Ordering Information

Table 1.1. Product Selection Guide

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)*	RAM (Bytes)	SmaRTClock Real Time Clock	SMBus/l ² C	UART	Enhanced SPI	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 300ksps ADC	Programmable Current Reference	Internal Voltage Reference	Temperature Sensor	Analog Comparators	Lead-free (RoHS Compliant)	C8051F9xx Plus Features	Package
C8051F912-GDI	25	16	768	~	1	1	2	4	~	16	~	~	~	~	2	~	~	Tested Die in Wafer Form
*Note: 1024 bytes reserved for factory use																		

2. Pin Definitions

Name	Physical Pad Number	Туре	Description	
VBAT	6	P In	Battery Supply Voltage.	
			C8051F912 devices: Must be 0.9 to 3.6 V in single-cell battery mode and 1.8 to 3.6 V in dual-cell battery mode.	
V _{DD} /	4	P In	Power Supply Voltage. Must be 1.8 to 3.6 V. This supply voltage is not required in low power sleep mode. This voltage must always be \geq VBAT.	
DC+		P Out	Positive output of the dc-dc converter. In single-cell battery mode, a 1uF ceramic capacitor is required between DC+ and DC–. This pin can supply power to external devices when operating in single-cell battery mode.	
DC-/	2	P In	DC-DC converter return current path. In single-cell battery mode, this pin is typically not connected to ground.	
GND		G	In dual-cell battery mode, this pin must be connected directly to ground.	
GND	3	G	Required Ground.	
DCEN	5	P In	DC-DC Enable Pin. In single-cell battery mode, this pin must be connected to VBAT through a 0.68 μ H inductor.	
		G	In dual-cell battery mode, this pin must be connected directly to ground.	
RST/	7	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 μ s. A 1 k Ω to 5 k Ω pullup to V_{DD} is recommended.	
C2CK		D I/O	Clock signal for the C2 Debug Interface.	
P2.7/	8	D I/O	Port 2.7. This pin can only be used as GPIO. The Crossbar cannot route signals to this pin and it cannot be configured as an analog input. See Port I/O Section of C8051F91x-C8051F90x data sheet for a complete description.	
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.	
XTAL3	10	A In	SmaRTClock Oscillator Crystal Input.	
XTAL4	9	A Out	SmaRTClock Oscillator Crystal Output.	
P0.0	32	D I/O or A In	Port 0.0.	
V _{REF}		A In A Out	External V_{REF} Input. Internal V_{REF} Output. External V_{REF} decoupling capacitors are recommended.	

|--|

Name	Physical Pad Number	Туре	Description			
P0.1	31	D I/O or A In	Port 0.1.			
AGND		G	Optional Analog Ground.			
P0.2	30	D I/O or A In	Port 0.2. See Port I/O Section of the C8051F91x-C8051F90x data sheet for a complete description.			
XTAL1		A In	External Clock Input. This pin is the external oscillator return for a crysta resonator.			
			Buffered SmaRTClock oscillator output.			
P0.3	29	D I/O or A In	Port 0.3.			
XTAL2		A Out	External Clock Output. This pin is the excitation driver for an external crystal or resonator. External Clock Input. This pin is the external clock input in external CMOS			
		D In	clock mode. External Clock Input. This pin is the external clock input in capacitor or RC			
		A In	oscillator configurations.			
P0.4	28	D I/O or A In	Port 0.4.			
тх		D Out	UART TX Pin.			
P0.5	26	D I/O or A In	Port 0.5.			
RX		D In	UART RX Pin.			
P0.6	25	D I/O or A In	Port 0.6.			
CNVSTR		D In	External Convert Start Input for ADC0.			
P0.7	24	D I/O or A	Port 0.7.			
IREF0		A Out	IREF0 Output. See IREF Section of the C8051F91x-C8051F90x data sheet for complete description.			
P1.0	19	D I/O or A In	Port 1.0. May also be used as SCK for SPI1.			
P1.1	18	D I/O or A In	Port 1.1. May also be used as MISO for SPI1.			
P1.2	17	D I/O or A In	Port 1.2. May also be used as MOSI for SPI1.			

Table 2.1. Pin Definitions for C8051F912-GDI (Continued)

Name	Physical Pad Number	Туре	Description
P1.3	16	D I/O or A In	Port 1.3. May also be used as NSS for SPI1.
P1.4	13	D I/O or A In	Port 1.4.
P1.5	12	D I/O or A In	Port 1.5.
P1.6	11	D I/O or A In	Port 1.6.

Table 2.1. Pin Definitions for C8051F912-GDI (Continued)

3. Bonding Instructions

Physical Pad	Example	Package Pin Name	Pad Coordinates Relative to Center			
Number	Package Pin Number (QFN-24)		Χ (μm)	Υ (μm)		
1	Reserved*	_	-836	600		
2	1	DC-/GND	-836	480		
3	2	GND	-836	233		
4	3	VDD/DC+	-836	78		
5	4	DCEN	-836	-105		
6	5	VBAT	-836	-329		
7	6	RST/C2CK	-836	-688		
8	7	P2.7/C2D	-633	-891		
9	8	XTAL4	-348	-891		
10	9	XTAL3	-126	-891		
11	10	P1.6	134	-891		
12	11	P1.5	290	-891		
13	12	P1.4	433	-891		
14	Reserved*	—	577	-891		
15	Reserved*	—	667	-891		
16	13	P1.3	836	-688		
17	14	P1.2	836	-545		
18	15	P1.1	836	-389		
19	16	P1.0	836	-226		
20	Reserved*	_	836	-103		
21	Reserved*	_	836	-13		
22	Reserved*	—	836	77		
23	Reserved*	—	836	167		
24	17	P0.7/IREF0	836	369		
Note: Pins marked "Reserved" should not be connected.						

Table 3.1. Bond Pad Coordinates

Physical Pad	Example	Package Pin Name	Pad Coordinates Relative to Center				
Number	Package Pin Number (QFN-24)		Χ (μm)	Y (µm)			
25	18	P0.6/CNVSTR	836	525			
26	19	P0.5/RX	836	688			
27	Reserved*	—	745	883			
28	20	P0.4/TX	641	891			
29	21	P0.3/XTAL2	484	891			
30	22	P0.2/XTAL1	342	891			
31	23	P0.1/AGND	-490	891			
32	24	P0.0/VREF	-633	891			
*Note: Pins marked "Reserved" should not be connected.							

Table 3.1. Bond Pad Coordinates (Continued)

Figure 3.1. Die Bonding (QFN-24)

Wafer ID	C8051F911B				
Wafer Dimensions	8 in.				
Die Dimensions	1.9256 mm x 2.0366 mm				
Wafer Thickness	12 mil ±1 mil				
Wafer Identification	Notch				
Scribe Line Width	80 µm				
Die per Wafer*	Contact Sales for info				
Passivation	Standard				
Wafer Packaging Detail	Wafer Jar				
Bond Pad Dimensions	60 µm x 60 µm				
Maximum Processing Temperature	250 °C				
Electronic Die Map Format	.txt				
Bond Pad Pitch Minimum	142 µm				
*Note: This is the Expected Known Good Die yielded per wafer and represents the batch order quantity (one wafer).					

Table 3.2. Wafer and Die Information

4. Wafer Storage Guidelines

It is necessary to conform to appropriate wafer storage practices to avoid product degradation or contamination.

- Wafers may be stored for up to 18 months in the original packaging supplied by Silicon Labs.
- Wafers must be stored at a temperature of 18–24 °C.
- Wafers must be stored in a humidity-controlled environment with a relative humidity of <30%.
- Wafers should be stored in a clean, dry, inert atmosphere (e.g. nitrogen or clean, dry air).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

 Changed Wafer Packaging Detail to "Wafer Jar" in Table 3.2 on page 9.

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

