
Vishay Semiconductors

Fast Soft Recovery Rectifier Diode, 40 A

PRODUCT SUMMARY						
Package	TO-247AC modified (2 pins)					
I _{F(AV)}	40 A					
V_{R}	1000 V, 1200 V					
V _F at I _F	1.4 V					
I _{FSM}	475 A					
t _{rr}	95 ns					
T _J max.	150 °C					
Diode variation	Single die					
Snap factor	0.5					

FEATURES

- 150 °C max. operating junction temperature
- Low forward voltage drop and short reverse recovery time
- Designed and qualified according to JEDEC-JESD47
- Material categorization:
 For definitions of compliance please see www.vishav.com/doc?99912

COMPLIANT
HALOGEN

APPLICATIONS

These devices are intended for use in output rectification and freewheeling in inverters, choppers and converters as well as in input rectification where severe restrictions on conducted EMI should be met.

DESCRIPTION

The VS-40EPF1... fast soft recovery rectifier series has been optimized for combined short reverse recovery time and low forward voltage drop.

The glass passivation ensures stable reliable operation in the most severe temperature and power cycling conditions.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
V _{RRM}		1000/1200	V				
I _{F(AV)}	Sinusoidal waveform	40	^				
I _{FSM}		475	А				
t _{rr}	1 A, 100 A/µs	95	ns				
V _F	20 A, T _J = 25 °C	1.25	V				
T _J		- 40 to 150	°C				

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA				
VS-40EPF10PbF, VS-40EPF10-M3	1000	1100	10				
VS-40EPF12PbF, VS-40EPF12-M3	1200	1300	10				

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum average forward current	I _{F(AV)}	T _C = 105 °C, 180° conduction half sine wave	40			
Maximum peak one cycle	I _{FSM}	10 ms sine pulse, rated V _{RRM} applied 400		Α		
non-repetitive surge current		10 ms sine pulse, no voltage reapplied	475			
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V _{RRM} applied	800	A ² s		
Maximum I-t for fusing	1-1	10 ms sine pulse, no voltage reapplied 1131		A-5		
Maximum I ² √t for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied	11 310	A²√s		

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS		
Maximum forward voltage drop	V_{FM}	40 A, T _J = 25 °C		1.4	V		
Forward slope resistance	r _t	T _{.1} = 150 °C		6.82	mΩ		
Threshold voltage	V _{F(TO)}	1 1J = 150 C		0.94	V		
Maximum various lackage arrest		T _J = 25 °C	V Dated V	0.1	mA		
Maximum reverse leakage current	I _{RM}	T _J = 150 °C	V_R = Rated V_{RRM}	10	IIIA		

RECOVERY CHARACTERISTICS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Reverse recovery time	t _{rr}	In at 10 Anu	450	ns	I _{FM} t	
Reverse recovery current	I _{rr}	I _F at 10 A _{pk} 25 A/μs	6	Α		
Reverse recovery charge	Q _{rr}	25 °C	1.8	μC	dir/ dt Q _{rr}	
Snap factor	S		0.5		I _{RM(REC)}	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and stor temperature range	age	T _J , T _{Stg}		- 40 to 150	°C	
Maximum thermal resistant junction to case	e,	R_{thJC}	DC operation	0.6		
Maximum thermal resistant junction to ambient	e,	R _{thJA}		40	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2		
Approximate weight				6	g	
Approximate weight				0.21	OZ.	
May ation toward	minimum			6 (5)	kgf ⋅ cm	
Mounting torque maximum				12 (10)	(lbf ⋅ in)	
Maulina davia			One at the TO 04740 and different (IEDEO)	40EP	F10	
Marking device			Case style TO-247AC modified (JEDEC)	40EPF12		

www.vishay.com

Vishay Semiconductors

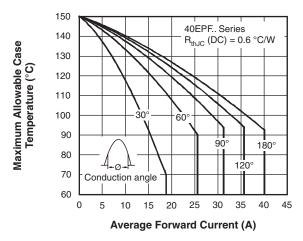


Fig. 1 - Current Rating Characteristics

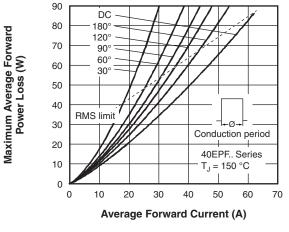


Fig. 4 - Forward Power Loss Characteristics

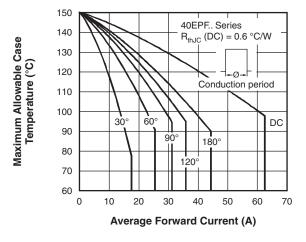


Fig. 2 - Current Rating Characteristics

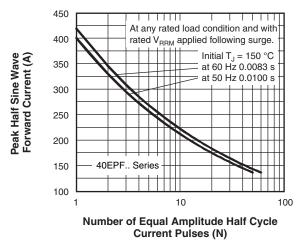


Fig. 5 - Maximum Non-Repetitive Surge Current

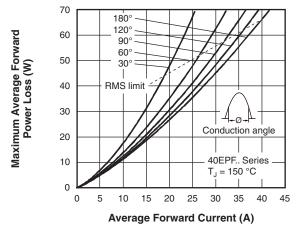


Fig. 3 - Forward Power Loss Characteristics

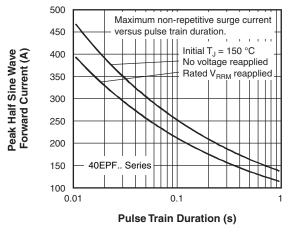


Fig. 6 - Maximum Non-Repetitive Surge Current

www.vishay.com

Vishay Semiconductors

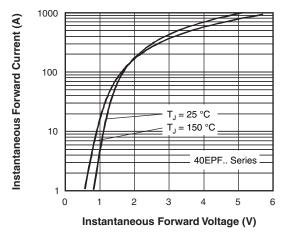


Fig. 7 - Forward Voltage Drop Characteristics

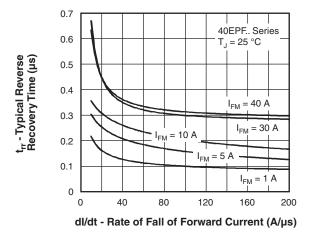


Fig. 8 - Recovery Time Characteristics, T_J = 25 °C

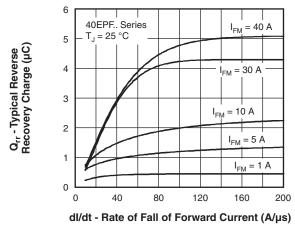


Fig. 10 - Recovery Charge Characteristics, $T_J = 25 \, ^{\circ}\text{C}$

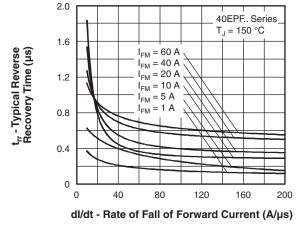


Fig. 9 - Recovery Time Characteristics, T_J = 150 °C

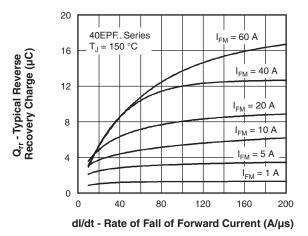


Fig. 11 - Recovery Charge Characteristics, $T_J = 150 \, ^{\circ}\text{C}$

Vishay Semiconductors

www.vishay.com

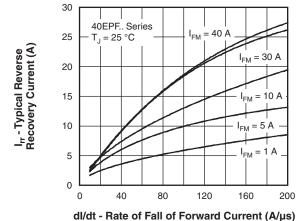


Fig. 12 - Recovery Current Characteristics, T_J = 25 °C

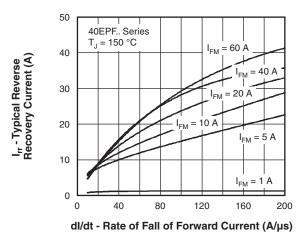


Fig. 13 - Recovery Current Characteristics, T_J = 150 °C

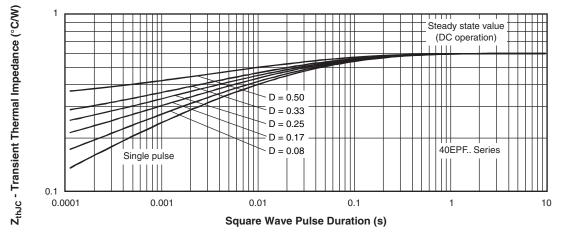
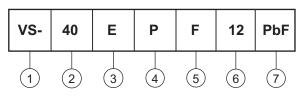



Fig. 14 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

- 1 Vishay Semiconductors product
- Current rating (40 = 40 A)
- Gircuit configuration:

 E = Single diode
- 4 Package:

P = TO-247AC modified

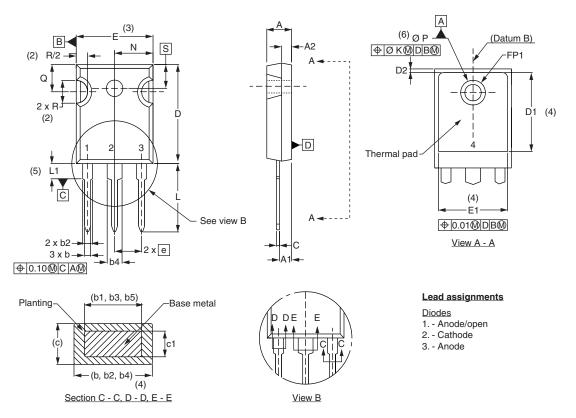
5 - Type of silicon:

F = Fast recovery

6 - Voltage code x 100 = V_{RRM} 10 = 1000 V 12 = 1200 V

7 - Environmental digit:

- PbF = Lead (Pb)-free and RoHS compliant
- -M3 = Halogen-free, RoHS compliant and terminations lead (Pb)-free


ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-40EPF10PbF	25	500	Antistatic plastic tubes					
VS-40EPF10-M3	25	500	Antistatic plastic tubes					
VS-40EPF12PbF	25	500	Antistatic plastic tubes					
VS-40EPF12-M3	25	500	Antistatic plastic tubes					

LINKS TO RELATED DOCUMENTS						
Dimensions <u>www.vishay.com/doc?95253</u>						
Part marking information	TO-247AC modified PbF	www.vishay.com/doc?95255				
Part marking information	TO-247AC modified -M3	www.vishay.com/doc?95442				

Vishay Semiconductors

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.37	0.065	0.094	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.86	0.015	0.034	
c1	0.38	0.76	0.015	0.030	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.72	-	0.540	-	
е	5.46	BSC	0.215	BSC	
FK	2.	54	0.0	010	
L	14.20	16.10	0.559	0.634	
L1	3.71	4.29	0.146	0.169	
N	7.62	BSC	0.3		
ΦР	3.56	3.66	0.14	0.144	
ФР1	1	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	1.78	0.216	
S	5.51	BSC	0.217	'BSC	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000