

28 MIPS, 8 kB Flash, 10-Bit DAC, 10-Bit ADC **MCU Die in Wafer Form**

Analog Peripherals

- 10-Bit ADC
 - Programmable throughput up to 200 ksps
 - Up to 16 external inputs; programmable as sin-
 - gle-ended or differential Reference from internal V_{REF}, V_{DD}, or external
 - Internal or external start of conversion sources
 - Built-in temperature sensor (±3 °C)

10-bit DAC (Current Mode)

- Comparator
 - Programmable hysteresis and response time
 - Configurable to generate interrupts or reset
 - Low current (0.4 µA)

On-Chip Debug

- On-chip debug circuitry facilitates full speed, nonintrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping, watchpoints
- Inspect/modify memory, registers, and stack

Supply Voltage: 2.7 to 3.6 V

Typical operating current: 6.4 mA at 25 MHz 9 uA at 32 kHz

Typical stop mode current: <0.1 µA

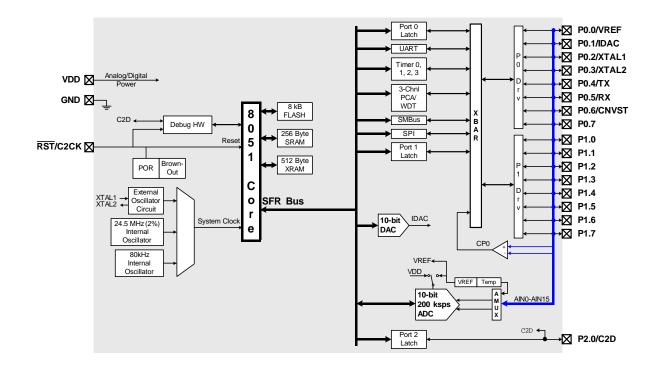
Temperature Range: -40 to +85 °C High-Speed 8051 µC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler

Memory

- 768 bytes data RAM
- 8 kB Flash; in-system programmable in 512 byte sectors (512 bytes are reserved)

Digital Peripherals


- 17 port I/O; all are 5 V tolerant
- Hardware SMBus™ (I2C™ compatible), SPI™, and UART serial ports available concurrently
- Programmable 16-bit counter/timer array with three capture/compare modules, WDT
- 4 general-purpose 16-bit counter/timers
- Real-time clock mode using PCA or timer and external clock source

Clock Sources

- Two internal oscillators:
- 24.5 MHz, 2% accuracy supports UART operation
- 80 kHz low frequency, low-power
- External oscillator: Crystal, RC, C, or Clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly

Full Technical Data Sheet

C8051F330/1/2/3/4/5

1. Ordering Information

Table 1.1. Product Selection Guide

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)*	RAM (Bytes)	SMBus/I ² C	UART	Enhanced SPI	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 200 ksps ADC	Internal Voltage Reference	Temperature Sensor	Analog Comparators	Lead-free (RoHS Compliant)	Package
C8051F330-GDI	25	8	768	1	1	1	4	√	17	√	√	√	1	√	Tested Die in Wafer Form

*Note: 512 bytes reserved for factory use.

2. Pin Definitions

Table 2.1. Pin Definitions for the C8051F330-GDI *

Name	Physical Pad Number	Туре	Description
V _{DD}	4,5		Power Supply Voltage.
GND	2,3		Ground.
RST/	6	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 10 μ s.
C2CK		D I/O	Clock signal for the C2 Debug Interface.
P2.0/	7	D I/O	Port 2.0.
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.0/	1	D I/O or A In	Port 0.0.
VREF		A In	External VREF input.
P0.1	26	D I/O or A In	Port 0.1.
IDA0		AOut	IDA0 Output.
P0.2/	25	D I/O or A In	Port 0.2.
XTAL1		A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator.
P0.3/	24	D I/O or A In	Port 0.3.
XTAL2		A I/O or D In	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations.
P0.4	23	D I/O or A In	Port 0.4.
P0.5	22	D I/O or A In	Port 0.5.

*Note: For a complete description of the functionality of all pins, refer to the C8051F330/1/2/3/4/5 technical data sheet.

Rev. 1.1 3

Table 2.1. Pin Definitions for the C8051F330-GDI (Continued)*

Name	Physical Pad Number	Туре	Description
P0.6/	21	D I/O or A In	Port 0.6.
CNVSTR		D In	ADC0 External Convert Start or IDA0 Update Source Input.
P0.7	20	D I/O or A In	Port 0.7.
P1.0	18	D I/O or A In	Port 1.0.
P1.1	16	D I/O or A In	Port 1.1.
P1.2	15	D I/O or A In	Port 1.2.
P1.3	14	D I/O or A In	Port 1.3.
P1.4	11	D I/O or A In	Port 1.4.
P1.5	10	D I/O or A In	Port 1.5.
P1.6	9	D I/O or A In	Port 1.6.
P1.7	8	D I/O or A In	Port 1.7.

*Note: For a complete description of the functionality of all pins, refer to the C8051F330/1/2/3/4/5 technical data sheet.

4 Rev. 1.1

3. Bonding Instructions

Table 3.1. C8051F330-GDI Pad Connections

Physical Pad Number	Package Pin Number (20-QFN)	Package Pin Name	Physical Pad X (μm)	Physical Pad Y (µm)
1	P0.0	1	-802.7	964.7
2	GND	2	-964.7	-61.2
3	GND	2	-964.7	-173.2
4	VDD	3	-964.7	-284.1
5	VDD	3	-964.7	-396.1
6	/RST/C2CK	4	-964.7	-587.7
7	P2.0/C2D	5	-964.7	-797.7
8	P1.7	6	-797.7	-964.7
9	P1.6	7	-627.7	-964.7
10	P1.5	8	-447.7	-964.7
11	P1.4	9	240.7	-964.7
12	Reserved*		396.7	-964.7
13	Reserved*	_	471.7	-964.7
14	P1.3	10	627.7	-964.7
15	P1.2	11	797.7	-964.7
16	P1.1	12	964.7	-797.7
17	Reserved*	_	964.7	70.05
18	P1.0	13	964.7	201.05
19	Reserved*	_	964.7	337.05
20	P0.7	14	964.7	627.7
21	P0.6	15	964.7	797.7
22	P0.5	16	797.7	964.7
23	P0.4	17	627.7	964.7
24	P0.3	18	447.7	964.7
25	P0.2	19	-79.9	964.7
26	P0.1	20	-622.7	964.7

*Note: Pins marked "Reserved" should not be connected.

Rev. 1.1 5

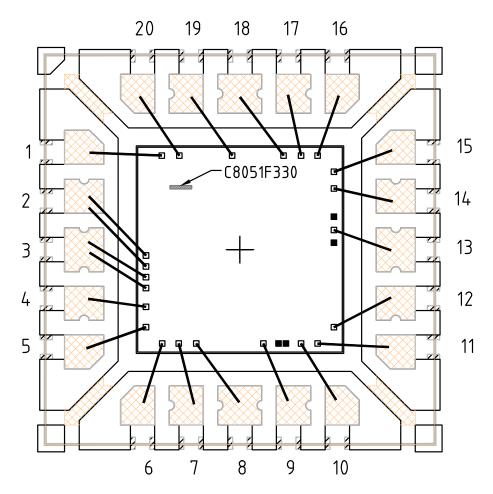


Figure 3.1. Example Die Bonding (QFN-20)

Rev. 1.1

6

Table 3.2. Wafer and Die Information

Wafer ID	C8051F330			
Wafer Dimensions	8 in			
Die Dimensions	2.13 mm x 2.13 mm			
Wafer Thickness	12 mil ±1 mil			
Wafer Identification	Notch			
Scribe Line Width	80 µm			
Die Per Wafer*	Contact Sales for info			
Passivation	Standard			
Wafer Packaging Detail	Wafer Jar			
Bond Pad Dimensions	60 µm x 60 µm			
Maximum Processing Temperature	250 °C			
Electronic Die Map Format	.txt			
Bond Pad Pitch Minimum	75 μm			
_	•			

*Note: This is the Expected Known Good Die yielded per wafer and represents the batch order quantity (one wafer).

4. Wafer Storage Guidelines

It is necessary to conform to appropriate wafer storage practices to avoid product degradation or contamination.

- Wafers may be stored for up to 18 months in the original packaging supplied by Silicon Labs.
- Wafers must be stored at a temperature of 18–24 °C.
- Wafers must be stored in a humidity-controlled environment with a relative humidity of <30%.
- Wafers should be stored in a clean, dry, inert atmosphere (e.g. nitrogen or clean, dry air).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

■ Changed Wafer Packaging Detail to "Wafer Jar" in Table 3.2 on page 7.

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

10 Rev. 1.1