

C8051F300-GDI 8 kB Flash, 8-Bit ADC MCU Die in Wafer Form

Analog Peripherals

- 8-Bit ADC

- Up to 500 ksps
- Up to 8 external inputs
- Programmable amplifier gains of 4, 2, 1, & 0.5
- VREF from external pin or V_{DD}
- Built-in temperature sensor
 External conversion start input
- External conversion start inpl
- Comparator
 - Programmable hysteresis and response time
 - Configurable as interrupt or reset source
 Low current (<0.5 µA)

On-chip Debug

- On-chip debug circuitry facilitates full speed, nonintrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping, inspect/modify memory and registers
- Superior performance to emulation systems using ICE-chips, target pods, and sockets

Supply Voltage 2.7 to 3.6 V

- Typical operating current: 6.6 mA @ 25 MHz;
- 14 µA @ 32 kHz
- Typical stop mode current: 0.1 µA
- Temperature range: –40 to +85 °C

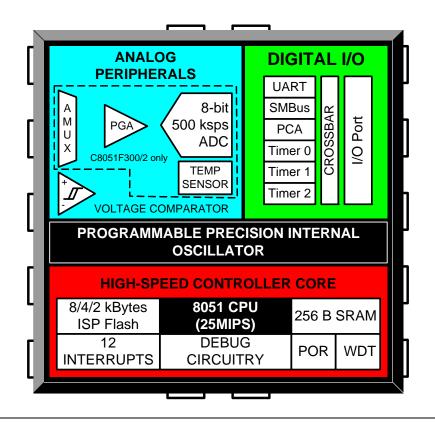
Full Technical Data Sheet

- C8051F300/1/2/3/4/5

High Speed 8051 µc Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler

Memory


- 256 bytes internal data RAM
- 8 kB Flash; 512 bytes are reserved in the 8 kB devices

Digital Peripherals

- 8 Port I/O; All 5 V tolerant with high sink current
- Hardware enhanced UART and SMBus™ serial ports
- Three general-purpose 16-bit counter/timers
- 16-bit programmable counter array (PCA) with three capture/compare modules
- Real time clock mode using PCA or timer and external clock source

Clock Sources

- Internal oscillator: 24.5 MHz with ±2% accuracy supports UART operation
- External oscillator: Crystal, RC, C, or clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly; Useful in power saving modes

1. Ordering Information

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)*	RAM (Bytes)	SMBus/l ² C	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	8-bit 500 ksps ADC	Programmable Current Reference	Temperature Sensor	Analog Comparators	Lead-free (RoHS Compliant)	Package
C8051F300-GDI	25	8	256	1	1	3	~	8	~	✓	✓	1	~	Tested Die in Wafer Form
*Note: 512 bytes reserved for factory use.														

Table 1.1. Product Selection Guide

2. Pin Definitions

Name	Physical Pad Number	Туре	Description	
VREF /	3	A In	External Voltage Reference Input.	
P0.0		D I/O or A In	Port 0.0.	
P0.1	4	D I/O or A In	Port 0.1.	
V _{DD}	5		Power Supply Voltage.	
XTAL1 /	6	A In	Crystal Input. This pin is the external oscillator circuit return for a crystal or ceramic resonator.	
P0.2		D I/O or A In	Port 0.2.	
XTAL2 /	7	A Out	Crystal Input/Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC network configurations.	
P0.3		D I/O	Port 0.3.	
P0.4	13	D I/O or A In	Port 0.4.	
P0.5	14	D I/O or A In	Port 0.5.	
C2CK /	15	D I/O	Clock signal for the C2 Development Interface.	
RST		D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 10 μ s.	
P0.6 /	16	D I/O or A In	Port 0.6.	
CNVSTR		D I/O	ADC External Convert Start Input Strobe.	
C2D /	17	D I/O	Data signal for the C2 Development Interface.	
P0.7		D I/O or A In	Port 0.7.	
GND	18		Ground.	

Table 2.1. Pin Definitions for the C8051F300-GDI

3. Bonding Instructions

Physical Pad Number	Example Package Pin Number (11-QFN)	Package Pin Name	Physical Pad X (μm)	Physical Pad Υ (μm)	
1	Reserved*		-1001.5	-575	
2	Reserved*		-926.5	-575	
3	1	VREF/P0.0	-795.5	-575	
4	2	P0.1	-615.5	-575	
5	3	VDD	346.17	-575	
6	4	XTAL1/P0.2	615.5	-575	
7	5	XTAL2/P0.3	795.5	-575	
8	Reserved*		926.5	-575	
9	Reserved*		1001.5	-575	
10	Reserved*		1000	-429.57	
11	Reserved*		1001.5	575	
12	Reserved*		926.5	575	
13	6	P0.4	790.5	575	
14	7	P0.5	620.5	575	
15	8	/RST/C2CK	440.5	575	
16	9	P0.6/CNVSTR	-523.5	575	
17	10	C2D/P0.7	-703.5	575	
18	11	GND	-834.5	575	
19	Reserved*		-926.5	575	
20	Reserved*		-1001.5	575	

Table 3.1. C8051F300-GDI Pad Connections

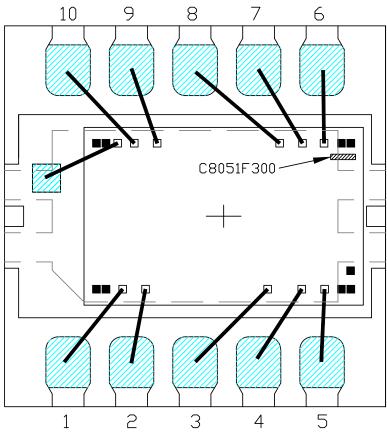


Figure 3.1. Example Die Bonding (QFN-11)

Wafer ID	C8051F300				
Wafer Dimensions	8 in				
Die Dimensions	1.40 mm x 2.2 mm				
Wafer Thickness	12 mil ±1 mil				
Wafer Identification	Notch				
Scribe Line Width	80 µm				
Die Per Wafer*	Contact Sales for info				
Passivation	Standard				
Wafer Packaging Detail	Wafer Jar				
Bond Pad Dimensions	60 µm x 60 µm				
Maximum Processing Temperature	250 °C				
Electronic Die Map Format	.txt				
Bond Pad Pitch Minimum	75 µm				
*Note: This is the Expected Known Good Die yielded per wafer and represents the batch order quantity (one wafer).					

Table 3.2. Wafer and Die Information

4. Wafer Storage Guidelines

It is necessary to conform to appropriate wafer storage practices to avoid product degradation or contamination.

- Wafers may be stored for up to 18 months in the original packaging supplied by Silicon Labs.
- Wafers must be stored at a temperature of 18–24 °C.
- Wafers must be stored in a humidity-controlled environment with a relative humidity of <30%.
- Wafers should be stored in a clean, dry, inert atmosphere (e.g. nitrogen or clean, dry air).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

 Changed Wafer Packaging Detail to "Wafer Jar" in Table 3.2 on page 6.

NOTES:

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

