

High Temperature Silicon Carbide Power Schottky Diode

Features

- 650 V Schottky rectifier
- 250 °C maximum operating temperature
- Electrically isolated base-plate
- Zero reverse recovery charge
- Superior surge current capability
- Positive temperature coefficient of V_F

- Available screened to Mil-PRF-19500

Advantages

- High temperature operation
- · Improved circuit efficiency (Lower overall cost)
- Low switching losses
- · Ease of paralleling devices without thermal runaway
- · Smaller heat sink requirements
- · Industry's lowest reverse recovery charge
- Industry's lowest device capacitance
- · Ideal for output switching of power supplies
- Best in class reverse leakage current at operating temperature

Maximum Ratings at T_i = 250 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V _{RRM}		650	V
Continuous forward current	I _F	T _C ≤ 225 °C	0.75	А
RMS forward current	I _{F(RMS)}	T _C ≤ 225 °C	1.3	А
Surge non-repetitive forward current, Half Sine Wave	I _{F,SM}	T_{C} = 25 °C, t_{P} = 10 ms	10	А
Non-repetitive peak forward current	I _{F,max}	T _C = 25 °C, t _P = 10 μs	65	А
² t value	∫i² dt	T _C = 25 °C, t _P = 10 ms	0.5	A ² S
Power dissipation	P _{tot}	T _c = 25 °C	24	W
Operating and storage temperature	T _i , T _{stq}		-55 to 250	°C

Electrical Characteristics at T_j = 250 °C, unless otherwise specified

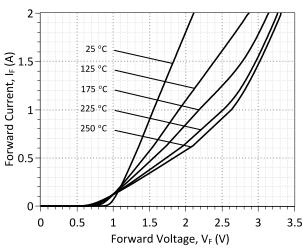
Devemeter	Symbol	Conditions —		Values		11	
Parameter				min.	typ.	max.	Unit
Diode forward voltage	V _F	I _F = 0.75 A, T _j = 25 °C		1.4		V	
	۷F	I _F = 0.75 A, T _j = 250 °C			2.3		
Reverse current	I-	V _R = 650 V, T _j = 25 °C		1	5	μA	
	I _R	V _R = 650 V, T _j = 250 °C			5		50
Total capacitive charge	Qc	$I_F \leq I_{F,MAX}$ $dI_F/dt = 200 A/\mu s$	/ _R = 400 V		7		nC
Switching time	t _s	$T_i = 210 \text{ °C}$	/ _R = 400 V		< 17		ns
Total capacitance	С	V _R = 1 V, f = 1 MHz, T _j	= 25 °C		76		
		V _R = 400 V, f = 1 MHz, 1	Г _і = 25 °С		12		pF
		V _R = 650 V, f = 1 MHz, T _j = 25 °C			12		
Thermal Characteristics							
Thermal resistance, junction - case	R _{thJC}				9.52		°C/W
Mechanical Properties							
Mounting torque	М				0.6		Nm

- Temperature independent switching behavior
- Lowest figure of merit Q_C/I_F

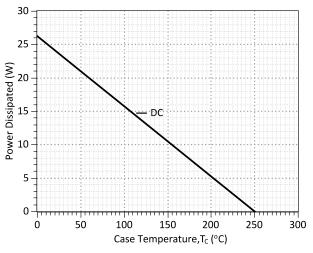
VRRM 650 V = VF = 1.4 V $I_{\rm F}$ = 0.75 A Qc = 7 nC

Package

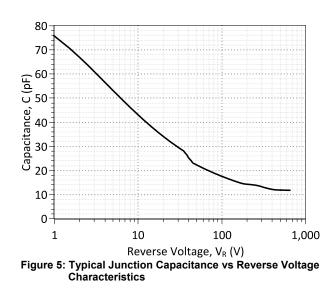
RoHS Compliant

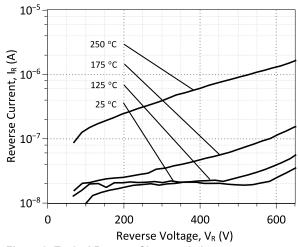
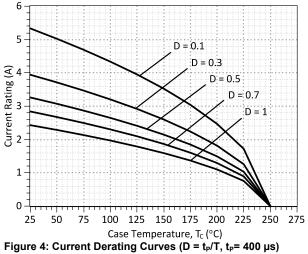
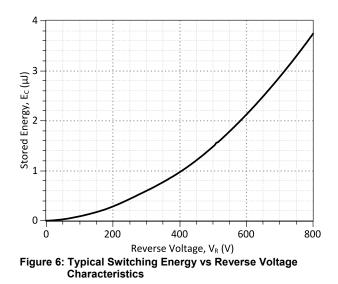

TO - 257 (Isolated Base-plate Hermetic Package)

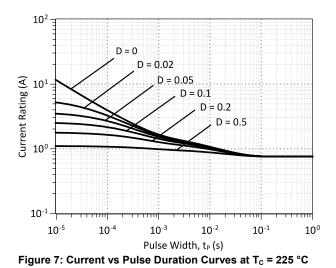
Applications


- Down Hole Oil Drilling, Geothermal Instrumentation
- High Temperature DC/DC Converters
- High Temperature Motor and Servo Drives
- High Temperature Inverters
- High Temperature Actuator Control
- Military Power Supplies

1N8030-GA


1N8030-GA


Figure 2: Typical Reverse Characteristics

(Considering worst case Z_{th} conditions)

1N8030-GA

ene

EMICONDUCTOR

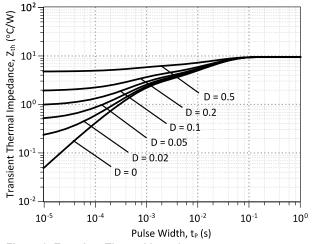
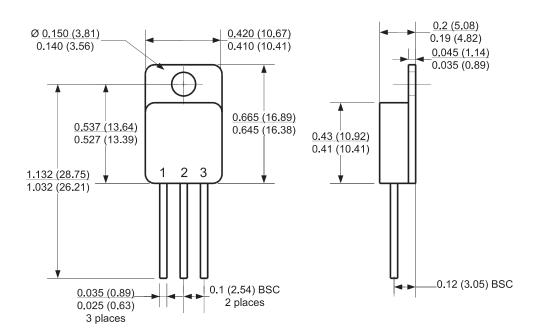



Figure 8: Transient Thermal Impedance

Package Dimensions:

NOTE

CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
 DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History							
Date	Revision	Comments	Supersedes				
2013/11/13	1	Updated Electrical Characteristics					
2012/04/24	0	Initial release					

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the 1N8030-GA device.

```
*
     MODEL OF GeneSiC Semiconductor Inc.
*
     $Revision: 1.0
*
                               $
*
     $Date: 05-SEP-2013
                               $
*
*
    GeneSiC Semiconductor Inc.
*
    43670 Trade Center Place Ste. 155
*
    Dulles, VA 20166
*
    http://www.genesicsemi.com/index.php/hit-sic/schottky
*
*
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
*
    ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of 1N8030-GA SPICE Model
.SUBCKT 1N8030 ANODE KATHODE
D1 ANODE KATHODE 1N8030 25C; Call the Schottky Diode Model
D2 ANODE KATHODE 1N8030 PIN; Call the PiN Diode Model
.MODEL 1N8030 25C D
+ IS
     3.57E-18
                        RS
                                    0.49751
+ TRS1
                        TRS2
         0.0057
                                    2.40E-05
+ N
         1
                        IKF
                                   322
+ EG
         1.2
                        XTI
                                   3
        9.12E-11
                        VJ
FC
                                   0.371817384
+ CJO
         1.527759838
                                   0.5
+ M
+ TT
         1.00E-10
                        BV
                                   650
+ IBV
         1.00E-03
                         VPK
                                    650
                                    SiC Schottky
+ IAVE
         1
                         TYPE
+ MFG GeneSiC_Semiconductor
.MODEL 1N8030 PIN D
+ IS 5.73E-11
                        RS
                                   0.72994
+ N
         5
                         IKF
                                   800
                                    -14
+ EG
         3.23
                        XTI
+ FC
         0.5
                        TT
                                   0
+ BV
                        IBV
         650
                                  1.00E-03
         650
+ VPK
                         IAVE
                                   1
+ TYPE
         SiC PiN
.ENDS
* End of 1N8030-GA SPICE Model
```