

User Guide for FEBFL7732_L25U008B

8.4 W LED Driver at Universal Line

Featured Fairchild Product: FL7732

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

Table of Contents

1. Introduction	3
1.1. General Description of FL7732	
1.3. Internal Block Diagram	
2. Specifications for Evaluation Board	5
3. Evaluation Board	(
4. Printed Circuit Board	7
5. Schematic of the Evaluation Board	8
6. Bill of Materials	9
7. Transformer Design	10
8. Performance of Evaluation Board	11
8.1. Startup	
8.2. Operation Waveforms	13
8.3. Constant-Current Regulation.	14
8.4. Open / Short-LED Protections	15
8.5. System Efficiency	
8.6. Total Harmonic Discharge (THD)	
8.7. Operating Temperature	
8.8. Electromagnetic Interference (EMI)	
9. Revision History	20

This user guide supports the evaluation kit for the FL7732. It should be used in conjunction with the FL7732 datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at www.fairchildsemi.com.

1. Introduction

This document describes the proposed solution for universal line voltage LED ballast using the FL7732 Primary-Side Regulator (PSR) single-stage controller. The input voltage range is $90 \, V_{RMS} - 265 \, V_{RMS}$ and there is one DC output with a constant current of 350 mA at 24 $\, V_{MAX}$. This document contains general description of FL7732, the power supply specification, schematic, bill of materials, and the typical operating characteristics.

1.1. General Description of FL7732

The FL7732 is an active Power Factor Correction (PFC) controller using single-stage flyback topology. Primary-side regulation and single-stage topology reduce external components, such as input bulk capacitor and feedback circuitry, and minimize cost. To improve power factor and Total Harmonic Distortion (THD), constant on-time control is utilized with an internal error amplifier and a low bandwidth compensator. Precise constant-current control regulates accurate output current, independent of input voltage and output voltage. Operating frequency is proportionally changed by output voltage to guarantee DCM operation with high efficiency and simple design. FL7732 provides open-LED, short-LED, and over-temperature protections.

1.2. Features

- Cost-Effective Solution: No Input Bulk Capacitor or Feedback Circuitry
- Power Factor Correction
- Accurate Constant-Current (CC) Control, Independent Online Voltage, Output Voltage, and Magnetizing Inductance Variation
- Linear Frequency Control Improves Efficiency and Simplifies Design
- Open-LED Protection
- Short-LED Protection
- Cycle-by-Cycle Current Limiting
- Over-Temperature Protection with Auto Restart
- Low Startup Current: 20 μA
- Low Operating Current: 5 mA
- V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 18 V
- SOP-8

1.3. Internal Block Diagram

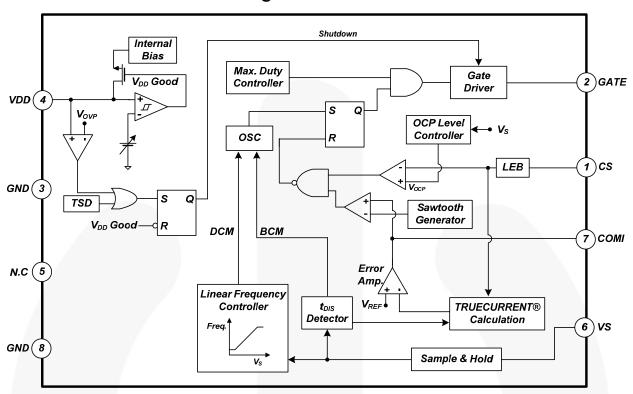


Figure 1. Block Diagram of FL7732

2. Specifications for Evaluation Board

Table 1. Specifications for LED Lighting Lamp

	Description	Symbol	Value	Comments
			90 V	Minimum Input Voltage
_	Voltage	V _{IN.MAX}	265 V	Maximum Input Voltage
Input		V _{IN.NOMINAL}	110 V / 220 V	Nominal Input Voltage
	Frequency	f _{IN}	60 Hz / 50 Hz	Line Frequency
		V _{OUT.MIN}	12 V	Minimum Output Voltage
	Voltage	V _{OUT.MAX}	28 V	Maximum Output Voltage
044		V _{OUT.NOMINAL}	24 V	Nominal Output Voltage
Output		I _{OUT.NOMINAL}	350 mA	Nominal Output Current
	Current	CC Deviation	< ±3.17%	Line Input Voltage Change: 90~265 V _{AC}
		CC Deviation	< ±1.93%	Output Voltage Change: 12~24 V
		Eff _{90VAC}	87.51%	Efficiency at 90 V _{AC} Line Input Voltage
		Eff _{120VAC}	88.76%	Efficiency at 120 V _{AC} Line Input Voltage
Efficiency		Eff _{140VAC}	89.39%	Efficiency at 140 V _{AC} Line Input Voltage
		Eff _{180VAC}	89.59%	Efficiency at 180 V _{AC} Line Input Voltage
			89.20%	Efficiency at 220 V _{AC} Line Input Voltage
		Eff _{265VAC}	88.40%	Efficiency at 265 V _{AC} Line Input Voltage
		PF/THD _{90VAC}	0.998/10.04%	PF / THD at 90 V _{AC} Line Input Voltage
		PF/THD _{120VAC}	PF/THD _{120VAC} 0.995/10.04% PF / THD at 120 V _{AC} Line	
	PF/THD	PF/THD _{140VAC}	0.991/11.83%	PF / THD at 140 V _{AC} Line Input Voltage
	PE/IND	PF/THD _{180VAC}	0.982/15.29%	PF / THD at 180 V _{AC} Line Input Voltage
		PF/THD _{220VAC}	0.964/18.19%	PF / THD at 220 V _{AC} Line Input Voltage
		PF/THD _{265VAC}	0.935/22.05%	PF / THD at 265 V _{AC} Line Input Voltage
FL7732		T _{FL7732}	50.8°C	Open-Frame Condition (T _A = 25°C) FL7732 Temperature
Temperature	Primary MOSFET	T _{MOSFET}	57.3°C	Primary MOSFET Temperature
	Secondary Diode	T _{DIODE}	56.2°C	Secondary Diode Temperature
	Transformer	T _{TRANSFORMER}	52.3°C	Transformer Temperature

All data of the evaluation board was measured with the board enclosed in a case and an external temperature around 25° C.

3. Evaluation Board

Figure 2. Top View (Dimensions: 58.0 mm (L) x 26.5 mm (W) x 18.0 mm (H)



Figure 3. Bottom View (Dimensions:58.0 mm (L) x 26.5 mm (W) x 18.0 mm (H)

4. Printed Circuit Board

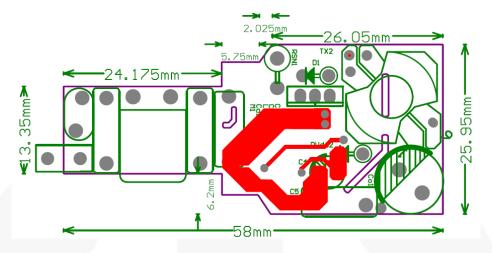


Figure 4. Top Pattern

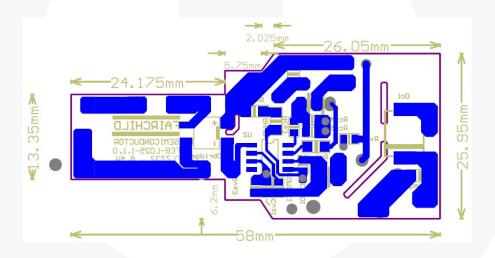


Figure 5. Bottom Pattern

5. Schematic of the Evaluation Board

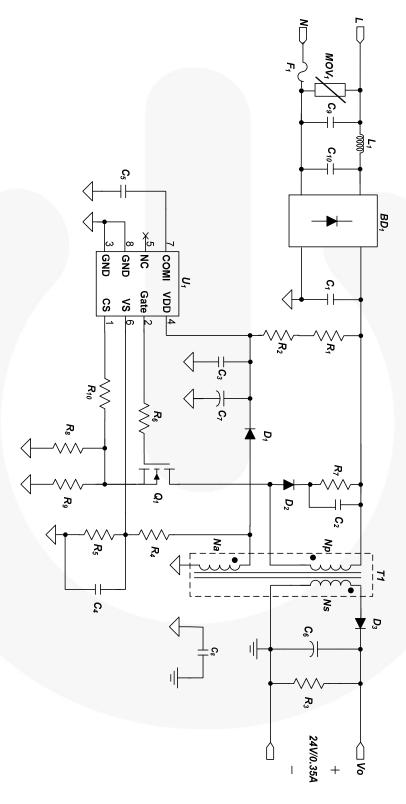


Figure 6. Schematic

6. Bill of Materials

Item No.	Part Reference	Part No.	Qty.	Description	Manufacturer
1	BD1	MB6S	1	0.5 A / 600 V Bridge Diode	Fairchild Semiconductor
2	Q1	FQU5N60CTU	1	2.8 A / 600 V Main Switch	Fairchild Semiconductor
3	U1	FL7732_F116	1	Main Controller	Fairchild Semiconductor
4	F1	SS-5-1A	1	250 V / 1 A Fuse	Bussmann
5	M1	SVC 471 D-07A	1	Metal Oxide Varistor	Samwha
6	L1	R08123KT00	1	12 mH Filter Inductor, 8Ф	Bosung
7	D1, D2	1N4007	2	1 A / 1000 V Diode	Fairchild Semiconductor
8	D3	ES3D	1	3 A / 200 V Fast Rectifier	Fairchild Semiconductor
9	C1	ECW-F2W104JAQ	1	0.1 μF / 450 V Film Capacitor	Panasonic - ECG
10	C2	C1206C103KCRACTU	1	10 nF / 500 V SMD Capacitor 3216	Kemet
11	C3	C0805C103K5RACTU	1	10 nF / 50 V SMD Capacitor 2012	Kemet
12	C4	C0805C220J5GACTU	1	22 pF / 50 V SMD Capacitor 2012	Kemet
13	C5	C0805C105Z3VACTU	1	1 μF / 25 V SMD Capacitor 2012	Kemet
14	C6	KMG 470 μF/35V	1	470 μF / 35 V Electrolytic Capacitor	Samyoung
15	C7	KMG 10 μF/50V	1	10 μF / 50 V Electrolytic Capacitor	Samyoung
16	C8	SCFz2E472M10BW	1	4.7 nF / 250 V Y-Capacitor	Samwha
17	C9	MPX AC275V 223K	1	22 nF / 275 V _{AC} X-Capacitor	Carli
18	C10	MPX AC275V 333K	1	33 nF / 275 V _{AC} X-Capacitor	Carli
19	R1, R2	RC1206JR-07300KL	2	300 kΩ SMD Resistor 3216	Yageo
20	R3	RC1206JR-0724KL	1	24 kΩ SMD Resistor 3216	Yageo
21	R4	RC0805FR-07150KL	1	150 kΩ SMD Resistor 2012	Yageo
22	R5	RC0805JR-0722KL	1	22 kΩ SMD Resistor 2012	Yageo
23	R6	RC1206JR-0710RL	1	10 Ω SMD Resistor 3216	Yageo
24	R7	RSMF1JT200K	1	200 kΩ / 1W Metal Oxide Film Resistor	Stackpole Electrical
25	R8	RC0805JR-071R6L	1	1.6 Ω SMD Resistor 2012	Yageo
26	R9	RC0805JR-071R8L	1	1.8 Ω SMD Resistor 2012	Yageo
27	R10	RC0805JR-070RL	1	0 Ω SMD Resistor 2012	Yageo
28	T1	RM Core	1	1 mH RM6 Transformer	TDK

7. Transformer Design

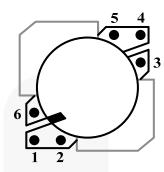


Figure 7. Transformer Bobbin Structure

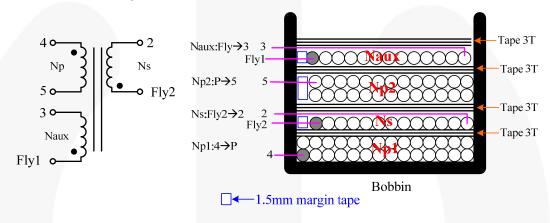


Figure 8. Pin Configuration and Transformer Winding Structure

Note:

1. Fly 1 connects to the primary side ground and Fly 2 connects to the secondary-side ground directly.

Table 2. Winding Specifications

No.	Winding $Pin (S \rightarrow F)$		Wire	Turns	Winding Method		
1	N _{P1} 4 → P		0.2φ	36 Ts	Solenoid Winding		
2		Insulation: Polyester Tape t = 0.025 mm, 3-Layer					
3	N _S Fly2 → 2		0.32φ	24 Ts	Solenoid Winding		
4		Insulation: Polyester Tape t = 0.025 mm, 3-Layer					
5	N_{P2} $P \rightarrow 5$		0.2φ	36 Ts	Solenoid Winding		
6	Insulation: Polyester Tape t = 0.025 mm, 3-Layer						
7	NA	Fly1 → 3	0.12φ	18 Ts	Solenoid Winding		
8	Insulation: Polyester Tape t = 0.025 mm, 3-Layer						

Table 3. Electrical Characteristics

	Pin	Specification	Remark
Inductance	4 – 5	1 mH ±10%	50 kHz, 1V
Leakage	4 – 5	13 µH	50 kHz, 1V Short All Output Pins

8. Performance of Evaluation Board

Table 4. Test Condition & Equipments

Ambient Temperature	T _A = 25°C
	AC Power Source: ES2000S by PSTATIONES
	Power Analyzer: PZ4000 by YOKOGAWA
	Multi Meter: 2002 by KEITHLEY
	: 8842A by LIKE
Test Equipment	Oscilloscope: WaveRunner 104Xi by LeCroy
	EMI Test Receiver: ESCS30 by ROHDE & SCHWARZ
	Two-Line V-Network: ENV216 by ROHDE & SCHWARZ
	Thermometer: Fluke Ti20
	LED: EHP-AX08EL/GT01H-P01(1 W) by Everlight

8.1. Startup

Startup time is 926 ms ($V_{IN}=90~V_{AC}$) $\sim 315~ms$ ($V_{IN}=265~V_{AC}$). The results were measured by using 8-LED load. Startup Time at 8-LED (24 V / 350 mA); C1 [V_{DD}], C2 [V_{IN}], C3 [V_{OUT}], C4 [I_{OUT}].

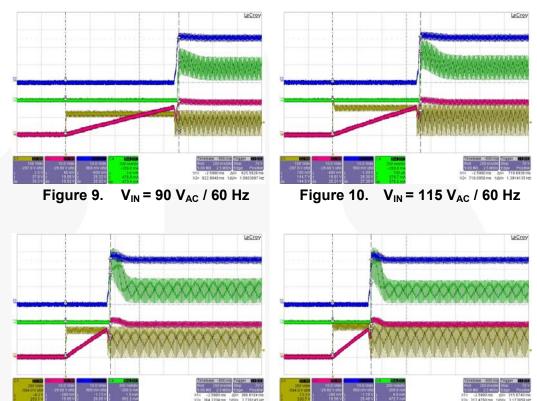


Figure 12. $V_{IN} = 265 V_{AC} / 50 Hz$

Figure 11. $V_{IN} = 230 V_{AC} / 50 Hz$

8.2. Operation Waveforms

Output current ripple is under 160 mAp-p with a rated output current of 350 mA. The results were measured by using actual 8-LED load. Operation Waveforms at 8-LED (24 V / 350 mA); C1 [V_{CS}], C2 [V_{IN}], C3 [V_{OUT}], C4 [I_{OUT}].

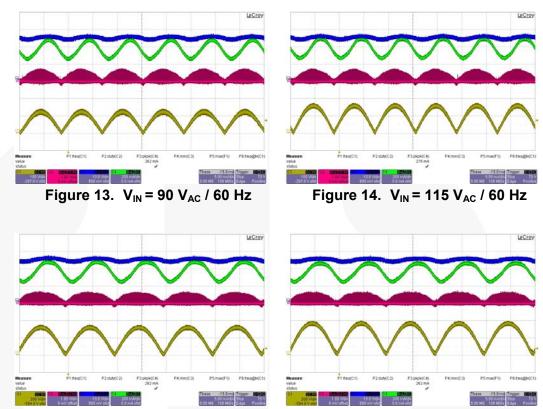


Figure 15. $V_{IN} = 230 V_{AC} / 50 Hz$

Figure 16. $V_{IN} = 265 V_{AC} / 50 Hz$

8.3. Constant-Current Regulation

Constant-current deviation in the wide output voltage range from 12 V to 24 V is less than $\pm 1.93\%$ at each line input voltage. Line regulation at the rated 6-LED is less than $\pm 3.17\%$. The results were measured by using LED load.

Output Voltage [V]

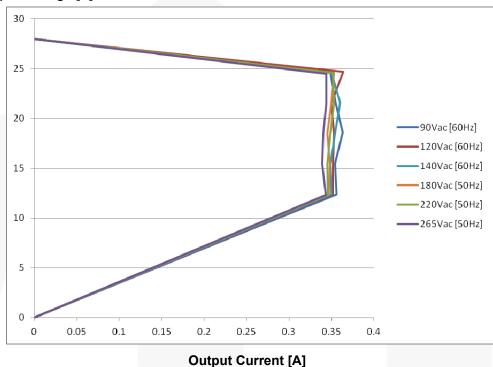


Figure 17. Constant Current Regulation, Measured by LED Load

Table 5. Constant Current Regulation by Output Voltage Change (12~24 V)

Input Voltage	Min. Current [A]	Max. Current [A]	Tolerance
90 V _{AC} / 60 Hz	0.349	0.363	±1.93%
120 V _{AC} / 60 Hz	0.350	0.364	±1.92%
140 V _{AC} / 60 Hz	0.349	0.360	±1.53%
180 V _{AC} / 50 Hz	0.345	0.353	±1.13%
220 V _{AC} / 50 Hz	0.345	0.353	±1.13%
265 V _{AC} / 50 Hz	0.339	0.344	±0.73%

Table 6. Constant Current Regulation by Line Voltage Change (90~265 V_{AC})

Output Voltage	90 V _{AC} [60 Hz]	120 V _{AC} [60 Hz]	140 V _{AC} [60 Hz]	180 V _{AC} [50 Hz]	220 V _{AC} [50 Hz]	265 V _{AC} [50 Hz]	Tolerance
24.5 V	0.349 A	0.364 A	0.350 A	0.353 A	0.352 A	0.344 A	±2.75%
21.5 V	0.355 A	0.350 A	0.360 A	0.350 A	0.353 A	0.344 A	±2.22%
18.5 V	0.363 A	0.353 A	0.354 A	0.345 A	0.349 A	0.340 A	±3.17%

8.4. Open / Short-LED Protections

In short-LED condition, OCP level is reduced from $0.7\,V$ to $0.2\,V$ because FL7732 lowers OCP level when V_S voltage is less than $0.4\,V$ during output diode conduction time. The results were measured by using actual LED load. Short-LED Condition; C1 V_{DD} , C2 V_{IN} , C3 V_{OUT} , C4 V_{IOUT} .

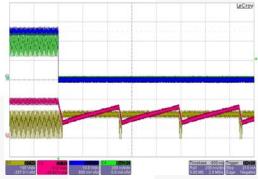


Figure 18. $V_{IN} = 90 V_{AC} / 60 Hz$

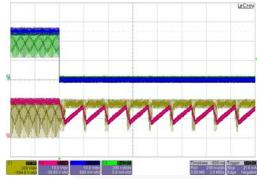


Figure 19. $V_{IN} = 265 V_{AC} / 50 Hz$

In open-LED condition, output voltage is limited around 30 V by OVP in V_{DD} . Output over-voltage protection level can be controlled by the turns ratio of auxiliary and secondary windings. Open-LED Condition; C1 [V_{DD}], C2 [V_{IN}], C3 [V_{OUT}], C4 [I_{OUT}].

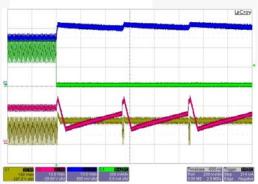


Figure 20. $V_{IN} = 90 V_{AC} / 60 Hz$

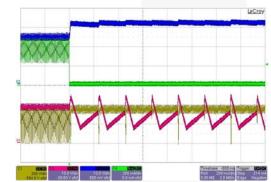
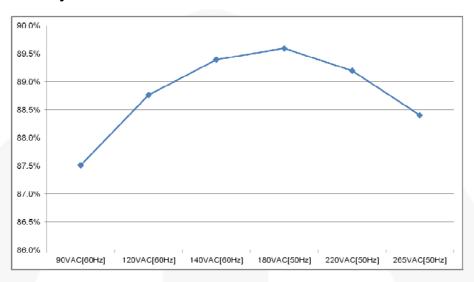


Figure 21. $V_{IN} = 265 V_{AC} / 50 Hz$



8.5. System Efficiency

The system efficiency is $87.51 \sim 89.59\%$ in $90 \sim 265~V_{AC}$ input voltage range. The results were measured at 30 minutes after startup by using LED load.

Efficiency

Input Voltage

Figure 22. System Efficiency

Table 7. System Efficiency

Input Voltage	Input Power [W]	Output Current [A]	Output Voltage [V]	Output Power [W]	Efficiency
90 V _{AC} [60 Hz]	9.935	0.354	24.56	8.694	87.51%
120 V _{AC} [60 Hz]	10.196	0.367	24.66	9.050	88.76%
140 V _{AC} [60 Hz]	9.663	0.352	24.54	8.638	89.39%
180 V _{AC} [50 Hz]	9.677	0.353	24.56	8.670	89.59%
220 V _{AC} [50 Hz]	9.708	0.353	24.53	8.659	89.20%
265 V _{AC} [50 Hz]	9.550	0.345	24.47	8.442	88.40%

8.6. Total Harmonic Discharge (THD)

FL7732 shows excellent THD performance. THD is less than 25% of the specification. Power Factor is very high; with enough margin from the 0.9 specification. The results were measured at 30 minutes after startup.

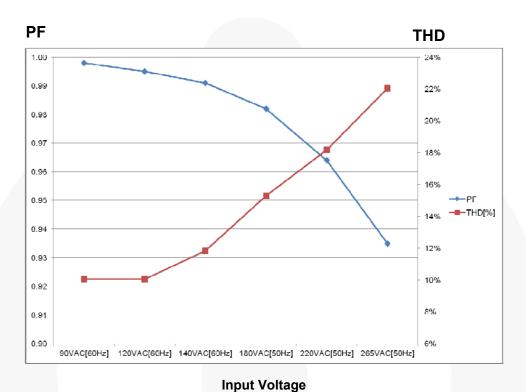


Figure 23. Power Factor and Total Harmonic Discharge

Table 8. Power Factor and Total Harmonic Discharge

Input Voltage	PF	THD
90 V _{AC} [60 Hz]	0.998	10.04%
120 V _{AC} [60 Hz]	0.995	10.04%
140 V _{AC} [60 Hz]	0.991	11.83%
180 V _{AC} [50 Hz]	0.982	15.29%
220 V _{AC} [50 Hz]	0.964	18.19%
265 V _{AC} [50 Hz]	0.935	22.05%

8.7. Operating Temperature

The temperature of the all components on this board is less than 60°C. The results were measured 60 minutes after startup.

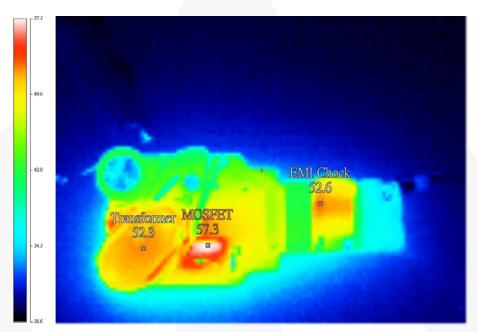


Figure 24. Board Temperature - Top View, V_{IN} [90 V_{AC}] I_{OUT} [350 mA]

Figure 25. Board Temperature - Bottom View, V_{IN} [90 V_{AC}] I_{OUT} [350 mA]

8.8. Electromagnetic Interference (EMI)

All measurements were conducted in observance of EN55022 criteria. The results were measured 30 minutes after startup.

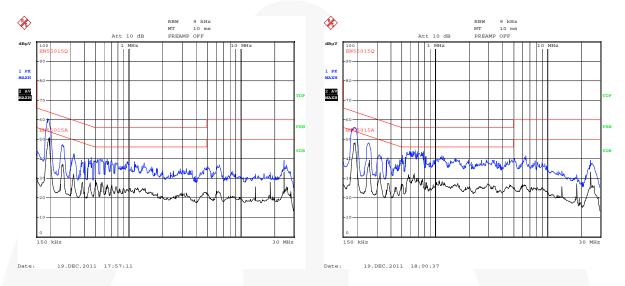


Figure 26. LIVE - V_{IN} = 115 $V_{AC,V_{OUT}}$ [24 V], I_{OUT} [350 mA]

Figure 27. LIVE - V_{IN} = 230 V_{AC} , V_{OUT} [24 V], I_{OUT} [350 mA]

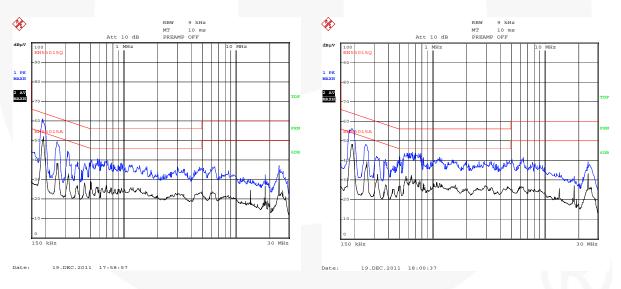


Figure 28. LIVE - V_{IN} = 115 V_{AC} , V_{OUT} [24 V], I_{OUT} [350 mA]

Figure 29. LIVE - V_{IN} = 230 V_{AC} , V_{OUT} [24 V], I_{OUT} [350 mA]

9. Revision History

Rev.	Date	Description
1.0.0	April 2012	Initial Release
1.1.0	June 2012	Manufacturer & Part number are added in BOM FL7732 is changed to FL7732MY_F116 (no frequency hopping) PF/THD at 50Hz is added EMI test result is updated
1.1.1	Sep. 2012	Modified, edited, formatted document. Changed User Guide number from FEB_L025 to FEBFL7732_L25U008B
1.1.2	Sep. 2012	Modified main title at page 1

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.