Switchmode Series NPN Silicon Power Transistor

Designed for high-speed applications.

Features

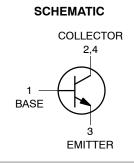
- Switchmode Power Supplies
- High Frequency Converters
- Relay Drivers
- Driver
- These Devices are Pb-Free and are RoHS Compliant*

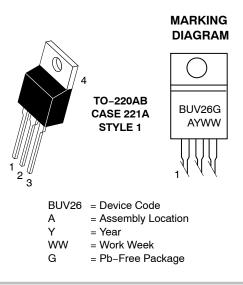
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	V _{CEO(sus)}	90	Vdc		
Collector-Base Voltage	V _{CBO}	180	Vdc		
Emitter-Base Voltage	V _{EBO}	7.0	Vdc		
Collector Current – Continuous	۱ _C	20	Adc		
Collector Current – Peak (pw 10 ms)	I _{CM}	30	Adc		
Base Current – Continuous	Ι _Β	4.0	Adc		
Base Current – Peak	I _{BM}	6.0	Adc		
Total Power Dissipation @ $T_C = 25^{\circ}C$ P_D 85Total Power Dissipation @ $T_C = 60^{\circ}C$ P_D 65			≥ ≥		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 65 to +175	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.76	°C/W



ON Semiconductor®

http://onsemi.com

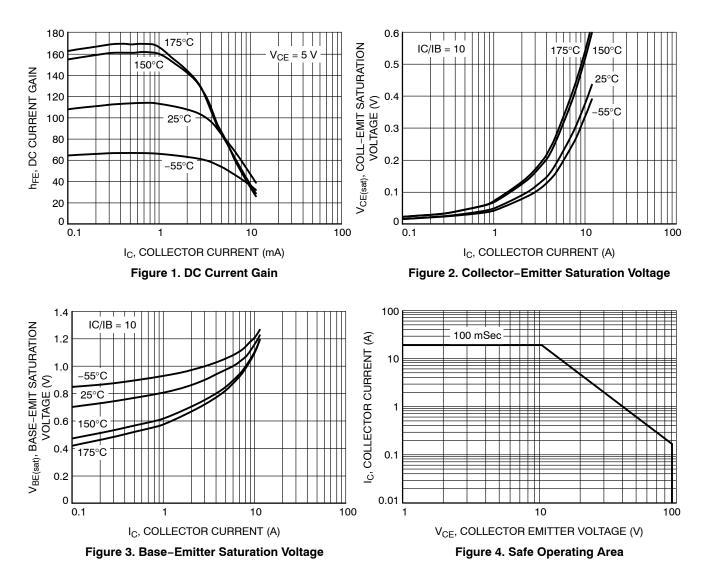
12 AMPERES NPN SILICON POWER TRANSISTORS 90 VOLTS, 85 WATTS

ORDERING INFORMATION

Device	Package	Shipping
BUV26G	TO-220 (Pb-Free)	50 Units / Rail

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

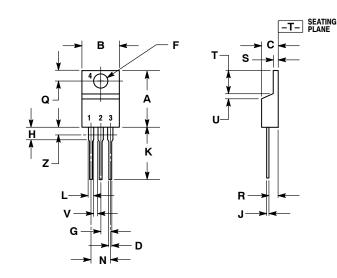
BUV26


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTIC	S					
Collector–Emitter Susta $(I_C = 200 \text{ mA}, I_B = 0,$	5 S	V _{CEO(sus)}	90	-	Vdc	
Collector Cutoff Curren $(V_{CE} = 180 \text{ V}, \text{ V}_{BE} =$		ICEX	_	1.0	mAdc	
Emitter Base Reverse Voltage (I _E = 50 mA)		V _{EBO}	7.0	30	V	
Emitter Cutoff Current (V _{EB} = 5.0 V)		I _{EBO}	_	1.0	mAdc	
Collector Cutoff Current (V_{CE} = 180 V, R_{BE} = 50 Ω , T_{C} = 125°C)		I _{CER}	_	3.0	mAdc	
ON CHARACTERISTICS	3					
Collector-Emitter Saturation Voltage $(I_C = 6.0 \text{ A}, I_B = 0.4 \text{ A})$ $(I_C = 12 \text{ A}, I_B = 1.2 \text{ A})$		V _{CE(sat)}		0.6 1.5	Vdc	
Base–Emitter Saturation Voltage $(I_C = 12 \text{ A}, I_B = 1.2 \text{ A})$		V _{BE(sat)}	_	2.0	Vdc	
WITCHING CHARACT	ERISTICS (Resistive Load)	·				
Turn On Time	I _C = 12 A, I _B = 1.2 A	t _{on}	-	0.6	μs	
Storage Time	$V_{CC} = 50 \text{ V}, \text{ V}_{BE} = 6.0 \text{ V}$	t _s	-	1.0		
Fall Time	RB2 = 2.5 Ω	t _f	-	0.15		
	ERISTICS (Inductive Load)	·		·		
Storage Time	$V_{CC} = 50 \text{ V}, \text{ I}_{C} = 12 \text{ A}$	T _s	-	2.0	μs	
Fall Time	IB(end) = 1.2 A, VB = 5.0 V LB = 0.5 pH, TJ = 125°C	T _f	-	.15		

1. Pulse Test: Pulse width \leq 300 µs; Duty cycle \leq 2%.

BUV26



BUV26

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AG**

NOTES

3

DIMENSIONING AND TOLERANCING PER ANSI 1. Y14.5M, 1982. CONTROLLING DIMENSION: INCH. 2.

DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	INCHES MILLIMETER		IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.036	0.64	0.91
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
н	0.110	0.161	2.80	4.10
J	0.014	0.025	0.36	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 1: PIN 1.

BASE COLLECTOR 2

EMITTER 3. COLLECTOR 4.

ON Semiconductor and IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components in systems intended for experted to the application by customer is product or customic for any other application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components in systems intended for experised into whore the poly or other application is customic for any other application is a system in the source of the application is product to expert a circuit and the source of the application and a source of the application and any and the application application and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components in systems intended for a surged into the poly or other application by customer's technical experts. surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, or indirectly or indirectly or indirectly or indirectly or indirectly of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative