

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED Pt®

PRODUCT SUMMARY	
t _{rr} (typical)	15 ns
I _{F(AV)}	8 A
V _R	600 V

FEATURES

- Hyperfast recovery time
- Low forward voltage drop
- Low leakage current
- 175 °C operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Halogen-free according to IEC 61249-2-21 definition
- Compliant to RoHS directive 2002/95/EC
- AEC-Q101 qualified

DESCRIPTION/APPLICATIONS

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the ac-to-dc section of SMPS, inverters or as freewheeling diodes.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Peak repetitive reverse voltage	V _{RRM}		600	V		
Average rectified forward current	I _{F(AV)}	T _C = 143 °C	8			
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	110	А		
Peak repetitive forward current	I _{FM}		18			
Operating junction and storage temperatures	T _J , T _{Stg}		- 65 to 175	°C		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-	
Forward voltage	VF	I _F = 8 A	-	2.3	3.0	V
r orward voltage	٧F	I _F = 8 A, T _J = 150 °C	-	1.4	1.7	
Reverse leakage current	1	$V_R = V_R$ rated	-	0.3	50	
neverse leakage current	I _R	$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	35	500	μA
Junction capacitance	CT	V _R = 600 V	-	17	-	pF
Series inductance	Ls	Measured lead to lead 5 mm from package body	-	8.0	-	nH

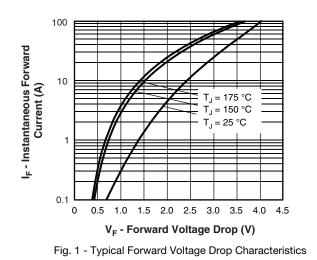
COMPLIANT

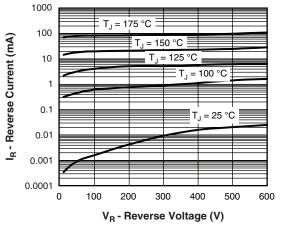
HALOGEN

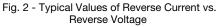
FREE

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED Pt[®]


DYNAMIC RECOVERY CHA	RACTERIS	STICS ($T_C = 25$ °C	C unless otherwis	e specifi	ed)		
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS
		$I_F = 1 A$, $dI_F/dt = 1$	00 A/µs, V _R = 30 V	-	15	19	
Reverse recovery time	+	$I_F = 8 A, dI_F/dt = 1$	00 A/µs, V _R = 30 V	-	16	24	20
neverse recovery time	t _{rr}	T _J = 25 °C		-	17	-	ns
		T _J = 125 °C		-	40	-	
Peak recovery current		T _J = 25 °C	I _F = 8 A dI _F /dt = 200 A/µs	-	2.3	-	А
Feak recovery current	I _{RRM}	T _J = 125 °C	$V_{\rm B} = 390 \text{ V}$	-	4.5	-	A
	0	T _J = 25 °C		-	20	-	nC
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	100	-	no
Reverse recovery time	t _{rr}		I _F = 8 A	-	31	-	ns
Peak recovery current	I _{RRM}	T _J = 125 °C	dI _F /dt = 600 A/µs	-	12	-	А
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	195	-	nC


THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 65	-	175	°C
Thermal resistance, junction to case per leg	R _{thJC}		-	1.4	2	
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Maight			-	2.0	-	g
Weight			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking davias		Case style D ² PAK		8ET	X06S	
Marking device		Case style TO-262	8ETX06-1			



Hyperfast Rectifier, 8 A FRED Pt®

Vishay High Power Products

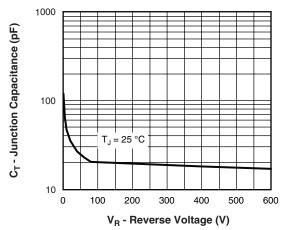


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

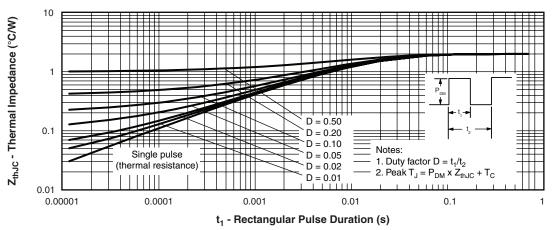


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED Pt[®]

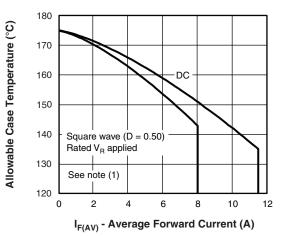


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

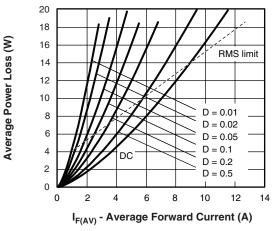


Fig. 6 - Forward Power Loss Characteristics

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D)$; $I_R at V_{R1} = Rated V_R$

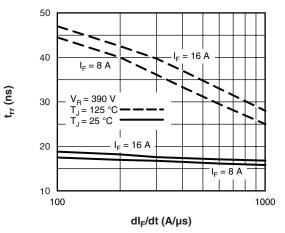
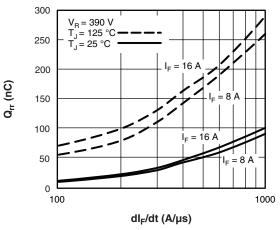



Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt

Hyperfast Rectifier, Vishay High Power Products 8 A FRED Pt[®]

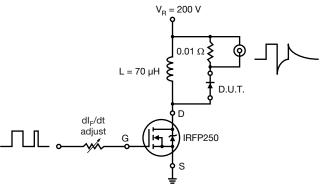
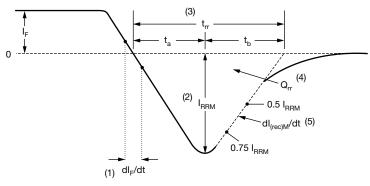



Fig. 9 - Reverse Recovery Parameter Test Circuit

(1) dl_F/dt - rate of change of current through zero crossing

(4) ${\rm Q}_{\rm rr}$ - area under curve defined by ${\rm t}_{\rm rr}$ and ${\rm I}_{\rm BBM}$

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(2) I_{RRM} - peak reverse recovery current

(3) $t_{\rm rr}$ - reverse recovery time measured from zero crossing point of negative going ${\rm I_F}$ to point where a line passing through 0.75 ${\rm I_{RRM}}$ and 0.50 ${\rm I_{RRM}}$ extrapolated to zero current.

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 10 - Reverse Recovery Waveform and Definitions

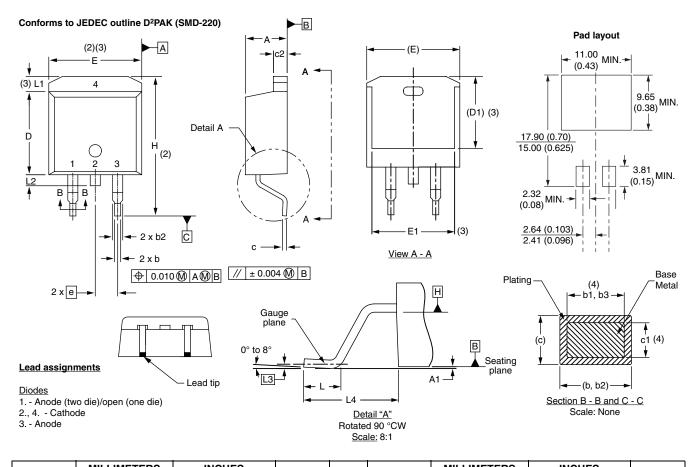
VISHAY.

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED Pt[®]

ORDERING INFORMATION TABLE

Device code	VS-	8	Е	т	x	06	S	TRL	PbF
		2	3	4	5	6	7	8	9
	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 -	Cur E = T = X = Volt • S • -1	Single o TO-220 Hyperfa age rati = D ² PA = TO-2 one = Tu	ng (8 A) diode , D ² PAk ast rectif ng (06 = K	(ier = 600 V) pieces)		d, for D	² РАК р	ackage)
	9 -			pe and (Pb)-fre		ht orien	ted, for	D ² PAK	packag


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95014				
Part marking information	www.vishay.com/doc?95008				
Packaging information	www.vishay.com/doc?95032				
SPICE model	www.vishay.com/doc?95393				

Vishay High Power Products

D²PAK, TO-262

DIMENSIONS FOR D²PAK in millimeters and inches

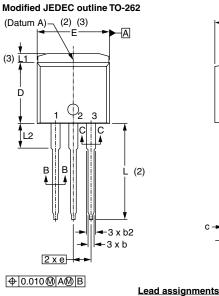
SHA

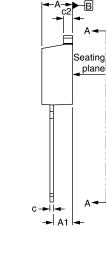
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

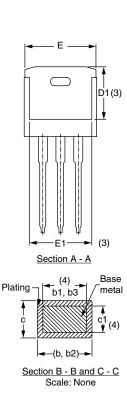
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54	BSC	0.100	BSC	
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25	BSC	0.010	BSC	
L4	4.78	5.28	0.188	0.208	

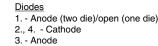
⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB

Notes


- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- ⁽⁴⁾ Dimension b1 and c1 apply to base metal only
- ⁽⁵⁾ Datum A and B to be determined at datum plane H
- ⁽⁶⁾ Controlling dimension: inch


Vishay High Power Products


D²PAK, TO-262


DIMENSIONS FOR TO-262 in millimeters and inches

Lead tip

	MILLIM	MILLIMETERS		INCHES		
SYMBOL -	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
E	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.100	BSC		
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.56	3.71	0.140	0.146		

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Controlling dimension: inches

⁽⁶⁾ Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

www.vishay.com 2

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.