# **APX4 – WIRELESS SYSTEM-ON-MODULE**

DATA SHEET Thursday, 22 November 2012 Version 0.7



### Copyright © 2000-2012 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Bluegiga's products are not authorized for use as critical components in life support devices or systems.

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga Technologies.

The *Bluetooth* trademark is owned by the *Bluetooth* SIG Inc., USA and is licensed to Bluegiga Technologies. All other trademarks listed herein are owned by their respective owners.

## **VERSION HISTORY**

| Version | Comment                                                            |  |
|---------|--------------------------------------------------------------------|--|
| 0.1     | First draft                                                        |  |
| 0.2     | Defined screws and attachment to motherboard                       |  |
| 0.3.1   | Some small fixes and additions                                     |  |
| 0.3     | TBDs defined                                                       |  |
| 0.4     | Review                                                             |  |
| 0.4.1   | Small fix to part number clarification                             |  |
| 0.4.2   | Updated document name, product description and contact information |  |
| 0.4.3   | Added Bluetooth RF specifications                                  |  |
| 0.5     | Clarified pins etc.                                                |  |
| 0.6     | Fixed layout. Removed software version from part number.           |  |
| 0.7     | Styles updated and fixed<br>Added notes about missing information  |  |

# TABLE OF CONTENTS

| 1 Or  | dering Information                                    | 7  |
|-------|-------------------------------------------------------|----|
| 1.1   | Part number decoder                                   | 7  |
| 2 AP  | 2x4 pin descriptions                                  | 8  |
| 2.1   | Receptacle                                            | 8  |
| 2.2   | Power contacts on the left side                       | 8  |
| 2.3   | Debug UART on the right side                          | 8  |
| 2.4   | SO-DIMM connection pin descriptions                   | 9  |
| 3 Po  | wer subsystem                                         |    |
| 3.1   | PSWITCH_OUT pin 14                                    |    |
| 3.2   | RESETN                                                | 23 |
| 3.3   | Battery charger                                       | 23 |
| 4 Pro | ocessor subsystem                                     |    |
| 4.1   | Bootmodes                                             | 25 |
| 5 Wi  | ireless interfaces                                    |    |
| 5.1   | Bluetooth                                             |    |
| 5.1   | 1.1 Bluetooth GPIOs                                   |    |
| 5.1   | 1.2 Bluetooth Audio interface                         |    |
| 5.1   | 1.3 Bluetooth PCM slots and formats                   | 27 |
| 5.1   | 1.4 Bluetooth I2S interface                           |    |
| 5.2   | Wi-Fi                                                 |    |
| 6 Pe  | ripheral interfaces                                   |    |
| 6.1   | Ethernet                                              |    |
| 6.2   | USB                                                   |    |
| 6.3   | I2C                                                   |    |
| 6.4   | PW M outputs                                          |    |
| 6.5   | SDIO / SPI / MMC                                      |    |
| 6.5   | 5.1 Additional SDIO/MMC/SPI – Non- Wi-Fi version only |    |
| 6.6   | UARTs                                                 |    |
| 6.6   | 6.1 UART 0                                            | 33 |
| 6.6   | 6.2 UART 2                                            | 33 |
| 6.6   | 5.3 UART 3                                            | 33 |
| 6.6   | 5.4 UART 4                                            |    |
| 6.6   | 6.5 Debug UART                                        |    |
| 6.7   | CAN                                                   |    |
| 6.8   | Processor Audio                                       |    |
| 6.9   | LCD                                                   |    |

|    | 6.10 | LRADC0-6 (Touch interface)                    |
|----|------|-----------------------------------------------|
|    | 6.11 | HSADC (High-Speed ADC)                        |
|    | 6.12 | JTAG                                          |
| 7  | Elec | trical Characteristics 40                     |
|    | 7.1  | Absolute Maximum Ratings 40                   |
|    | 7.2  | Recommended Operating Conditions              |
|    | 7.3  | Power Consumption                             |
| 8  | RF ( | Characteristics                               |
| 9  | Phys | sical Dimensions                              |
| 10 |      | Attachment to motherboard                     |
| 11 |      | Layout Guidelines                             |
|    | 11.1 | Internal antenna: Optimal module placement 46 |
|    | 11.2 | External antenna                              |
|    | 11.3 | Thermal Considerations                        |
|    | 11.4 | EMC Considerations for Motherboard 47         |
| 12 |      | Certifications                                |
|    | 12.1 | Wi-Fi                                         |
|    | 12.2 | CE                                            |
|    | 12.3 | FCC                                           |
|    | 12.4 | IC                                            |
|    | 12.5 | MIC, formerly TELEC                           |
|    | 12.6 | Qualified Antenna Types for APx4-E 49         |
| 13 |      | Contact Information                           |

### DESCRIPTION

The Bluegiga APx4 is a small form factor, low power system-on-module that includes the latest wireless connectivity standards: 802.11 b/g/n and Bluetooth 4.0. APx4 is based on Freescale's i.MX28 processor family and runs an embedded Linux operating system based on the Yocto Project<sup>™</sup>. In addition to integrating the 454MHz ARM9 processor, the wireless connectivity technologies, Linux operating system the APx4 also includes with several built as applications, in such the 802.11 and Bluetooth 4.0 stacks, Continua v.1.5 compliant IEEE manager and many more. This combination provides an ideal platform for designing multi-radio wireless gateways that enables fast time-to-market and minimum R&D risks.

The Bluegiga APx4 software can be easily extended or tailored customizing the Linux operating system with applications. The motherboards for the APx4 can be easily extended to include almost anything from 3G modems to Ethernet and audio interfaces to and touch screen displays.

The Bluegiga APx4 is an ideal product for applications requiring wireless or wired connectivity technologies and the processing power of the ARM9 processor, such as health and fitness gateways, building and home automation gateways, M2M, point-of-sale and industrial connectivity.

### **APPLICATIONS:**

- Health gateways
- M2M connectivity
- Fitness gateways
- Home and building automation
- Point-of-sale gateways
- People and asset tracking

### **KEY FEATURES**

APx4 is a computing platform:

- 450MHz ARM9 core (Freescale i.MX28)
- 64MB RAM
- 128MB Flash
- Real Time Clock
- Linux operating system
- SO-DIMM form factor

A connectivity platform:

- Bluetooth 4.0 dual-mode radio
- 2.4GHz 802.11 b/g/n radio
- Wi-Fi Access Point mode
- 10/100 Ethernet
- USB 2.0 High Speed

With many extension options:

- Up to 800 x 480, 24bit display
- Resistive touch screen
- MMC/SDIO
- Multiple SPI, UART and I<sup>2</sup>C
- I<sup>2</sup>S
- PW M, GPIO and AIO

Linux operating system:

- Based on the Yocto Project(TM)
- Thousands of open source software packets available

Qualifications:

- Bluetooth
- CE
- FCC and IC



Figure 1: Physical outlook

# **1** Ordering Information

| Product code | CPU and memories | Connectivity             | Antenna  | Temperature<br>range |
|--------------|------------------|--------------------------|----------|----------------------|
| APX4-367CC-A | i.MX283          | <i>Bluetooth</i> + Wi-Fi | Internal | -10 – 50°C           |
|              | 64MB DDR2        |                          | antenna  |                      |
|              | 128MB Flash      |                          |          |                      |

# 1.1 Part number decoder

|                                                         | APX         | 4  | _ | 3 | 6 | 7 | С | С | — | Α |
|---------------------------------------------------------|-------------|----|---|---|---|---|---|---|---|---|
| Product category                                        | ↑           | Î  |   |   | Î | Î | Î | Î |   | Î |
| Product generation —                                    |             |    |   |   |   |   |   |   |   |   |
| 4                                                       |             |    |   |   |   |   |   |   |   |   |
| Processor                                               |             |    |   |   |   |   |   |   |   |   |
| <b>3</b> : i.MX28 <b>3</b>                              |             |    |   |   |   |   |   |   |   |   |
| Memory                                                  |             |    |   |   |   |   |   |   |   |   |
| <b>6</b> : 64MB                                         |             |    |   |   |   |   |   |   |   |   |
| Flash                                                   |             |    |   |   |   |   |   |   |   |   |
| <b>7</b> : 128MB                                        |             |    |   |   |   |   |   |   |   |   |
| Connectivity                                            |             |    |   |   |   |   |   |   |   |   |
| C: Bluetooth and Wi-Fi                                  |             |    |   |   |   |   |   |   |   |   |
| Temperature                                             |             |    |   |   |   |   |   |   |   |   |
| <b>C</b> : Commercial<br>I: Industrial (contact sales@b | luegiga.coi | m) |   |   |   |   |   |   |   |   |
| Antenna                                                 |             |    |   |   |   |   |   |   |   |   |

A: Internal antenna E: External antenna

**Note:** Not all variants are available. Minimum order quantities and lead times may apply for special variants. Please contact Bluegiga Technologies Oy for more information.

# 2 APx4 pin descriptions

The APX4 connector uses a standard DDR1 SO-DIMM connector with 2.5V keying.

- Odd numbered pins are located on top layer
- Even numbered pins are located on bottom layer

There is a ½ pitch (0.3mm) offset from top layer pins to bottom layer pins.

Note that most receptacles also have 0.3mm offset from odd pins to even pins.

# 2.1 Receptacle

Suitable receptacles are available from multiple vendors. For example TE Connectivity's part number 1473005-1, Digi-Key's part number A99605-ND.

PCB footprint and schematic symbol for the mentioned part number will be available for download from Techforum in Mentor Graphics' PADS format.

## 2.2 Power contacts on the left side

In addition to the 200 pins/finger contacts there are two pairs of plated through holes on the left side of the module (see **Error! Reference source not found.**) which can be used for powering the module stand-alone (not assembled on any motherboard). The pitch between the holes is 2.54mm. Leave the holes unconnected if the module is assembled on a motherboard.

| Name     | Function                      |
|----------|-------------------------------|
| GND      | Ground                        |
| VIN      | +5V input                     |
| GND      | Ground                        |
| VBATTERY | Battery positive input/output |

### Table 1: Power supply pins

## 2.3 Debug UART on the right side

On the right side there are four plated through holes for PWM or debug port stand-alone (not assembled on any motherboard). The vertical distance between the holes is 1.27mm:

| Name            | Function                                       |
|-----------------|------------------------------------------------|
| 3V3             | 3.3V output (for current limits, see Table 51) |
| PWM1/DUART TxD  | Debug UART data transmit, logic level 3.3V     |
| PW M0/DUART RxD | Debug UART data receive, logic level 3.3V      |
| GND             | Ground                                         |

Table 2: Debug UART pins

# 2.4 SO-DIMM connection pin descriptions

### Note: Signals/nets marked with a star (\*) are not present on standard version

| Pin# | Default function        | Net name    | Note                                       |
|------|-------------------------|-------------|--------------------------------------------|
| 1    | 5V input                | VIN         |                                            |
| 2    | 5V input                | VIN         |                                            |
| 3    | 5V input                | VIN         |                                            |
| 4    | 5V input                | VIN         |                                            |
| 5    | Battery input/output    | VBATTERY    |                                            |
| 6    | Battery input/output    | VBATTERY    |                                            |
| 7    | Battery input/output    | VBATTERY    |                                            |
| 8    | Bootmode                | BOOTMODE    |                                            |
| 9    | 3.3V output             | 3V3         | Pins 9-10 may source up to 200mA combined. |
| 10   | 3.3V output             | 3V3         | Pins 9-10 may source up to 200mA combined. |
| 11   | 3.3V output             | 3V3         | Pins 9-10 may source up to 200mA combined. |
| 12   | 3.3V output             | 3V3         | Pins 9-10 may source up to 200mA combined. |
| 13   | RTC battery             | VBACKUP     |                                            |
| 14   | PS switch               | PSWITCH_OUT |                                            |
| 15   | NC                      | NC          |                                            |
| 16   | NC                      | NC          |                                            |
| 17   | Reset in - Master reset | RESETN      |                                            |
| 18   | Ground                  | GND         |                                            |

Table 3: Main power pins

| Pin# | Default function | Net name   |
|------|------------------|------------|
| 19   | Ethernet TX -    | ETN_TXN    |
| 20   | GND              | GND        |
| 21   | Ethernet TX +    | ETN_TXP    |
| 22   | 3.3V output      | 3V3        |
| 23   | Ethernet RX -    | ETN_RXN    |
| 24   | Ethernet LED     | ETN_LED1N* |
| 25   | Ethernet RX +    | ETN_RXP    |
| 26   | GND              | GND        |

### Table 4: Ethernet

\* See 6.1 for detailed function.

| Pin# | Default function         | Net name |
|------|--------------------------|----------|
| 27   | USB External VBUS enable | SPDIF*   |
| 28   |                          | NC       |
| 29   | USB D-                   | USB1DM   |
| 30   |                          | NC       |
| 31   | USB D+                   | USB1DP   |
| 32   | Ground                   | GND      |

Table 5: USB Host

| Pin# | Default function | Net name |
|------|------------------|----------|
| 33   | USB OTG id       | USB0_ID  |
| 34   |                  | NC       |
| 35   | USB D-           | USB0DM   |
| 36   |                  | NC       |
| 37   | USB D+           | USB0DP   |
| 38   |                  | NC       |
| 39   | Ground           | GND      |

## Table 6: USB On-the-go

| Pin# | Default function       | Net name |
|------|------------------------|----------|
| 40   | I <sup>2</sup> C Data  | I2C0_SDA |
| 41   | I <sup>2</sup> C Clock | I2C0_SCL |

# Table 7: I<sup>2</sup>C 0

| Pin# | Default function | Net name |
|------|------------------|----------|
| 42   | PWM (Backlight)  | PW M4    |
| 43   | Status led       | PW M3    |

Table 8: Dedicated PWMs

| Pin# | Default function               | Net name       |
|------|--------------------------------|----------------|
| 44   | Slave select 1                 | SDIO_DAT1_OUT* |
| 45   | Slave select 2                 | SDIO_DAT2_OUT* |
| 46   | Command - Master out, slave in | SDIO_CMD_OUT*  |
| 47   | Data 0, Master in, slave out   | SDIO_DAT0_OUT* |
| 48   | Clock                          | SDIO_CLK_OUT*  |
| 49   | Ready - Slave select 0         | SDIO_DAT3_OUT* |
| 50   | Ground                         | GND            |

### Table 9: SSP2 – SDIO/MMC/SPI

| Pin# | Default function | Net name    |
|------|------------------|-------------|
| 51   | Card detect      | SSP0_DETECT |
| 52   | Data 0           | SSP0_DATA0  |
| 53   | Data 1           | SSP0_DATA1  |
| 54   | Data 2           | SSP0_DATA2  |
| 55   | Data 3           | SSP0_DATA3  |
| 56   | Command          | SSP0_CMD    |
| 57   | Clock            | SSP0_SCK    |
| 58   | Ground           | GND         |

### Table 10: SSP0 – SDIO/MMC/SPI

| Pin# | Default function     | Net name   |
|------|----------------------|------------|
| 59   | UART transmit        | AUART0_TX  |
| 60   | UART receive         | AUART0_RX  |
| 61   | UART clear-to-send   | AUART0_CTS |
| 62   | UART request-to-send | AUART0_RTS |

Table 11: UART 0

| Pin# | Default function | Net name  |
|------|------------------|-----------|
| 63   | UART transmit    | SSP2_MOSI |
| 64   | UART receive     | SSP2_SCK  |
| 65   |                  | NC        |
| 66   |                  | NC        |

### Table 12: UART 2

| Pin# | Default function | Net name  |
|------|------------------|-----------|
| 67   | UART transmit    | SSP2_SS0  |
| 68   | UART receive     | SSP2_MISO |
| 69   |                  | NC        |
| 70   |                  | NC        |
| 71   | Ground           | GND       |

### Table 13: UART 3

| Pin# | Default function | Net name |
|------|------------------|----------|
| 72   | Bluetooth GPIO   | BT_PIO7  |
| 73   | Bluetooth GPIO   | BT_PIO8  |
| 74   | Bluetooth GPIO   | BT_PIO9  |
| 75   | Bluetooth GPIO   | BT_PIO25 |

Table 14: Bluetooth GPIO

| Pin# | Default function | Net name   |
|------|------------------|------------|
| 76   | CAN 0 transmit   | GPMI_RDY2* |
| 77   | Ground           | GND        |
| 78   | CAN 1 transmit   | GPMI_CE2N* |
| 79   | CAN 1 receive    | GPMI_CE3*  |
| 80   | Ground           | GND        |
| 81   | CAN 0 receive    | GPMI_RDY3* |
| 82   | Ground           | GND        |

## Table 15: CAN

| Pin# | Default function | Net name     |
|------|------------------|--------------|
| 83   | MCLK             | SAIF0_MCLK   |
| 84   | Data line 1      | SAIF1_SDATA0 |
| 85   | Data line 0      | SAIF0_SDATA0 |
| 86   | Bit clock        | SAIF0_BITCLK |
| 87   | Left/Right clock | SAIF0_LRCLK  |
| 88   | GND              | GND          |

Table 16: Primary audio / UART 4

| Pin# | Default function | Net name |
|------|------------------|----------|
| 89   |                  | NC       |
| 90   |                  | NC       |
| 91   |                  | NC       |
| 92   |                  | NC       |
| 93   |                  | NC       |
| 94   | Ground           | GND      |
| 95   |                  | NC       |
| 96   |                  | NC       |
| 97   |                  | NC       |
| 98   |                  | NC       |
| 99   |                  | NC       |
| 100  |                  | NC       |

Table 17: Reserved group 1

| Pin# | Default function | Net name |
|------|------------------|----------|
| 101  |                  | NC       |
| 102  | Ground           | GND      |
| 103  |                  | NC       |
| 104  |                  | NC       |
| 105  |                  | NC       |
| 106  |                  | NC       |
| 107  | 1.4V output*     | 1V4_CPU  |
| 108  | 1.8V output*     | 1V8      |
| 109  | 4.2V output*     | 4V2_CPU  |
| 110  |                  | NC       |
| 111  |                  | GND      |
| 112  |                  | NC       |
| 113  |                  | NC       |
| 114  |                  | NC       |
| 115  |                  | NC       |
| 116  | Ground           | GND      |

### Table 18: Reserved group 2

\**Important:* Pins 107-109 are only meant for manufacturing test. Please leave unconnected. Do not pull any current from these outputs. Doing so may create a black hole in the universe.

| Pin# | Default function | Net name |
|------|------------------|----------|
| 117  | Data 0           | LCD_D0   |
| 118  | Data 1           | LCD_D1   |
| 119  | Data 2           | LCD_D2   |
| 120  | Data 3           | LCD_D3   |
| 121  | Data 4           | LCD_D4   |
| 122  | Data 5           | LCD_D5   |
| 123  | Data 6           | LCD_D6   |
| 124  | Data 7           | LCD_D7   |
| 125  | Data 8           | LCD_D8   |
| 126  | Data 9           | LCD_D9   |
| 127  | Data 10          | LCD_D10  |
| 128  | Data 11          | LCD_D11  |
| 129  | Ground           | GND      |
| 130  | Data 12          | LCD_D12  |
| 131  | Data 13          | LCD_D13  |
| 132  | Data 14          | LCD_D14  |
| 133  | Data 15          | LCD_D15  |
| 134  | Data 16          | LCD_D16  |
| 135  | Data 17          | LCD_D17  |
| 136  | Data 18          | LCD_D18  |
| 137  | Data 19          | LCD_D19  |
| 138  | Data 20          | LCD_D20  |
| 139  | Data 21          | LCD_D21  |
| 140  | Data 22          | LCD_D22  |
| 141  | Data 23          | LCD_D23  |
| 142  | Ground           | GND      |

### Table 19 LCD data lines

| Pin# | Default function | Net name   |
|------|------------------|------------|
| 143  | Horizontal Sync  | LCD_WR_RWN |
| 144  | Vertical Sync    | LCD_RD_E   |
| 145  | LCD Enable       | LCD_CS     |
| 146  | Dot clock        | LCD_RS     |
| 147  | Ground           | GND        |

### Table 20: LCD control lines

| Pin# | Function                  | Net name                                        |
|------|---------------------------|-------------------------------------------------|
| 148  | Debug UART RX or I2C1_SDA | PWM0 (also connected to PTH pins on right side) |
| 149  | Debug UART TX or I2C1_SCL | PWM1 (also connected to PTH pins on right side) |
| 150  | LCD reset / GPIO          | LCD_RESET                                       |
| 151  |                           | NC                                              |

Table 21: Debug UART / PWM / I2C1 / GPIO

| Pin# | Function      | Net name |
|------|---------------|----------|
| 152  |               | NC       |
| 153  |               | NC       |
| 154  |               | NC       |
| 155  |               | NC       |
| 156  |               | NC       |
| 157  |               | NC       |
| 158  |               | NC       |
| 159  | Ground        | GND      |
| 160  | Ground        | GND      |
| 161  |               | NC       |
| 162  |               | NC       |
| 163  | Ground        | GND      |
| 164  | Ground        | GND      |
| 165  |               | NC       |
| 166  |               | NC       |
| 167  | Ground        | GND      |
| 168  | Ground        | GND      |
| 169  |               | NC       |
| 170  | WiFi Activity | WIFI_ACT |
| 171  | Ground        | GND      |

Table 22: Reserved group 3

| Pin# | Function                                 | Net name      |
|------|------------------------------------------|---------------|
| 172  | Wi-Fi Debug SPI - MISO                   | SPI_WIFI_MISO |
| 173  | Wi-Fi Debug SPI – CLK                    | SPI_WIFI_CLK  |
| 174  | Wi-Fi Debug SPI – MOSI                   | SPI_WIFI_MOSI |
| 175  | Wi-Fi Debug SPI - CS                     | SPI_WIFI_CS   |
| 176  | RTC interrupt                            | INT_EXT_RTC_N |
| 177  | Factory reset button / JTAG return clock | JTAG_RTCK     |
| 178  | JTAG test clock                          | JTAG_TCK      |
| 179  | JTAG test data in                        | JTAG_TDI      |
| 180  | JTAG test data out                       | JTAG_TDO      |
| 181  | JTAG test mode state                     | JTAG_TMS      |
| 182  | JTAG test reset                          | JTAG_TRST     |
| 183  | Ground                                   | GND           |
| 184  | JTAG enable boundary scan                | DEBUG         |

# Table 23: Misc

| Pin# | Function               | Net name |
|------|------------------------|----------|
| 185  | Touch controller XN    | LRADC4   |
| 186  | Touch controller XP    | LRADC2   |
| 187  | Touch controller YN    | LRADC5   |
| 188  | Touch controller YP    | LRADC3   |
| 189  | Touch controller WIPER | LRADC6   |
| 190  | Generic ADC 0          | LRADC0   |
| 191  | Generic ADC 1          | LRADC1   |
| 192  | High speed ADC         | HSADC0   |
| 193  | Ground                 | GND      |
| 194  | Ground                 | GND      |

Table 24: ADC

| Pin # | Function               | Net name     |
|-------|------------------------|--------------|
| 195   | Bluetooth debug enable | BT_SPI_PCM1N |
| 196   | PCM in                 | BT_PCM1_IN   |
| 197   | PCM out                | BT_PCM1_OUT  |
| 198   | PCM clock              | BT_PCM1_CLK  |
| 199   | PCM sync               | BT_PCM1_SYNC |
| 200   | Ground                 | GND          |

Table 25: Bluetooth audio

# 3 Power subsystem

| Pin#        | Function                | APx4 net name | Description                                       |  |  |
|-------------|-------------------------|---------------|---------------------------------------------------|--|--|
| 1-4         | 5V input                | VIN           | Main power input                                  |  |  |
| 5-7         | Battery input/output    | VBATTERY      | A rechargeable battery can be connected           |  |  |
| 9-12,<br>22 | 3.3V output             | 3V3           | For maximum current draw, see Table 51            |  |  |
| 13          | RTC battery             | VBACKUP       | RTC battery backup power                          |  |  |
| 14          | Power switch            | PSWITCH_OUT   | Power switch                                      |  |  |
| 17          | Reset in - Master reset | RESETN        | Active low master reset. Resets the entire board. |  |  |

### Table 26: Power supply pins

The board can be powered using either the pins 1-4, with the 5V input, or by using pins 5-7 which are the battery input. The pins on the left side of the module (see 2.2) are wired to the battery pins 5-7.

The 3.3V output can be used to power peripherals on the connector board, however it should be noted that in case the power is supplied through VBATTERY, there are no guarantees that 3.3V output can be maintained.

VBACKUP is connected to the Real-Time clock battery and the VDD input of the Real Time Clock. This pin can be used to power the real time clock in cases where the battery is not placed on the module.



Figure 2: VBACKUP and battery connection

# 3.1 PSWITCH\_OUT pin 14

### *Note*: In most cases the user can ignore the PSWITCH pin. Leave unconnected for normal operation.

The ÅSWITCH\_OUT (pin 14) has three levels: low, mid and high. A  $10k\Omega$  pull-up to mid-level is applied on the module to the PSWITCH line, causing the device to start booting immediately once power is applied. Boot-up requires a mid-level voltage to be present for >100ms.

If the PSWITCH is pulled high for over 5 seconds, for example by connecting it to 3.3V, a special Freescale USB recovery mode is entered. For further details about the power switch, refer to Freescale's Reference Manual, Section 11.4. This mode can also be entered using the BOOTMODE pin.

# 3.2 RESETN

Power-on reset is generated internally. If a reset from external pins is required use the RESETN pin. RESETN is internally pulled up to 3.3V.

The RESETN pin must be kept low for at least 100ms and then released in order to guarantee a proper reset.





# 3.3 Battery charger

### WARNING! Make sure that the battery is connected with correct polarity.

-+I (positive) terminal of battery must be connected to module terminals labeled -VBATTERYI. The ---- (negative) terminal of battery must be connected to GND.

If the battery is connected with reverse polarity the module will be **permanently damaged**.

The integrated battery charger is designed to charge a 3.7V Li-ion battery up to 4.2V with the built-in charger.



Figure 4: Battery charger connection

# 4 **Processor subsystem**

The processor belongs to the Freescale i.MX28-family and integrates an ARM9 core operating at 454MHz. The standard APX4 variant uses the i.MX283 processor. The module also has 128MB of SLC NAND flash and 64MB of DDR2-400 memory. For more details regarding the features the processor offers, please see the Freescale Reference Manual.

By default the module boots from the NAND flash into the U-Boot boot loader environment. From there the boot loader loads a Linux kernel which boots into the Bluegiga Linux userspace.

## 4.1 Bootmodes

The module supports booting from multiple different media including NAND Flash, Secure Digital (SD) cards, MMC cards, I<sup>2</sup>C EEPROM and USB (in a device mode). The selected boot media can be selected using the LCD\_DATA[0-3] signals or in the case of USB recovery boot, by tying the BOOTMODE pin to ground.

By default the module boots from internal NAND flash, meaning that LCD\_DATA[3], LCD\_DATA[1] and LCD\_DATA[0] have pull-downs on the module and LCD\_DATA[2] has a pull-up.

Default boot mode in bold face. The module has pull-ups and pull-downs so that when LCD\_DATA[0]..LCD\_DATA[3] are left unconnected the module boots from internal NAND. After boot the LCD\_DATA lines can be used fro any purpose.

| LCD_DATA[3] | LCD_DATA[2] | LCD_DATA[1] | LCD_DATA[0] | Port                                                    |
|-------------|-------------|-------------|-------------|---------------------------------------------------------|
| 0           | 0           | 0           | 0           | USB0 device mode boot                                   |
| 0           | 0           | 0           | 1           | EEPROM connected to I2C0                                |
| 0           | 0           | 1           | 0           | SPI flash on SSP2 (non-Wi-Fi<br>version only)           |
| 0           | 0           | 1           | 1           | SPI flash on SSP3 (not available on standard versions)  |
| 0           | 1           | 0           | 0           | Module's internal NAND Flash                            |
| 0           | 1           | 1           | 0           | Wait for JTAG connection                                |
| 1           | 0           | 0           | 0           | SPI EEPROM on SSP3 (not available on standard versions) |
| 1           | 0           | 0           | 1           | SD/MMC card on SSP0                                     |
| 1           | 0           | 1           | 0           | SD/MMC on SSP1 (not available on standard versions)     |

Table 27: Bootmodes

# 5 Wireless interfaces

The wireless connectivity on the module is implemented using two separate chips which share a 2.4GHz antenna.

## 5.1 Bluetooth

The module is a fully qualified *Bluetooth* 4.0, Class 1, system, supporting both classical *Bluetooth* as well as *Bluetooth Smart* (*Bluetooth* low energy) devices simultaneously.

## 5.1.1 Bluetooth GPIOs

| Pin# | Function          | Net name |
|------|-------------------|----------|
| 72   | Bluetooth GPIO 7  | BT_PIO7  |
| 73   | Bluetooth GPIO 8  | BT_PIO8  |
| 74   | Bluetooth GPIO 9  | BT_PIO9  |
| 75   | Bluetooth GPIO 25 | BT_PIO25 |

### Table 28: Bluetooth GPIO

These GPIOs are controlled by the *Bluetooth* baseband chip. The main processor can read and write them by issuing special commands to the *Bluetooth* chip, making them suitable for use as status indicators, but not for high speed signals. For the current status of software support, please refer to the software documentation. Contact support if needed.

The pins are bidirectional pins with internal programmable strength pull-up or pull-down. By default they are inputs with a weak pull-down.

## 5.1.2 Bluetooth Audio interface

| Pin # | Net name     | PCM function      | I <sup>2</sup> S function | Debug interface          |
|-------|--------------|-------------------|---------------------------|--------------------------|
| 195   | BT_SPI_PCM1N | Select Audio: GND | Select Audio: GND         | Select Debug: +3.3V      |
| 196   | BT_PCM1_IN   | PCM in            | Serial in (SD_IN)         | MOSI                     |
| 197   | BT_PCM1_OUT  | PCM out           | Serial out (SD_OUT)       | MISO                     |
| 198   | BT_PCM1_CLK  | PCM clock         | Serial clock (SCK)        | Clock                    |
| 199   | BT_PCM1_SYNC | PCM sync          | Write sync (WS)           | Chip select (active low) |

### Table 29: Bluetooth audio and debug interface

The *Bluetooth* audio functionality can be configured to work in either I<sup>2</sup>S or PCM mode. In addition, the *Bluetooth* chip's debug interface is multiplexed with the audio pins.

The audio interface supports continuous transmission and reception of PCM audio data over *Bluetooth*. Operation in either master or slave mode are supported and many different clock modes can be supported. A maximum of 3 SCO audio links can be transmitted through the PCM interface at any one time.

## 5.1.3 *Bluetooth* PCM slots and formats

The module receives and transmits on any selection of the first 4 slots following each sync pulse. Slot durations are either 8 or 16 clock cycles:

- 8 clock cycles for 8-bit sample formats.
- 16 clocks cycles for 8-bit, 13-bit or 16-bit sample formats.

The supported formats are:

- 13-bit linear, 16-bit linear and 8-bit µ-law or A-law sample formats.
- A sample rate of 8ksamples/s.
- Little or big endian bit order.
- For 16-bit slots, the 3 or 8 unused bits in each slot are filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some codecs.

There is also a compatibility mode that forces PCM\_OUT to be 0. In master mode, this allows for compatibility with some codecs which control power down by forcing PCM\_SYNC to 0 while keeping PCM\_CLK running.

### 5.1.4 Bluetooth I2S interface

The I<sup>2</sup>S mode supports left-justified and right-justified data. The interface shares the same pins as the PCM interface, which means each audio bus is mutually exclusive in its usage.

The digital audio interface is configured using the PSKEY\_DIGITAL\_AUDIO\_CONFIG in the *Bluetooth* PS Key configuration.

The internal representation of audio samples within CSR8811 is 16-bit and data on SD\_OUT is limited to 16bit per channel.

| Symbol           | Parameter                           | Minimum | Maximum | Unit |
|------------------|-------------------------------------|---------|---------|------|
| -                | SCK frequency                       | -       | 6.2     | MHz  |
| -                | SCK frequency                       | -       | 96      | kHz  |
| t <sub>ch</sub>  | SCK high time                       | 80      | -       | ns   |
| t <sub>cl</sub>  | SCK low time                        | 80      | -       | ns   |
| t <sub>ssu</sub> | WS valid to SCK high setup time     | 20      | -       | ns   |
| t <sub>sh</sub>  | SCK high to WS invalid hold time    | 2.5     | -       | ns   |
| t <sub>opd</sub> | SCK low to SD_OUT valid delay time  | -       | 20      | ns   |
| t <sub>isu</sub> | SD_IN valid to SCK high setup time  | 20      | -       | ns   |
| t <sub>ih</sub>  | SCK high to SD_IN invalid hold time | 2.5     | -       | ns   |

 Table 30: I<sup>2</sup>S Slave mode timing

| Symbol           | Parameter                           | Minimum | Maximum | Unit |
|------------------|-------------------------------------|---------|---------|------|
| -                | SCK Frequency                       | -       | 6.2     | MHz  |
| -                | WSFrequency                         | -       | 96      | kHz  |
| t <sub>spd</sub> | SCK low to WS valid delay time      | -       | 39.27   | ns   |
| t <sub>opd</sub> | SCK low to SD_OUT valid delay time  | -       | 18.44   | ns   |
| t <sub>isu</sub> | SD_IN valid to SCK high setup time  | 18.44   | -       | ns   |
| t <sub>ih</sub>  | SCK high to SD_IN invalid hold time | 0       | -       | ns   |

### Table 31: I<sup>2</sup>S Master mode timing

# 5.2 Wi-Fi

The on board Wi-Fi is designed for IEEE 802.11b/g/n in the 2.4GHz band. Hardware encryption support for WEP40/64, WEP104/128, TKIP, CCMP (AES), BIP and CKIP provides functionality for WPA, WPA2, IEEE 802.11i, IEEE 802.11w and CCX advanced security mechanisms.

The following modulations are supported:

- All mandatory IEEE 802.11b modulations: 1, 2, 5.5, 11Mbps
- All IEEE 802.11g OFDM modulations: 6, 9, 12, 18, 24, 36, 48, 54Mbps
- Single stream IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps
- STBC (Space Time Block Coding) reception for IEEE 802.11n HT modulations MCS0-7

The receiver features direct conversion architecture. Sufficient out-of-band blocking specification at the Low Noise Amplifier (LNA) input allows the receiver to be used in close proximity to Global System for Mobile Communications (GSM) and Wideband Code Division Multiple Access (W-CDMA) cellular phone transmitters without being desensitized. High-order baseband filters ensure good performance against in-band interference.

The transmitter features a direct conversion IQ transceiver. Digital baseband transmit circuitry provides the required spectral shaping and on-chip trims are used to reduce IQ modulator distortion. Transmitter gain can be controlled on a per-packet basis, allowing the optimization of the transmit power as a function of modulation scheme. The modulator supports digital predistortion to reduce non-linarites in the power amplifier.

The module supports automatic PA thermal drift compensation by measuring the transmit power through an internal power coupler.

# 6 Peripheral interfaces

The module allows for several kinds of different interfaces to peripherals to be used.

# 6.1 Ethernet

| Pin# | Function      | Net name  |
|------|---------------|-----------|
| 19   | Ethernet TX - | ETN_TXN   |
| 20   | GND           | GND       |
| 21   | Ethernet TX + | ETN_TXP   |
| 22   | 3.3V output   | 3V3       |
| 23   | Ethernet RX - | ETN_RXN   |
| 24   | Ethernet LED  | ETN_LED1N |
| 25   | Ethernet RX + | ETN_RXP   |
| 26   | GND           | GND       |

### Table 32: Ethernet pins

The Ethernet I/O lines are connected on the module to a standard 10Base-T/100Base-TX physical layer transceiver (PHY). A connector board will only need to have the magnetics as well as an RJ45 jack in order to have fully functioning Ethernet. Multiple vendors also supply RJ45 jacks with integrated magnetics under brand names such as *MagJack* and *PulseJack* which further simplify design. A reference schematic for such a design is available in the APx4 reference design.

When routing the Ethernet signals, care should be taken to route the differential signals together, meaning that for example ETN\_TXN and ETN\_TXP should be kept close together. The traces must also be kept short in order to avoid EMC issues.

The Ethernet LED pin (ETN\_LED1N) indicates link and activity and has a maximum output drive current of 8 mA. The ETN\_LED is high when no Link is present (typically connected so that a physical LED is off), low when a Link is present (physical LED on) and toggled on activity (physical LED is blinking).

Make sure that the driving capability of 8mA is not exceeded.

| Pin state | LED      | Meaning  |
|-----------|----------|----------|
| HIGH      | Off      | No Link  |
| LOW       | On       | Link     |
| Toggle    | Blinking | Activity |

### Table 33: ETN\_LED1N pin

### Figure 5 Typical external LED connection

# 6.2 USB

| Pin# | Function                          | Net name |
|------|-----------------------------------|----------|
| 27   | USB OTG Host External VBUS enable | SPDIF*   |
| 29   | USB Host D-                       | USB1_DM  |
| 31   | USB Host D+                       | USB1_DP  |
| 33   | USB OTG ID                        | USB0_ID  |
| 35   | USB OTG D-                        | USB0_DM  |
| 37   | USB OTG D+                        | USB0_DP  |

### Table 34: USB pins

The module has two USB high-speed controllers, one which supports USB Host mode only and another which support USB On-the-Go (OTG). The USB On-the-Go controller is capable of operating as a USB Host or a USB Device and support the OTG role negotiation via the USB OTG-ID signal. For the current software support, please see the software documentation.

The USB D+ and D- signals can be directly connected to a USB connector, however when using a connector, protection against electrostatic discharge (ESD) should be taken into account.

Because USB high-speed is a very high frequency digital signal (480Mbps), care must be taken to route the D+ and D- signals as close together as possible and to have a ground plane follow them. The traces must also be kept as short as possible.

The USB Host External VBUS enable signal is not present in the standard model, and has a fixed pull-up.

For more details refer to the i.MX28 Applications Processor Reference Manual (MCIMX28RM) chapters 31 and 32.

# 6.3 I2C

| Pin# | I <sup>2</sup> C function | Alternate Functions  | Net name      |
|------|---------------------------|----------------------|---------------|
| 40   | I <sup>2</sup> C 0 Data   |                      | I2C0_SDA      |
| 41   | I <sup>2</sup> C 0 Clock  |                      | I2C0_SCL      |
| 148  | I <sup>2</sup> C 1 Data   | PW M0, Debug UART TX | PWM0/I2C1_SDA |
| 149  | I <sup>2</sup> C 1 Clock  | PWM1, Debug UART RX  | PWM1/I2C1_SCL |

### Table 35: I<sup>2</sup>C interface

The Inter Integrated Circuit bus ( $I^2C$ ) is a standard two-wire interface used for communication between peripherals and the host. The interface supports both standard speed (up to 100kbps) and as fast speed (400kbps)  $I^2C$  connection to multiple devices with the processor acting in either master or slave mode.

The primary  $I^2C$  interface ( $I^2C$  0, pins 40 and 41) is also connected to the module's Real Time Clock (RTC) chip and thus some additional restrictions for the communication apply. The processor is always the master. The standard 2K pull-ups are located on APx4. Do not place additional pull-ups on  $I^2C$  0.

One I<sup>2</sup>C slave address (1010001X) on I<sup>2</sup>C 0 is reserved for the Real Time Clock PCF8563T on the APx4:

- Read: 0xA3 (10100011)
- Write: 0xA2 (10100010)

The secondary  $I^2C$  ( $I^2C$  1) is available on pins 148 and 149 and can be used freely in either master or slave mode. By default it is configured to provide the Debug UART.  $I^2C$  1 does not have built-in pull-ups.

For more details about I<sup>2</sup>C, please refer to the i.MX28 Applications Processor Reference Manual, chapter 27.

# 6.4 PWM outputs

| Pin# | Default function      | PWM function | Additional function          | Net name      |
|------|-----------------------|--------------|------------------------------|---------------|
| 42   | LCD Backlight (PW M4) | PW M4        |                              | PW M4         |
| 43   | Status led (PWM3)     | PW M3        |                              | PW M3         |
| 148  | Debug UART TX         | PW M0        | I <sup>2</sup> C 1 bus data  | PWM0/I2C1_SDA |
| 149  | Debug UART RX         | PWM1         | I <sup>2</sup> C 1 bus clock | PWM1/I2C1_SCL |
| 83   | MCLK                  | PW M3        | UART4 CTS                    | SAIF0_MCLK    |
| 84   | Data line 1           | PWM7         |                              | SAIF1_SDATA0  |
| 85   | Data line 0           | PWM6         | UART 4 TX                    | SAIF0_SDATA0  |
| 86   | Bit clock             | PW M5        | UART4 RX                     | SAIF0_BITCLK  |
| 87   | Left/Right clock      | PW M4        | UART4 RTS                    | SAIF0_LRCLK   |

### Table 36: PWM outputs

The module has up to seven Pulse Width Modulator outputs available. Independent output control of each phase allows 0, 1 or high-impedance to be independently selected for the active and inactive phases.

Two dedicated PWM outputs are at pins 42 and 43, and are typically used for the LCD's backlight and as a status led, respectively. The same PWM outputs are available also on pins 83 and 87.

The Debug UART on pins 148 and 149 can be disabled and used for two independent PWM outputs instead.

For more details about PWM, please refer to the i.MX28 Applications Processor Reference Manual, chapter 28.

# 6.5 SDIO / SPI / MMC

| Pin# | SDIO/SD/MMC | SPI mode     | Net name    |
|------|-------------|--------------|-------------|
| 51   | Card detect |              | SSP0_DETECT |
| 52   | Data 0      | MISO         | SSP0_DATA0  |
| 53   | Data 1      |              | SSP0_DATA1  |
| 54   | Data 2      |              | SSP0_DATA2  |
| 55   | Data 3      | Slave Select | SSP0_DATA3  |
| 56   | Command     | MOSI         | SSP0_CMD    |
| 57   | Clock       | Clock        | SSP0_SCK    |
| 58   | Ground      |              | GND         |

### Table 37: SDIO/SPI/MMC

The Synchronous Serial Port subsystem provides support for MMC cards, SD cards, SDIO devices, SPI master and slave communication and eMMC 4.4 devices. In a standard configuration 1-bit and 4-bit modes for MMC/SD/SDIO/eMMC is available. On versions without Wi-Fi support the 8-bit mode can also be configured.

For use with removable cards, a hardware card detect pin is provided.

For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 17.

## 6.5.1 Additional SDIO/MMC/SPI – Non- Wi-Fi version only

| Pin# | SDIO/SD/MMC | SPI mode             | SSP0 8-bit mode | Net name       |
|------|-------------|----------------------|-----------------|----------------|
| 44   | Data 1      | Slave select 1       |                 | SDIO_DAT1_OUT* |
| 45   | Data 2      | Slave select 2       |                 | SDIO_DAT2_OUT* |
| 46   | Command     | Master out, slave in | SSP0 Data 6     | SDIO_CMD*      |
| 47   | Data 0      | Master in, slave out | SSP0 Data 4     | SDIO_DAT0_OUT* |
| 48   | Clock       | Clock                | SSP0 Data 7     | SDIO_CLK_OUT*  |
| 49   | Data 3      | Slave select 0       | SSP0 Data 5     | SDIO_DAT3_OUT* |

### Table 38: SDIO

In standard models one SDIO port is used by the module's Wi-Fi functionality. In models without Wi-Fi these lines are available for use. This second Synchronous Serial Port subsystem is visible to the processor as SSP2 by default, but can also be configured to provide additional data lines for SSP0 in order to achieve an 8-bit bus width, for example for maximum throughput with eMMC.

# 6.6 UARTs

The module can be configured to support up to five UARTs simultaneously, two with hardware flow control, two without hardware flow control and one for debugging.

The UART interfaces offer similar functionality to the industry-standard 16C550 UART device, and the regular UARTs support baud rates of up to 3.25Mbits/s.

For further information about UARTs 0, 2, 3 and 4, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30. Debug UART is covered in chapter 24.

## 6.6.1 UART 0

| Pin# | UART 0          | Debug UART      | UART 4   | Direction          | Net name   |
|------|-----------------|-----------------|----------|--------------------|------------|
| 59   | Transmit        | Request-to-send |          | Output from module | AUART0_TX  |
| 60   | Receive         | Clear-to-Send   |          | Input to module    | AUART0_RX  |
| 61   | Clear-to-send   | Receive         | Receive  | Input to module    | AUART0_CTS |
| 62   | Request-to-send | Transmit        | Transmit | Output from module | AUART0_RTS |

### Table 39: UART0

The first UART section (pins 59-62) is by default configured to provide UART 0 with hardware flow control. The hardware supports selecting the function of each pin separately. For example pins 59 and 60 could be configured for UART 0 and 61 and 62 for UART 4.

## 6.6.2 UART 2

| Pin# | UART 2 function | Alternative function | Net name  |
|------|-----------------|----------------------|-----------|
| 63   | TX - Transmit   | SAIF 0 SDATA 2       | SSP3_MOSI |
| 64   | RX - Receive    | SAIF 0 SDATA 1       | SSP2_SCK  |

### Table 40: UART 2

The pins 63 and 64 provide UART 2 functions. UART 2 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines.

## 6.6.3 UART 3

| Pin# | UART 3 function | Alternative function | Net name  |
|------|-----------------|----------------------|-----------|
| 67   | TX - Transmit   | SAIF 1 SDATA 2       | SSP2_SS0  |
| 68   | RX - Receive    | SAIF 1 SDATA 1       | SSP2_MISO |

### Table 41: UART 3

The pins 67 and 68 provide UART 3 functions. UART 3 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines.

## 6.6.4 UART 4

| Pin# | UART 4          | Other functions       | Net name     |
|------|-----------------|-----------------------|--------------|
| 61   | Receive         | DUART RX, AUART 0 CTS | AUART0_CTS   |
| 62   | Transmit        | DUART TX, AUART 0 RTS | AUART0_RTS   |
| 83   | Clear-to-send   | SAIF0_MCLK, PWM 3     | SAIF0_MCLK   |
| 85   | Transmit        | SAIF0_SDATA0, PWM 6   | SAIF0_SDATA0 |
| 86   | Receive         | SAIF0_BITCLK, PWM 5   | SAIF0_BITCLK |
| 87   | Request-to-send | SAIF0_LRCLK, PWM4     | SAIF0_LRCLK  |

### Table 42: UART 4

The fourth UART is not available by default, but can be configured to be available from two different locations. Using UART 4 disables either CPU Audio or UART 0's hardware flow-control lines.

If hardware flow control is required, then the CPU Audio pins (83-87) can be configured to provide the UART 4 functionality instead of CPU Audio. Using UART 4 with hardware flow control at the same time as CPU Audio is not possible.

If hardware flow control is not required for UART 4 or for UART 0, then the hardware flow control lines of UART 0 can be configured to provide UART 4 RX/TX instead.

| Pin# | Debug UART      | Alternative functions | UART I/O direction | Net name   |
|------|-----------------|-----------------------|--------------------|------------|
| 148  | Receive         | I2C1 SDA, PWM0        | Input to module    | PW M0      |
| 149  | Transmit        | I2C1 SCL, PWM1        | Output from module | PWM1       |
| 59   | Request-to-send | UART 0 TX             | Output from module | AUART0_TX  |
| 60   | Clear-to-Send   | UART 0 RX             | Input to module    | AUART0_RX  |
| 61   | Receive         | UART 0 CTS, UART 4 RX | Input to module    | AUART0_CTS |
| 62   | Transmit        | UART 0 RTS, UART 4 TX | Output from module | AUART0_RTS |

# 6.6.5 Debug UART

### Table 43: DEBUG UART

By **default the Debug UART is provided on pins 148 and 149** without using hardware flow control. This will prevent the use of the second  $I^2C$  port. Alternatively the Debug UART can be configured to be available from the pins of UART 0 as seen in the table above.

The main difference between the Debug UART and the Application UARTs is that there is no DMA for the Debug UART and the maximum baud rate is 115.2Kb/s. It unsuitable for any high throughput use-cases and consumes more processor resources than the other UART interfaces, making it best suited for debugging. In theory the Debug UART can be used for other UART applications instead of debugging, but it is primarily intended for simple console access to the processor.

For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30.

# 6.7 CAN

| Pin# | Function       | Net name   |
|------|----------------|------------|
| 76   | CAN 0 transmit | GPMI_RDY2* |
| 78   | CAN 1 transmit | GPMI_CE2*  |
| 79   | CAN 1 receive  | GPMI_CE3*  |
| 81   | CAN 0 receive  | GPMI_RDY3* |

### Table 44: CAN

The standard model does not include CAN support and pins 76, 78, 79 and 81 are not to be connected as they cannot be used.

On the model with CAN support, the pins can be used as described in the i.MX28 Applications Processor Reference Manual, chapter 25.

## 6.8 Processor Audio

| Pin# | Audio function   | SAIF 0 | SAIF 1 | Alternate functions | Net name     |
|------|------------------|--------|--------|---------------------|--------------|
| 83   | Master clock     | MCLK   |        | AUART4 CTS          | SAIF0_MCLK   |
| 84   | Data line        | SDATA1 | SDATA0 | PWM7                | SAIF1_SDATA0 |
| 85   | Data line        | SDATA0 |        | AUART4 TX, PWM 6    | SAIF0_SDATA0 |
| 86   | Bit clock        | BITCLK |        | AUART4 RX, PWM 5    | SAIF0_BITCLK |
| 87   | Left/Right clock | LRCLK  |        | AUART4 RTS, PWM 4   | SAIF0_LRCLK  |
| 63   | Data line        | SDATA2 |        | UART 2 TX           | SSP2_MOSI    |
| 64   | Data line        | SDATA1 |        | UART 2 RX           | SSP2_SCK     |
| 67   | Data line        |        | DATA2  | UART 3 TX           | SSP2_SS0     |
| 68   | Data line        |        | DATA1  | UART 3 RX           | SSP2_MISO    |

### Table 45: AUDIO

The serial audio interface provides a serial interface to the industry's most common analog codecs. On the processor side, there are two serial audio interface subsystems, SAIF0 and SAIF1. These two can be used together to provide full-duplex stereo audio transfers, where SAIF0 is used as an output and for managing the clocks while SAIF1 is used as a slave to SAIF0 and for audio input.

Each data line carries two channels of audio data, meaning that if SDATA0, SDATA1 and SDATA2 are all used, bi-directional 6 channel audio is possible. Please note that when the pins for UART 2 and UART 3 are used as audio data lines, they cannot be used as UARTs.

Each function can be configured separately, so in case for example only one channel stereo is required, only the data line on pin 84 or 85 need to be used, allowing for the rest of the data lines to be used for other purposes.

For example if bi-directional audio is not required, the data input line on pin 84 can alternatively be configured as a second SAIF0 data line (SAIF0\_SDATA1), meaning it is possible to have 4-channel audio input or output without sacrificing UART 2 or UART 3.

The module has been tested with the Freescale SGTL5000 audio codec which is used in the reference design.

If the optional master clock is not used, it can be configured to operate as a GPIO.

For more information about the serial audio interfaces, please refer to refer to the i.MX28 Applications Processor Reference Manual, chapter 35.

# 6.9 LCD

| Pin#    | Default function         | Net name       |
|---------|--------------------------|----------------|
| 143     | Horizontal Sync          | LCD_WR_RWN     |
| 144     | Vertical Sync            | LCD_RD_E       |
| 145     | LCD Enable               | LCD_CS         |
| 146     | Dot clock                | LCD_RS         |
| 147     | Ground                   | GND            |
| 117-141 | Data lines, see Table 19 | LCD_D0-LCD_D23 |

### Table 46: LCD signals

The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes.

### Features:

- Display resolution up to 800x480.
- AXI-based bus master mode for LCD writes and DMA operating modes for LCD reads requiring minimal CPU overhead.
- 8/16/18/24 bit per pixel.
- Programmable timing and parameters for system, MPU, VSYNC and DOTCLK LCD interfaces to support a wide variety of displays.
- ITU-R BT.656 mode including progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operation.
- Ability to drive 24-bit RGB/DOTCK displays up to WVGA at 60 Hz. High robustness guaranteed by 512-pixel FIFO with under-run recovery.
- Support for full 24-bit system mode (8080/6080/VSYNC/WSYNC).
- ITU-R/BT.656 compliant D1 digital video output mode with on-the-fly RGB to YCbCr color-spaceconversion.
- Support for a wide variety of input and output formats that allows for conversion between input and output (for example, RGB565 input to RGB888 output).

For more information refer to the i.MX28 Applications Processor Reference Manual, chapter 33.

# 6.10 LRADC0-6 (Touch interface)

|                           | Function       |
|---------------------------|----------------|
| Resolution                | 12 bits        |
|                           |                |
| Maximum sampling rate     | 428kHz         |
|                           |                |
| DC input voltage          | 0-1.85V        |
| Expected plate resistance | 2000-50000 ohm |

#### Table 47: LRADC

LRADC 0 - 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels can be used for a variety of uses, including a resistor-divider-based wired remote control, external temperature sensing, touch-screen, button and so on.

| Pin# | 4-wire touch | 5-wire touch | Other         | Net name |
|------|--------------|--------------|---------------|----------|
| 185  | X-           | UR           | Generic ADC 4 | LRADC4   |
| 186  | X+           | UL           | Generic ADC 2 | LRADC2   |
| 187  | Y-           | LR           | Generic ADC 5 | LRADC5   |
| 188  | Y+           | LL           | Generic ADC 3 | LRADC3   |
| 189  |              | WIPER        | Generic ADC 6 | LRADC6   |
| 190  |              |              | Generic ADC 0 | LRADC0   |
| 191  |              |              | Generic ADC 1 | LRADC1   |

### Table 48: LRADC

For pull-up or pull-down switch control on LRADC2~5 pins, please refer to HW\_LRADC\_CTRL0 register. LRADC 0 can be used for button and external temperature sensing, they cannot be enabled at same time in hardware configuration. LRADC 1 can be used for button as well as LRADC 0. For an example of how LRADC can be used for connecting multiple buttons, please see Freescale's reference design for the i.MX28 processor.

For more information refer to the i.MX28 Applications Processor Reference Manual.

# 6.11 HSADC (High-Speed ADC)

| Function                           | Value              |
|------------------------------------|--------------------|
| Input sampling<br>capacitance (Cs) | 1.0pF typical      |
| Resolution                         | 12 bits            |
| Maximum sampling rate              | 2MHz               |
| DC input voltage                   | 0.5 — VDDA-0.5     |
| Power-up time                      | 1 sample<br>cycles |

### Table 49: HSADC

The processor contains a high speed, high resolution analog to digital converter which can be used when the lower resolution ADCs do not provide enough sampling speed or resolution.

For more information refer to refer to the i.MX28 Applications Processor Reference Manual.

# 6.12 JTAG

| Pin# | Function                          | Net name   | Note                                                                                                 |
|------|-----------------------------------|------------|------------------------------------------------------------------------------------------------------|
| 118  | Mode                              | LCD_D1     | LCD_D1=HIGH: CPU is ready, waiting for JTAG connection                                               |
| 177  | JTAG return clock (Factory reset) | JTAG_RTCK* | During normal operation, this pin is reserved for use as a factory reset button by the software.     |
| 178  | JTAG test clock                   | JTAG_TCK   |                                                                                                      |
| 179  | JTAG test data in                 | JTAG_TDI   |                                                                                                      |
| 180  | JTAG test data out                | JTAG_TDO   |                                                                                                      |
| 181  | JTAG test mode select             | JTAG_TMS   |                                                                                                      |
| 182  | JTAG test reset                   | JTAG_TRST  |                                                                                                      |
| 183  | Ground                            | GND        |                                                                                                      |
| 184  | JTAG enable boundary scan         | DEBUG**    | DEBUG=0: JTAG interface works for boundary scan.<br>DEBUG=1: JTAG interface works for ARM debugging. |

### Table 50: JTAG pins

\* Most JTAG adapters do not use the Return Test Clock in which case it can be used for other purposes. E.g. on the APX4 reference design this pin is used for Factory Reset button.

\*\* DEBUG pin is pulled down inside CPU. Leave unconnected for ordinary boundary scan.

In case ARM debugging is needed the board must be powered on in JTAG mode (Wait JTAG connection mode), i. e. LCD\_D1 (pin 118) must be high.

# 7 Electrical Characteristics

# 7.1 Absolute Maximum Ratings

| Parameter                                               | Min  | Мах   | Unit |
|---------------------------------------------------------|------|-------|------|
| V <sub>in</sub>                                         | -0.3 | 7.0   | V    |
| V <sub>battery</sub>                                    | -0.3 | 4.242 | V    |
| Voltage on ordinary I/O                                 | -0.3 | 3.63  | V    |
| 3V3 current drain*                                      |      | 200   | mA   |
| Permissible ambient temperature<br>(Commercial version) | 0    | 70    | °C   |
| Permissible ambient temperature<br>(Industrial version) | -40  | 85    | °C   |
| Storage temperature                                     | -40  | 85    | °C   |

### Table 51: Absolute Maximum ratings

\*Pins 9, 10, 11, 12 are 3.3V outputs intended for 3.3V low power devices.

- Stresses beyond those listed in Table 51 may cause permanent damage to the device.
- Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- Table 51 gives stress ratings only—functional operation of the device is not implied beyond the conditions indicated in Table 52.

# 7.2 Recommended Operating Conditions

| Parameter                                                       | Min  | Мах   | Unit |
|-----------------------------------------------------------------|------|-------|------|
| V <sub>in</sub>                                                 | 4.75 | 5.5   | V    |
| V <sub>battery</sub> *                                          | 3.4  | 4.242 | V    |
| Voltage on ordinary I/O                                         | 3.1  | 3.4   | V    |
| Board temperature (Industrial version)                          | -40  | 85    | °C   |
| Ambient temperature with high Wi-Fi use<br>(Industrial version) | -40  | 60    | °C   |

### Table 52: Recommended Operating Conditions

\*If Vbattery goes below 3.7V the 3.3V output on pins 9,10, 11,12 will be Vbattery-0.4V. In order to guarantee 3.3V on pins 9, 10, 11,12 Vbattery must be 3.7V or higher.

# 7.3 Power Consumption

| Condition                                       | Min | Тур | Мах | Unit |
|-------------------------------------------------|-----|-----|-----|------|
| During Boot                                     | 1.0 | 1.2 | 1.3 | W    |
| Idle<br>(Linux booted, but no active processes) | 0.8 | 0.9 | 1.0 | W    |
| Wi-Fi transmitting                              | 1.7 | 1.8 | 1.9 | W    |

Table 53: Power consumption (no power saving enabled)

# 8 **RF Characteristics**

|           | min  | max  |                         |
|-----------|------|------|-------------------------|
| Channels  | 1    | 13   | (1-11 when used in USA) |
| Frequency | 2412 | 2472 | MHz                     |

### Table 54: Supported frequencies for Wi-Fi transceiver

|           | min  | max  |     |
|-----------|------|------|-----|
| Channels  | 0    | 78   |     |
| Frequency | 2402 | 2480 | MHz |

### Table 55: Supported frequencies for Bluetooth transceiver

| Standard                  | Supported bit rates                             |  |
|---------------------------|-------------------------------------------------|--|
| 802.11b                   | 1, 2, 5.5, 11Mbps                               |  |
| 802.11g                   | 6, 9, 12, 18, 24, 36, 48, 54Mbps                |  |
| 802.11n, HT, 20MHz, 800ns | 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps         |  |
| 802.11n, HT, 20MHz, 400ns | 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps |  |

### Table 56: Supported modulations for Wi-Fi transceiver

|          | min | max |     |                                  |
|----------|-----|-----|-----|----------------------------------|
| Accuracy | -20 | +20 | ppm | For all environmental conditions |

### Table 57: Carrier frequency accuracy for both WiFi and Bluetooth

| 802.11b  | Тур     | 802.11g | Тур     | 802.11n short GI | Тур     | 802.11n long Gl | Тур     |
|----------|---------|---------|---------|------------------|---------|-----------------|---------|
| 1 Mbps   | -97 dBm | 6 Mbps  | -92 dBm | 6.5 Mbps         | -91 dBm | 7.2 Mbps        | -92 dBm |
| 2 Mbps   | -95 dBm | 9 Mbps  | -91 dBm | 13 Mbps          | -87 dBm | 14.4 Mbps       | -90 dBm |
| 5.5 Mbps | -93 dBm | 12 Mbps | -89 dBm | 19.5 Mbps        | -85 dBm | 21.7 Mbps       | -87 dBm |
| 11 Mbps  | -89 dBm | 18 Mbps | -87 dBm | 26 Mbps          | -82 dBm | 28.9 Mbps       | -84 dBm |
|          |         | 24 Mbps | -84 dBm | 39 Mbps          | -78 dBm | 43.3 Mbps       | -80 dBm |
|          |         | 36 Mbps | -80 dBm | 52 Mbps          | -74 dBm | 57.8 Mbps       | -75 dBm |
|          |         | 48 Mbps | -75 dBm | 58.5 Mbps        | -71 dBm | 65 Mbps         | -72 dBm |
|          |         | 54 Mbps | -73 dBm | 65 Mbps          | -68 dBm | 72.2 Mbps       | -69 dBm |

Table 58: Wi-Fi receiver sensitivity (at external antenna connector)

| Modulation type | Тур |     |
|-----------------|-----|-----|
| DH1             | -89 | dBm |
| DH3             | -89 | dBm |
| DH5             | -89 | dBm |
| 2-DH1           | -92 | dBm |
| 2-DH3           | -92 | dBm |
| 2-DH5           | -92 | dBm |
| 3-DH1           | -86 | dBm |
| 3-DH3           | -85 | dBm |
| 3-DH5           | -85 | dBm |

Table 59: Bluetooth receiver sensitivity (at external antenna connector)

| Modulation type        | Min  | Тур  | Мах   |     |
|------------------------|------|------|-------|-----|
| Wi-Fi                  | +14  | +15  | +15.6 | dBm |
| Bluetooth/Bluetooth LE | +5.5 | +8.1 | +9    | dBm |

Table 60: Transmitter output power at maximum setting

# 9 Physical Dimensions



Figure 6: Physical dimensions

# 10 Attachment to motherboard

In order to ease assembly of the APx4 module, it has slightly oval attachment holes. The size of the hole is  $\sim$ 2.2x3.0mm. This makes it possible to attach a screw and nut to the motherboard before inserting the module.

| Parameter     | Size                     | Note                         |
|---------------|--------------------------|------------------------------|
| Diameter      | M2                       |                              |
| Length        | <= 10mm, 8mm recommenced | Length excluding head        |
| Head diameter | <= 3.8mm                 |                              |
| Material      | Steel or similar         | *Do not use plastic material |

### Table 61: Screw size

| Parameter | Size             | Note                         |
|-----------|------------------|------------------------------|
| Size      | M2               |                              |
| Material  | Steel or similar | *Do not use plastic material |

### Table 62: Nut size

\*Use metal screws and nuts that connect to ground, as that improves the function of the APx4 integrated antenna. Nylon/plastic screws/nuts may be used only if the motherboard's locking clips are grounded. Metal screws and nuts will also improve the heat conductivity compared to nylon/plastic.

For automatic assembly Phillips, Pozi or Torx head is recommended.

A suitable screw is Bossard's PN **1151495** with following features:

- BN 380 ISO 7048
- Cross recessed cheese head screw
- Phillips H
- ISO 7048
- SN 213307

# 11 Layout Guidelines

Layout is very important for proper antenna operation when using the integrated antenna.

# 11.1 Internal antenna: Optimal module placement

Key points to remember are

- APx4 should be placed so that the antenna faces away from large GND planes.
- Typically the best placement is along one of the motherboard edges.
- Antenna facing out from board
- Antenna preferably in corner or placed outside the motherboard edge
- Important: The motherboard's locking clips must be attached to GND.
- Optionally attach APx4 to the motherboard with metal screws and nuts as described in this document
- Either:
  - o Create a board cutout under the entire antenna part

or

- o Place the module so that the antenna is outside the board edge
- We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review.







### Figure 8: Example placement, antenna outside motherboard

Important: The motherboard's locking clips must be attached to GND.

## 11.2 External antenna

In case external antenna is used the RF output can be taken directly from the U.FL connector of the module. In this case internal antenna placement can be ignored. See chapter 12.6 for approved antennas.

# 11.3 Thermal Considerations

APx4 will heat up to some extent during use, especially due to Wi-Fi power consumption during highthroughput transmissions. APx4 can be attached to the motherboard with metal bolts to allow some heat transfer to the application board ground plane.

# 11.4 EMC Considerations for Motherboard

Unwanted electromagnetic radiation may arise from a combination of APx4 and a motherboard if not carefully designed.

- The number of layers required depends on the application. The simplest application with no high speed signals connected, 2 layers might be enough, but with a high number of the APx4 signals in use with high clock speeds, 6 layers is recommended, with solid power and ground planes.
- Place the peripherals (connectors etc.) as close as possible to APX4. One example is USB and Ethernet. Make the lines as short as possible.
- USB lines: Use 45 ohms single-line (90 ohms differential) impedance. Route the lines as differential pairs
- Ethernet lines: Use 50 ohms single-line (100 ohms differential) impedance. Route the lines as differential pairs.
- Make sure that Ethernet Tx and Rx lines are well separated in order to minimize cross talk. If there is excessive cross talk the PHY may receive its own packets.

- Be careful with clocks, e.g. SAIF0\_MCLK. Do not route them longer than absolutely necessary. Place the destination components as close as possible to the APx4. If clock traces are routed e.g. across the board they easily cause radiation which may exceed allowed limits.
- The power supply should be designed for 5V and at least 500mA continuous current.
- We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review.

# **12 Certifications**

APx4 is compliant to the following specifications:

12.1 Wi-Fi твD 12.2 CE твD 12.3 FCC твD 12.4 IC твD 12.5 MIC, formerly TELEC твD

# 12.6 Qualified Antenna Types for APx4-E

This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. Please contact <u>support@bluegiga.com</u> for more information. The required antenna impedance is 50 ohms.

| Qualified Antenna Types for APX4-E |              |  |
|------------------------------------|--------------|--|
| Antenna Type                       | Maximum Gain |  |
| Dipole                             | 2.14 dBi     |  |

### Table 63 External Antenna Parameters

To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropic radiated power (e.i.r.p.) is not more than that permitted for successful communication.

Any standard 2.14 dBi dipole antenna can be used without an additional application to FCC. Table 64 lists approved antennas for APx4-E. Any approved antenna listed in Table 64 can be used directly with APx4-E without any additional approval.

Any antenna not listed Table 64 can potentially be used with APx4-E as long as detailed information from that particular antenna is provided to Bluegiga for approval. Specification of each antenna used with APx4-E will be filed by Bluegiga. Please contact <u>support@bluegiga.com</u> for more information.

| Qualified Antenna Types for APx4-E |                             |                               |                        |                         |                                  |
|------------------------------------|-----------------------------|-------------------------------|------------------------|-------------------------|----------------------------------|
| ltem                               | Manufacturer                | Manufacturer's<br>part number | Measured<br>Gain (dBi) | Specified Gain<br>(dBi) | Measured Total<br>Efficiency (%) |
| 1                                  | Pulse                       | W1030                         | 1                      | 2 dBi                   | 70 - 80                          |
| 2                                  | Linx<br>Technologies<br>Inc | ANT-2.4-CW-<br>CT-SMA         | 1.3                    | 2 dBi                   | 77                               |
| 3                                  | EAD                         | EA-79A                        | 0.4                    | 2 dBi                   | 60                               |
| 4                                  | Antenova                    | B4844/B6090                   | 1.4                    | 2 dBi                   | 76 - 82                          |
| 5                                  | Litecon                     | CAR-ATR-187-<br>001           | 0.8                    | 2 dBi                   | 60 - 70                          |

Table 64 Qualified Antenna Types for APx4-E

# **13 Contact Information**

| Sales:                    | sales@bluegiga.com                                |
|---------------------------|---------------------------------------------------|
| Technical support:        | support@bluegiga.com                              |
|                           | http://techforum.bluegiga.com                     |
| Orders:                   | orders@bluegiga.com                               |
| www:                      | www.bluegiga.com                                  |
|                           | www.bluegiga.hk                                   |
| Head Office / Finland:    |                                                   |
|                           | Phone: +358-9-4355 060                            |
|                           | Fax: +358-9-4355 0660                             |
|                           | Sinikalliontie 5A                                 |
|                           | 02630 ESPOO                                       |
|                           | FINLAND                                           |
| Postal address / Finland: |                                                   |
|                           | P.O. BOX 120                                      |
|                           | 02631 ESPOO                                       |
|                           | FINLAND                                           |
| Sales Office / USA:       |                                                   |
|                           | Phone: +1 770 291 2181                            |
|                           | Fax: +1 770 291 2183                              |
|                           | Bluegiga Technologies, Inc.                       |
|                           | 3235 Satellite Boulevard, Building 400, Suite 300 |
|                           | Duluth, GA, 30096, USA                            |
| Sales Office / Hong-Kong: |                                                   |
|                           | Phone: +852 3182 7321                             |
|                           | Fax: +852 3972 5777                               |
|                           | Bluegiga Technologies, Inc.                       |
|                           | 19/F Silver Fortune Plaza, 1 Wellington Street,   |
|                           | Central Hong Kong                                 |