Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2012. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance. Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN' s official sales channel").

It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.

Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.

Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

TAIYO YUDEN 2013

MULTILAYER CERAMIC CAPACITORS

PARTS NUMBER

J	М	Κ	3	1	6	\triangle	В	J	1	0	6	М	L	—	Т	Δ
1	2	3		4		5	Œ	5)		\bigcirc		8	9	10	1	(12)

①Rated voltage

Thateu voitage	
Code	Rated voltage[VDC]
Р	2.5
А	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

②Series name	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

③End termination			
Code	End termination		
К	Plated		
R	High Reliability Application		

 $\triangle =$ Blank space

(4) Dimension ($L \times W$)

.2 01005 .3 0201 .5 0402
.5 0402
.0 💥 0204
.8 0603
.6 💥 0306
25 0805
2.0 💥 0508
.6 1206
.5 1210
.2 1812

Note : &LW reverse type($\Box WK$) only

	erance			
ode	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
				0.45 ± 0.05
Α	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
				1.25+0.15/-0.05
	316	3.2 ± 0.20	1.25±0.20	0.85±0.10
	310	3.2±0.20	1.25±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	$1.6 \pm 0.20 / -0$	$0.8 \pm 0.20 / -0$	0.45 ± 0.05
в	107	1.8+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
Б	010	0.01.000/ 0	1.05 1.0.00 /	0.85±0.10
	212	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
С	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0

Note: P.6 Standard external dimensions

 Δ = Blank space

6 Temperature characteristics code

■High dielectric type(Excluding Super low distortion multilayer ceramic capacitor(CFCAPTM))

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code								
	JIS	В	$-25 \sim + 85$	20	±10%	±10%	К								
BJ	515	Б	-25.4 + 85	20	土10%	±20%	М								
ВJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±10%	К								
	EIA	AJK	- 55.4 + 85	25	±13%	±20%	М								
B7	EIA	X7R	$-55 \sim +125$	25	±15%	±10%	К								
D7	EIA	A/R	-55/~ +125	20	± 13%	±20%	М								
06	EIA	X6S	S −55~+105	25	±22%	±10%	К								
C6	EIA	702				±20%	М								
C7	EIA X7S	VIC	272	272	VIC	V70	272	VIC	X7S	V70	$-55 \sim +125$	25	+ 000/	±10%	К
07	EIA	×/5	$-55 \sim +125$	20	5 ±22%	±20%	М								
	EIA	X5R	$-55 \sim + 85$	25	+ 150/	±10%	К								
LD(🔆)	EIA	Yak	$-55 \sim + 85$	20	±15%	±20%	М								
A F	JIS	F	-25~+ 85	20	+30/-80%	+80/-20%	Z								
ΔF	EIA	Y5V	$-30 \sim + 85$	25	+22-82%	+80/-20%	Z								

Note : X.LD Low distortion high value multilayer ceramic capacitor

 Δ = Blank space

Temperature compensating type

Code		cable idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
						±0.1pF	В
	JIS	СН		20		±0.25pF	С
СН			$-55 \sim +125$		0±60ppm/°C	±0.5pF	D
СП	EIA		$-55 \sim +125$	25	0±00ppm/C	1pF	F
		C0H				±5%	J
						±10%	К
CJ	JIS	CJ	-55~+125	20	0±120ppm/°C	±0.25pF	с
00	EIA	C0J		25		±0.23pi	0
СК	JIS	CK	-55~+125	20	0±250ppm/°C	±0.25pF	с
UK	EIA	C0J		25	0±250ppm/ C	±0.25pr	U
	JIS	UJ		20		±0.25pF	С
UJ	EIA	U2J	$-55 \sim +125$	25	-750 ± 120 ppm/°C	±0.5pF	D
	EIA	025		25		±5%	J
UK	JIS	UK	$-55 \sim +125$	20	-750±250ppm/°C	+0.5~5	с
UK	EIA	U2K	$-55 \sim +125$	25	- 750 ± 250ppm/ C	±0.5pF	U
SL	JIS	S	$-55 \sim +125$	20	+350~-1000ppm/°C	±5%	J

6 Series code

(Super low dist	ortion multilayer ceramic capacitor(CFCAP [™])only)
Code	Series code
SD	Standard

⑦Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100p
102	1,000pF
103	10,000pF
104	0.1 μ F
105	1.0 μ F
106	10 <i>µ</i> F
107	100 <i>µ</i> F

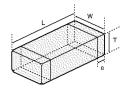
Note : R=Decimal point

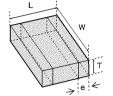
8 Capacitance tolerance

Ceapacitance a	
Code	Capacitance tolerance
В	±0.1pF
С	±0.25pF
D	±0.5pF
F	±1pF
J	$\pm 5\%$
К	±10%
М	±20%
Z	+80/-20%

9)Thickness	
Code	Thickness[mm]
С	0.2
D	0.2(Temperature compensating of 042type)
Р	0.3
Т	0.3
К	0.45
V	0.5
W	0.5
А	0.8
D	0.85(212type or more)
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
Y	2.0 max
М	2.5

Special code


Copecial code	
Code	Special code
-	Standard
н	MLCC for Industrial, Automotive Comfort and Safety


(1)Packaging

UPackaging						
Code	Packaging					
F	ϕ 178mm Taping (2mm pitch)					
Т	ϕ 178mm Taping (4mm pitch)					
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)					
P	325 type(Thickness code M)					
W	ϕ 178mm Taping(1mm pitch)042type only					

12Internal code Code Internal code Δ Standard

CERAMIC CAPACITORS

⅔ LW reverse type

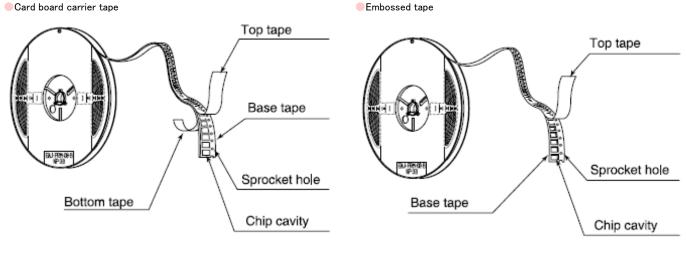
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Type(EIA)	Dimension [mm]						
$ \begin{array}{ c c c c c } \square MK042(01005) & 0.4 \pm 0.02 & 0.2 \pm 0.02 & 0.2 \pm 0.02 & D & 0.1 \pm 0.03 \\ \hline D & 0.6 \pm 0.03 & 0.3 \pm 0.03 & 0.3 \pm 0.03 & \frac{P}{T} & 0.15 \pm 0.05 \\ \hline MK063(0201) & 0.6 \pm 0.05 & 0.5 \pm 0.05 & 0.3 \pm 0.03 & P & 0.25 \pm 0.10 \\ \hline D & 0.5 \pm 0.05 & 0.5 \pm 0.05 & 0.5 \pm 0.05 & V & 0.25 \pm 0.10 \\ \hline D & VK105(0402) & 1.0 \pm 0.05 & 0.5 \pm 0.05 & 0.5 \pm 0.05 & W & 0.25 \pm 0.10 \\ \hline D & WK105(0204) & 0.52 \pm 0.05 & 1.0 \pm 0.05 & 0.3 \pm 0.05 & P & 0.18 \pm 0.08 \\ \hline D & MK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline D & MK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline D & MK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & D & 0.5 \pm 0.25 \\ \hline D & MK107(0306) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 0.8 \pm 0.10 & D & 0.5 \pm 0.25 \\ \hline D & MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline D & MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline D & MK212(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.10 & D & 0.3 \pm 0.2 \\ \hline M & MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline D & MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline D & MK316(1206) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline D & MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline D & MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline D & MK325(1210) & 3.2 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{array}$	Type(EIA)	L	W	Т	*1	е		
$ \begin{array}{ $	□MK042(01005)	0.4±0.02	0.2±0.02	0.2±0.02		0.1±0.03		
$ \begin{array}{ c c c c c c } & 1.0 \pm 0.05 & 0.5 \pm 0.05 & \hline 0.3 \pm 0.03 & P \\ \hline 0.3 \pm 0.03 & P \\ \hline 0.5 \pm 0.05 & V \\ \hline \hline VK105(0402) & 1.0 \pm 0.05 & 0.5 \pm 0.05 & 0.5 \pm 0.05 & W \\ \hline 0.5 \pm 0.05 & 0.5 \pm 0.05 & W & 0.25 \pm 0.10 \\ \hline WK105(0204) & 0.52 \pm 0.05 & 1.0 \pm 0.05 & 0.3 \pm 0.05 & P \\ \hline 0.18 \pm 0.08 & 0.045 \pm 0.05 & K \\ \hline 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A \\ \hline MK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & V \\ \hline 0.08 \pm 0.10 & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & V \\ \hline 0.08 \pm 0.10 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & V & 0.25 \pm 0.15 \\ \hline 0.08 \pm 0.10 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & K \\ \hline 0.08 \pm 0.10 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & K \\ \hline 0.08 \pm 0.10 & 1.25 \pm 0.10 & 0.8 \pm 0.10 & D \\ \hline 0.045 \pm 0.05 & K & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.045 \pm 0.05 & K & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.045 \pm 0.05 & K & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.045 \pm 0.05 & 0.10 & D & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.08 \pm 0.10 & 1.25 \pm 0.10 & 0 & 0.5 \pm 0.25 & 0.10 \\ \hline 0.08 \pm 0.10 & 1.25 \pm 0.10 & 0 & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.08 \pm 0.10 & 0 & 0.5 \pm 0.25 & 0.10 & 0 & 0.5 \pm 0.25 & 0.10 \\ \hline 0.08 \pm 0.10 & 0 & 0.5 \pm 0.25 & 0.10 & D & 0.3 \pm 0.2 & 0.15 & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 & 0.10 & 0 \\ \hline 0.08 \pm 0.10 & 0 & 0 & 0.5 \pm 0.25 & 0.10 & 0 & 0.5 \pm 0.25 & 0.25 & 0.10 & 0 & 0.5 \pm 0.25 & 0.25 & 0.10 & 0 & 0.5 \pm 0.25 & 0.$	□МК063(0201)	0.6 ± 0.03	0.3±0.03	0.3 ± 0.03	-	0.15±0.05		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				0.2 ± 0.02	С			
$ \begin{array}{ c c c c c } \hline \forall K105(0402) & 1.0 \pm 0.05 & 0.5 \pm 0.05 & 0.5 \pm 0.05 & W & 0.25 \pm 0.10 \\ \hline WK105(0204) & 0.52 \pm 0.05 & 1.0 \pm 0.05 & 0.3 \pm 0.05 & P & 0.18 \pm 0.08 \\ \hline WK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline WK107(0306) & 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline WK107(0306) & 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.5 \pm 0.05 & V & 0.25 \pm 0.15 \\ \hline WK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 \\ \hline WK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline WK212(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.3 \pm 0.20 & 0.5 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.3 \pm 0.20 & 0.5 \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.5 \pm 0.20 & M \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.5 \pm 0.20 & M \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.5 \pm 0.20 & M \\ \hline MK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 0.5 \pm 0.20 & M \\ \hline MK312(110) &$	□MK105(0402)	1.0 ± 0.05	0.5 ± 0.05	0.3 ± 0.03	Ρ	0.25 ± 0.10		
$ \begin{array}{ c c c c c } \hline \square WK105(0204) \\ \hline \square MK107(0603) \\ \hline \square 6 \pm 0.10 \\ \hline \square MK107(0603) \\ \hline \square 6 \pm 0.10 \\ \hline \square MK107(0603) \\ \hline \square 6 \pm 0.10 \\ \hline \square MK107(0603) \\ \hline \square 6 \pm 0.10 \\ \hline \square MK107(0603) \\ \hline \square 6 \pm 0.10 \\ \hline \square MK107(0306) \\ \hline \square MK212(0805) \\ \hline \square MK316(1206) \\ \hline \ 3.2 \pm 0.15 \\ \hline \square MK316(1206) \\ \hline \ 3.2 \pm 0.15 \\ \hline \square MK325(1210) \\ \hline \ 3.2 \pm 0.30 \\ \hline \ \ 1.6 \pm 0.15 \\ \hline \ 1.6 \pm 0.15 \\ \hline \ \ 1.5 \pm 0.10 \\ \hline \ \ 1.15 \pm 0.10 \\ \hline \ \ \ 1.15 \pm 0.10 \\ \hline \ \ \ \ 1.15 \pm 0.10 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				0.5 ± 0.05	V			
$ \begin{array}{ c c c c c c } & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.45 \pm 0.05 & K \\ \hline 0.8 \pm 0.10 & A & 0.35 \pm 0.25 \\ \hline 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline 0.05 \pm 0.05 & V & 0.25 \pm 0.15 & 0.8 \pm 0.10 & 0.5 \pm 0.05 & V & 0.25 \pm 0.15 \\ \hline 0.08 \pm 0.10 & 1.6 \pm 0.10 & 0.5 \pm 0.05 & K & 0.45 \pm 0.05 & K & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 \\ \hline 0.08 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.5 \pm 0.25 & 0.25 \pm 0.10 & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.20 & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.20 & 0.85 \pm 0.10 & D & 0.3 \pm 0.2 & 0.35 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.20 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.20 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.25 \pm 0.25 & 0.2$	□VK105(0402)	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	W	0.25 ± 0.10		
$ \begin{array}{ c c c c c c c } \square MK107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A & 0.35 \pm 0.25 \\ \hline \square MR107(0603) & 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & A & 0.1 \sim 0.6 \\ \hline \square MK107(0306) & 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.5 \pm 0.05 & V & 0.25 \pm 0.15 \\ \hline \square MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.5 \pm 0.25 \\ \hline \square MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.5 \pm 0.25 \\ \hline \square MK212(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \square MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.10 & F \\ \hline \square MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \square MK316(1206) & 3.2 \pm 0.30 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \square MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \pm 0.2 \\ \hline \square MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \pm 0.2 \\ \hline \square MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{matrix}$	□WK105(0204)※	0.52 ± 0.05	1.0 ± 0.05	0.3 ± 0.05	Р	0.18±0.08		
$ \begin{array}{ c c c c c c } \hline $		16-010	0.0 + 0.10	0.45 ± 0.05	Κ	0.050.05		
$ \begin{array}{ c c c c c c } \hline \square WK107(0306) & 0.8 \pm 0.10 & 1.6 \pm 0.10 & 0.5 \pm 0.05 & V & 0.25 \pm 0.15 \\ \hline \square MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.5 \pm 0.25 \\ \hline \square MR212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline \square MK212(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \square MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.5 \pm 0.25 \\ \hline \square MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \square MK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \square MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \pm 0.2 \\ \hline \square MK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \square MK325(1210) & 3.2 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \square MK322(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{array}$		1.0±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25		
$ \begin{array}{ c c c c c c } \hline Miclosed Mi$	□MR107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.1~0.6		
$ \begin{array}{ c c c c c } \square MK212(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 0.85 \pm 0.10 & D & 0.5 \pm 0.25 \\ \hline \mbox{\squareMR212}(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline \mbox{\squareMK212}(0508) \mbox{$\mbox{$\square$}} & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \mbox{\squareMK316}(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \mbox{\squareMK316}(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \mbox{\squareMK316}(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \mbox{\squareMK325}(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \pm 0.2 \\ \hline \mbox{\squareMK325}(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK325}(1210) & 3.2 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \\mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.45 \\ \hline \mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.45 \\ \hline \\mbox{\squareMK432}(1812) & 4.5 \pm 0.40 & 3.2 $	□WK107(0306)※	0.8±0.10	1.6±0.10	0.5 ± 0.05	V	0.25±0.15		
$ \begin{array}{ c c c c c } \hline \mbox{\squareMR212(0805)$} & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline \squareWK212(0508)$ & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \mbox{\squareWK212(0508)$ & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.10 & D & 1.15 \pm 0.10 & F & 1.25 \pm 0.10 & G & 0.25 \sim 0.25 & 0.2$		2.0±0.10		0.45 ± 0.05	Κ			
$\begin{tabular}{ c c c c c c } \hline \mbox{IMR212}(0805) & 2.0 \pm 0.10 & 1.25 \pm 0.10 & 1.25 \pm 0.10 & G & 0.25 \sim 0.75 \\ \hline \mbox{IWK212}(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \mbox{IMK316}(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.5 + 0.35 / -0.25 \\ \hline \mbox{IMR316}(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \mbox{IMK325}(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M \\ \hline \mbox{IMK325}(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \mbox{IMK325}(1210) & 3.2 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{tabular}$	□MK212(0805)		1.25±0.10	0.85±0.10	D	0.5 ± 0.25		
$\begin{tabular}{ c c c c c c c c c c } \hline \squareWK212(0508) & 1.25 \pm 0.15 & 2.0 \pm 0.15 & 0.85 \pm 0.1 & D & 0.3 \pm 0.2 \\ \hline \squareMK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.15 \pm 0.10 & F & \\ \hline 1.25 \pm 0.10 & G & & \\ \hline \squareMR316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \squareMK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & \\ \hline \squareMR325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline \squareMK325(1210) & 3.2 \pm 0.30 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \squareMK325(1210) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{tabular}$				1.25 ± 0.10	G			
$\begin{tabular}{ c c c c c c } \hline \squareMK316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.15 & 1.5 \pm 0.10 & G \\ \hline \squareMR316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.5 + 0.35 / -0.25 \\ \hline \squareMR316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \squareMK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.6 \pm 0.3 \\ \hline \squareMR325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.3 \sim 0.9 \\ \hline \squareMK325(1210) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{tabular}$	□MR212(0805)	2.0±0.10	1.25 ± 0.10	1.25 ± 0.10	G	0.25~0.75		
$ \begin{tabular}{ c c c c c } & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.15 \pm 0.10 & F \\ \hline 1.25 \pm 0.10 & G \\ \hline 1.6 \pm 0.20 & L \\ \hline \end{tabular} \\ \hline \$	□WK212(0508)※	1.25±0.15	2.0±0.15	0.85±0.1	D	0.3±0.2		
$ \begin{tabular}{ c c c c c c } & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.25 \pm 0.10 & G \\ \hline 1.6 \pm 0.20 & L & & & & & \\ \hline \mbox{$16(1206)$} & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & & & & & \\ \hline \mbox{$MR316(1206)$} & 3.2 \pm 0.30 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & & & & & \\ \hline \mbox{$MK325(1210)$} & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & & & & & \\ \hline \mbox{$MK325(1210)$} & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & & & & & \\ \hline \mbox{$MK325(1210)$} & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & & & & & \\ \hline \mbox{$MK325(1210)$} & 3.2 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & & & & \\ \hline \end{tabular} $				0.85±0.10	D			
$ \begin{array}{ c c c c c c } \hline & 1.25 \pm 0.10 & G \\ \hline & 1.6 \pm 0.20 & L \\ \hline & 1.6 \pm 0.20 & L \\ \hline & 1.6 \pm 0.20 & L \\ \hline & 0.25 \sim 0.85 \\ \hline & 0.85 \pm 0.10 & D \\ \hline & 1.15 \pm 0.10 & F \\ \hline & 1.5 \pm 0.10 & H \\ \hline & 1.9 \pm 0.20 & N \\ \hline & 1.9 \pm 0.20 & N \\ \hline & 1.9 \pm 0.20 & N \\ \hline & 1.9 \pm 0.20 & M \\ \hline & 1.9 \pm 0.20 & M \\ \hline & 0.8 \pm 0.10 & 1 \\ \hline & 0.8 \pm $		001045	101015	1.15 ± 0.10	F			
$\begin{tabular}{ c c c c c c c } \hline \squareMR316(1206) & 3.2 \pm 0.15 & 1.6 \pm 0.15 & 1.6 \pm 0.20 & L & 0.25 \sim 0.85 \\ \hline \squareMK325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & \hline 1.5 \pm 0.10 & H & \\ \hline 1.5 \pm 0.10 & H & \\ \hline 1.9 \pm 0.20 & N & \\ \hline 1.9 \pm 0.20 & N & \\ \hline 1.9 \pm 0.20 & M & \\ \hline \squareMR325(1210) & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & \\ \hline \squareMK432(1812) & 4.5 \pm 0.40 & 3.2 \pm 0.30 & 2.5 \pm 0.20 & M & 0.9 \pm 0.6 \\ \hline \end{tabular}$	LIMK316(1206)	3.2±0.15	1.6±0.15	1.25 ± 0.10	G	0.5+0.35/-0.25		
$\squareMK325(1210) = 3.2\pm0.30 \begin{array}{c} 2.5\pm0.20 \\ \hline 1.15\pm0.10 \\ -1.15\pm0.10 \\ \hline 1.5\pm0.10 \\ \hline 1.5\pm0.10 \\ \hline 1.9\pm0.20 $				1.6±0.20	L			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	□MR316(1206)	3.2±0.15	1.6±0.15	1.6±0.20	L	0.25~0.85		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				0.85±0.10	D			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1.15±0.10	F			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.0.1.0.00	051000	1.5±0.10	Н	00100		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	LIMK325(1210)	3.2±0.30	2.5±0.20	1.9±0.20	Ν	0.6±0.3		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1.9+0.1/-0.2	Υ			
$\square MR325(1210) \qquad 3.2 \pm 0.30 \qquad 2.5 \pm 0.20 \qquad M \qquad 0.3 \sim 0.9$ $\square MK432(1812) \qquad 4.5 \pm 0.40 \qquad 3.2 \pm 0.30 \qquad 2.5 \pm 0.20 \qquad M \qquad 0.9 \pm 0.6$				2.5±0.20	М			
Image: Displaying the system Image: Displaying the system <th< td=""><td></td><td>2.2 + 0.20</td><td>25-020</td><td>1.9±0.20</td><td>Ν</td><td>0.2 0.0</td></th<>		2.2 + 0.20	25-020	1.9±0.20	Ν	0.2 0.0		
	LIMIR(329(1210)	3.2 ± 0.30	2.5±0.20	2.5±0.20	М	0.3~0.9		
Note : ※. LW reverse type, *1.Thickness code	□MK432(1812)	4.5±0.40	3.2 ± 0.30	2.5±0.20	М	0.9±0.6		
	Note : 🔆 LW reverse type, *	1.Thickness cod	e					

STANDARD QUANTITY

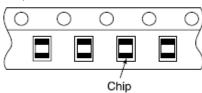
ī

T	EIA (inch)	Dime	ension	Standard o	quantity[pcs]
Туре	EIA (inch)	[mm]	Code	Paper tape	Embossed tape
042	01005	0.2	С		40000
042	01005	0.2	D		40000
063	0201	0.3	Р	15000	
003	0201	0.3	Т		_
		0.2	С	20000	-
	0402	0.3	Р	15000	-
105	0402	0.5	V		
		0.0	W	10000	-
	0204 💥	0.30	Р		
107	0603	0.45	К	4000	
	0003	0.8	A	4000	
	0306 💥	0.50	V	-	4000
	0805	0.45	К	4000	-
212		0.85	D	4000	
212		1.25	G	-	3000
	0508 💥	0.85	D	4000	-
		0.85	D	4000	-
316	1206	1.15	F		0000
310	1200	1.25	G	_	3000
		1.6	L	-	2000
		0.85	D		
		1.15	F		
325	1210	1.5	Н	_	2000
320	1210	1.9	N		
		2.0 max	Y		
		2.5	М	-	500(T), 1000(F
432	1812	2.5	М	-	500

PACKAGING


Taped package					
Type(EIA)	Thick	ness	Standard quantity [pcs]		
Type(EIA)	mm	code	Paper tape	Embossed tape	
MK042(01005)	0.2	C, D	—	40000	
□MK063(0201)	0.3	Ρ, Τ	15000		
□WK105(0204) 💥	0.3	Р	10000		
	0.2	С	20000		
□MK105(0402)	0.3	Р	15000	-	
	0.5	V	10000		
□VK105(0402) 💥	0.5	W	10000		
MK107(0603)	0.45	К	4000		
□WK107(0306) 💥	0.5	V	-	4000	
□MR107(0603)	0.8	Α	4000		
MK212(0805)	0.45	К		_	
□WK212(0508) 💥	0.85	D			
□MR212(0805)	1.25	G	-	3000	
	0.85	D	4000	-	
□MK316(1206)	1.15	F		0000	
□MR316(1206)	1.25	G	—	3000	
	1.6	L			
	0.85	D			
	1.15	F		0000	
□MK325(1210)	1.5	Н		2000	
□MR325(1210)	1.9	Ν			
	2.0max.	Y	7		
	2.5	М	1	500(T), 1000(P)	
□MK432(1812)	2.5	М	_	500	

Note : 💥 LW Reverse type.

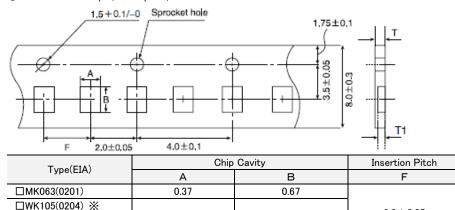

(2) Taping material

No bottom tape for pressed carrier tape

Card board carrier tape

Chip filled

 \bigcirc

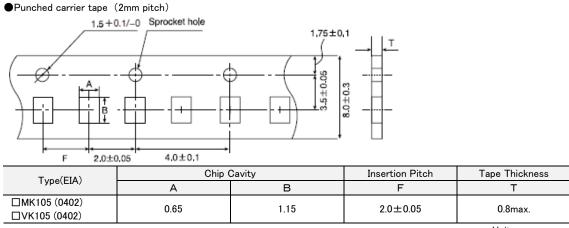

3 Representative taping dimensions

Paper Tape(8mm wide)

□MK105(0402) (*1 C)

□MK105(0402) (*1 P)

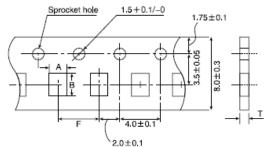
Pressed carrier tape(2mm pitch)



sertion Pitch	Tape Thicknes				
F	Т	T1			
2.0±0.05	0.45max.	0.42max.			
2.0 ± 0.05	0.4max.	0.3max.			
	0.45max.	0.42max.			

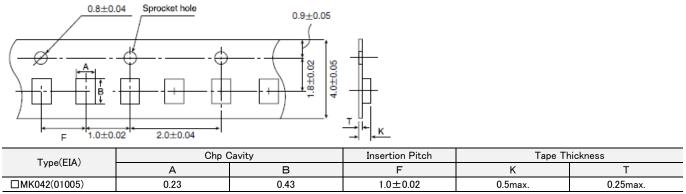
Note *1 Thickness, C:0.2mm ,P:0.3mm. X LW Reverse type.

0.65

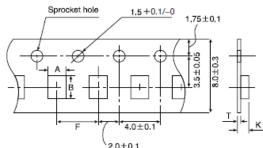

Unit:mm

1.15

Unit:mm

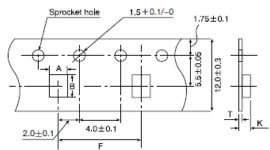

•Punched carrier tape (4mm pitch)

Type(EIA)	Chip (Cavity	Insertion Pich	Tape Thickness
Type(LIA)	А	В	F	Т
□MK107(0603)				
□WK107(0306) 💥	1.0	1.8		1.1max.
□MR107(0603)			40.004	
DMK212(0805)	1.05	0.4	4.0±0.1	
□WK212(0508) 💥	1.65	2.4		1.1max.
□MK316(1206)	2.0	3.6		
Note: Taping size might b	e different depending on	the size of the product.	X LW Reverse type.	Unit : mm

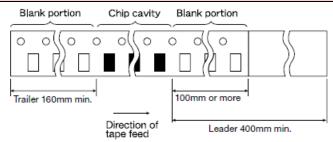

Note: Taping size might be different depending on the size of the product. X LW Reverse type.

Embossed tape (4mm wide)

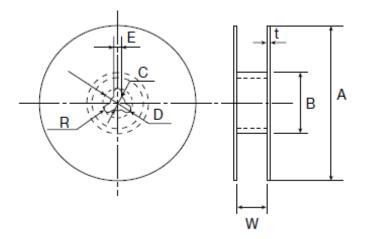
Unit:mm


Embossed tape(8mm wide)

Type(EIA)	Chip	Chip Cavity		Tape Thickness	
Type(EIA)	А	В	F	К	Т
□WK107(0306) 💥	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805) □MR212(0805)	1.65	2.4	4.0±0.1		
□MK316(1206) □MR316(1206)	2.0	3.6		3.4max.	0.6max.
□MK325(1210) □MR325(1210)	2.8	3.6			

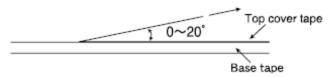

Note: 💥 LW Reverse type.

Embossed tape(12mm wide)

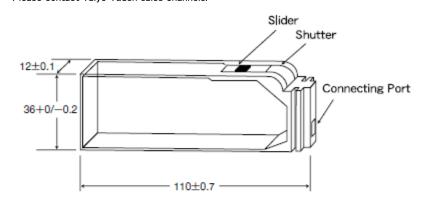


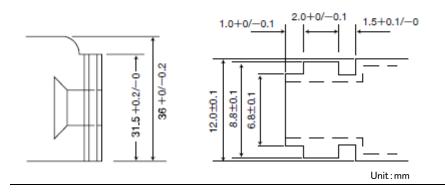
Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
	A	В	F	К	Т
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.
					Unit:mm

④Trailer and Leader



А	В	С	D	E	R
ϕ 178±2.0	ϕ 50min.	ϕ 13.0±0.2	φ21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0	-		
8mm wide tape	2.5max.	10±1.5	-		
12mm wide tape	2.5max.	14±1.5	- Unit : mm		


6 Top Tape Strength


The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

⑦Bulk Cassette

The exchange of individual specification is necessary. Please contact Taiyo Yuden sales channels.

Multilayer Ceramic Capacitors

RELIABILITY DATA

1.Operating T	emperature Range							
	Temperature	Standard	55 to 1					
Specified	Compensating(Class1)	High Frequency Type	-55 to +125°C					
				Specification	Temperature Range			
			BJ	В	−25 to +85°C			
	High Permittivity(Class2)		БJ	X5R	−55 to +85°C			
			B7	X7R	−55 to +125°C			
Value			C6	X6S	$-55 \text{ to } +105^{\circ}\text{C}$			
			C7	X7S	$-55 \text{ to } + 125^{\circ}\text{C}$			
			LD(🔆)	X5R	−55 to +85°C			
				F	−25 to +85°C			
				Y5V	−30 to +85°C			
			Note: 🗴	LD Low distortion hi	igh value multilayer ceramic capacitor			

2. Storage Co	2. Storage Conditions									
	Temperature	Standard		$-55 \text{ to } + 125^{\circ}\text{C}$						
	Compensating(Class1)	High Frequency Type	-55 LO -							
				Specification	Temperature Range					
			BJ	В	-25 to +85°C					
		High Davasitati itta (Olassa)		X5R	-55 to +85°C					
Specified				X7R	−55 to +125°C					
Value	High Permittivity (Class2			X6S	$-55 \text{ to } +105^{\circ}\text{C}$					
	High Ferniculty (Glassz)		C7	X7S	$-55 \text{ to } + 125^{\circ}\text{C}$					
				X5R	-55 to +85°C					
			F	F	-25 to +85°C					
				Y5V	-30 to $+85^{\circ}C$					
			Note: 🗙	LD Low distortion h	nigh value multilayer ceramic capacit	or.				

3. Rated Voltag	3. Rated Voltage							
	Temperature	Standard	50VDC, 25VDC, 16VDC					
Specified Value	Compensating(Class1)	High Frequency Type	50VDC, 16VDC					
value	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC					

4. Withstanding	Voltage (Between termina	ls)							
0.15.1	Temperature	Standard							
Specified Value	Compensating(Class1)	High Frequency Type		No breakdown o	No breakdown or damage				
	High Permittivity(Class2)								
- .			Cla	ass 1	Class 2				
Test Methods and	Applied voltage Rated		Rated	Rated volta × 3 Rated voltage × 2.5					
Remarks	Duration	Duration		1 to 5	j sec.				
i tomar KS	Charge/discharge currer	nt		50mA	max.				

5. Insulation Re	5. Insulation Resistance								
	Temperature	Standard	10000 MΩ min.						
Specified	Compensating(Class1)	High Frequency Type							
Value	High Permittivity(Class2) Note 1	C ≤ 0.047 μ F : 10000 MΩ min. C>0.047 μ F : 500MΩ • μ F						
Test	Applied voltage	: Rated voltage							
Methods and	Duration : 60±5 sec.								
Remarks	Charge/discharge current	: 50mA max.							

6. Capacitance	(Tolerance)					
Specified Value	Temperature	Standard	C U SL	· · · · · · · · · · · · · · · · · · ·	: ±0.25pF : ±0.5pF : ±5% or ±10%	
	Compensating(Class1)	High Frequency Type	CH RH	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%	
	High Permittivity(Class2)			7, C6, C7, LD(※):±10 ∙80/−20% ※LD Low distortion hig	% or ±20%, gh value multilayer ceramic	capacitor
			Cla	ss 1	Class 2	
T		Standar	d High Frequency Type		C≦10µF	C>10 µ F
Test Methods and	Preconditioning		No	one	Thermal treatment (a	t 150°C for 1hr) Note 2
Remarks	Measuring frequency		1MHz	z±10%	1kHz±10%	120±10Hz
Remarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms
	Bias application				one	

Specified	Temperature Compensating(Class1)		Standard		0pF:Q≧400+20C 0pF:Q≧1000 (C:N	ominal capacitance)			
Value	Compensating (Classif)	High Frequency Type		Refer	to detailed specification				
	High Permittivity (Class2) Note 1			BJ, B	7, C6, C7:2.5% max., F:	7% max.			
				Class 1			Class 2		
			Standard		High Frequency Type	C≦10µF	C>10 µ F		
	Preconditioning		None		one	Thermal treatment (at	150°C for 1hr) Note 2		
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz		
Methods and	Measuring voltage Note 1			0.5 to 5Vrms 1±0.2Vrms 0.5±0.1Vr			0.5±0.1Vrms		
Remarks	Bias application			None					
	High Frequency Type								
	Measuring equipment	: HP	4291A						
	Measuring jig	: HP	16192A						

			Temperature Characteristic [ppm/°			C]	Tole	rance [ppm/°C]	
			С□:	0	CH, CJ, CK	ζ.		H:±60	
		Standard	U□ :	- 750	UJ. UK			J:±120	
	Temperature		00.	- /30	00, UK			K:±250	
	Compensating(Class1)		SL :	+350 to -100	0				
			Tem	perature Charac	teristic [ppm/°	C]	Tole	rance [ppm/°C]	
		High Frequency Type	С□:	0	СН				
Specified			R□ :	-220	RH			H: ±60	
					Capacitance	Ref	erence	-	
Value				Specification	change	tem	perature	Temperature Range	
				В	±10%	2	20°C	-25 to +85°C	
		BJ	X5R	±15%	2	25°C	−55 to +85°C		
		B7	X7R	±15%	2	25°C	−55 to +125°C		
	High Permittivity (Class2	C6	X6S	±22%	2	25°C	−55 to +105°C		
		C7	X7S	±22%	2	25°C	-55 to +125°C		
		LD(X)	X5R	±15%	2	25°C	−55 to +85°C		
		F	F	+30/-80%	2	20°C	-25 to +85°C		
			Y5V	+22/-82%	2	25°C	-30 to +85°C		
			Note : XLD Low distortion high value multilayer ceramic capacitor						
	Class 1								
	Capacitance at 20°C and	85°C shall be measure	d in thern	nal equilibrium, a	and the tempera	iture cl	naracteris	tic shall be calculate	
	following equation.								
	$\frac{(C_{85}-C_{20})}{(C_{85}-C_{20})}$ ×	10 ⁶ (ppm/°C)							
_	$\frac{(C_{85} - C_{20})}{C_{20} \times \Delta T} \times 10^{6} (ppm/^{\circ}C) \qquad \Delta T = 65$								
Test	Class 2								
Methods and Remarks	Capacitance at each step	shall be measured in the	ormal oqui	librium and the	tomporature ob	aracter	ictic chall	be calculated from t	
Remarks	equation.		ermai equi		temperature ona	aracter	ISCIC SHAII		
	Step	B、F		X5R、X7R、X6S、	X7S、Y5V				
	1	Minimum op	erating ter	mperature					
	2	20°C		25°C					
	3	Maximum op	erating te						


 $\begin{array}{c} (C-C_2) \\ C_2 \\ \hline \\ C \\ : Capacitance in Step 1 or Step 3 \\ C \\ : Capacitance in Step 2 \\ \end{array}$

9. Deflection					
	Temperature		Standard	Appearance Capacitance change	: No abnormality $_{ m e}$: Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.
Specified	Compensating(Class1)		High Frequency Type	Appearance Cpaitance change	: No abnormality : Within±0.5 pF
Value	High Permittivity (Class2)			Appearance Capacitance change Note: ※LD Low dist	: No abnormality \pm : Within \pm 12.5% (BJ, B7, C6, C7,LD(\gtrsim)) Within \pm 30% (F) stortion high value multilayer ceramic capacitor
Test	Board	042,	Multilayer Ceram 063, [※] 105 Type Glass epoxy-res	The other types	Board R-230 Warp
Methods and	Thickness Warp		0.8mm 1mn	1.6mm	
Remarks	Duration		10 se		<u>45±2</u> , <u>45±2</u> , '
		^{**} 105 Ту	ype thickness, C: 0.2m	ım ,P∶ 0.3mm.	(Unit: mm) Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength								
0	Temperature	Standard	_						
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.						
Value	High Permittivity (Class2))	-						
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	← A → ∑	R0.5 Pressing jig Chip Chip						

11. Adhesive S	trength of Terminal Elec	ctrodes						
0.15.1	Temperature	Standard						
Specified Value	Compensating(Class1) High Frequency Ty	/pe No terminal separat	No terminal separation or its indication.				
Value	High Permittivity (Cl	ass2)						
		Multilayer Cer	amic Capacitors	Hooked jig				
Test		042, 063 Type	105 Type or more					
Methods and	Applied force	2N	5N	R=05 JU Board				
Remarks	Duration	30±	:5 sec.					
				」				

12. Solderability	y				
	Temperature	Standard			
Specified Value	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered b		by new solder.
Value	High Permittivity (Class2)				
-		Eutectic so	Eutectic solder Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu	
Remarks	Solder temperature	230±5°	С	245±3°C	
Nomar NS	Duration		4±1	sec.]

	to Soldering	1	1			
Specified Value	Temperature	Standard	Q Insulatio	nce ance change n resistance nding voltage	: No abnormlty : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)).25pF, whichever is larger. : No abnormality
	Compensating(Class) High Frequency Type	Appearance Capacitancecange Q Insulation resistance Withstanding voltage		: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity(CI	ass2) Note 1	Dissipat Insulatio Withstar	ice change ion factor n resistance nding voltage	: No abnormality : Within ±7.5%(BJ, B Within ±20%(F) : Initial value : Initial value (between terminals): tion high value multilaye	No abnormality
		042, 063 Type	lss		105 Type	
	Preconditioning	042, 003 Type	No			
	Preheating	150°C, 1 to 2 min.		80 to 10	00°C, 2 to 5 min. 00°C, 2 to 5 min.	
	Solder temp.		270±5°C			
	Duration		3±0.5 sec.			
Test	Recovery	6 to 24 hrs	(Standard condition)Noe 5			
Methods and Remarks					Class 2	
		042、063 Type		105,	107, 212 Type	316, 325 Туре
	D P (1) P		Thermal treatment (at 150°C for 1 hr) N			te 2
	Preconditioning			80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5 min.		
	Preconditioning	150°C, 1 to 2 min.				80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
		150°C, 1 to 2 min.		150 to 2		
	Preheating	150°C, 1 to 2 min.		150 to 2	00°C, 2 to 5 min.	

	Temperature	Standard	Capacitance change : V Q : In Insulation resistance : In	No abnormality Vithin ±2.5% or ±0.25 nitial value nitial value petween terminals) ∶N	pF, whichever is larger. o abnormality	
Specified Value	Compensating(Class1)	High Frequency Type	Capacitance change : V Q : In Insulation resistance : In	No abnormality Within ±0.25pF nitial value nitial value petween terminals) :N	o abnormality	
	High Permittivity(Class2) Note 1	Capacitance change : W Dissipation factor : Ir Insulation resistance : Ir	lo abnormality Vithin ±7.5% (BJ, B7, Within ±20% (F) nitial value nitial value etween terminals) : Ni high value multilayer c	o abnormality	
			Class 1	Class 2		
	Preconditioning		None	Thermal treatment (at 150°C for 1 hr) Note 2		
Test Methods and Remarks	1 cycle	Step 1 2 3 4	Temperatur Minimum operating Normal temp Maximum operating Normal temp	g temperature erature g temperature	Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3	
	Number of cycles		5	times		
	Recovery	6 to 24 hrs(Sta	ndard condition)Note 5	24±2 hrs (S	Standard condition)Not	e 5

15. Humidity(Steady State)				
	Temperature Compensating(Class1)	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or $\pm 0.5pF$, whichever is larger. : C < 10pF : Q \geq 200 + 10C 10 \leq C < 30pF : Q \geq 275 + 2.5C C \geq 30pF:Q \geq 350 (C : Nominal capacitance) : 1000 M Ω min.	
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within ±0.5pF, : 1000 MΩ min.	
	High Permittivity(Cla	uss2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distort	 : No abnormality : Within ±12.5% (BJ, B7, C6, C7, LD(X)) Within ±30% (F) : 5.0% max.(BJ, B7, C6, C7, LD(X)) 11.0% max.(F) : 50 MΩ μ F or 1000 MΩ whichever is smaller. tion high value multilayer ceramic capacitor 	
		Cla	ass 1	Class 2	
		Standard	High Frequency Type		
Test	Preconditioning		one	Thermal treatment(at 150°C for 1 hr) Note 2	
Methods and	Temperature	40±2°C	60±2°C	40±2°C	
Remarks	Humidity	90 to	95%RH	90 to 95%RH	
	Duration	500+2	4/−0 hrs	500+24/-0 hrs	
	Recovery	6 to 24 hrs (Standa	ard condition)Note 5	24±2 hrs(Standard condition)Note 5	

16. Humidity Lo	pading				
Specified Value	Temperature	Standard	$\begin{array}{llllllllllllllllllllllllllllllllllll$		or ± 0.75 pF, whichever is larger. 100 \pm 10C/3
	Compensating(Class1)	High Frequency Type			n ±0.4 pF n ±0.75 pF
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distort	e change : Within ±12.5% (BJ, B7, C6, C7, LD(X)) Within ±30% (F) factor : 5.0% max. (BJ, B7, C6, C7, LD(X)) 11.0% max. (F)	
		C	Class 1		Class 2
	Preconditioning	Standard High Frequer		(Rated vol	All items Voltage treatment tage are applied for 1 hour at 40°C) Note 3
Test	Temperature	40±2°C	60±2°C	40±2°C	
Methods and	Humidity	90 to 95%RH		90 to 95%RH	
Remarks	Duration	500+	24/-0 hrs	500+24/-0 hrs	
	Applied voltage	Rate	ed voltage		Rated voltage
	Charge/discharge current	50	mA max.	50mA max.	
	Recovery	6 to 24 hrs(Stan	dard condition)Note 5	24:	±2 hrs(Standard condition) Note 5

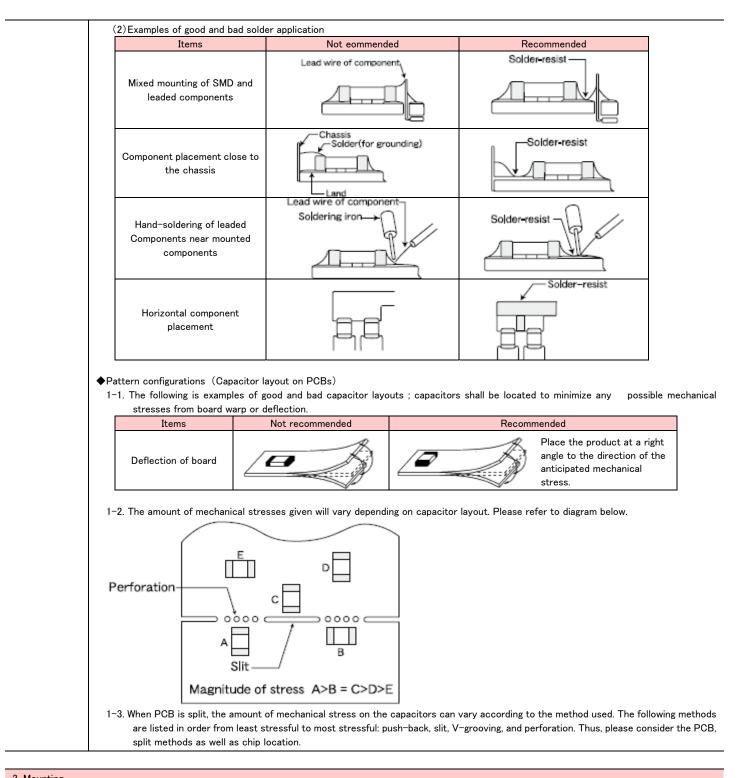
			Appearance	: No abnormality		
		Standard	Capacitance change	: Within $\pm 3\%$ or	\pm 0.3pF, whichever is	larger.
			Q	:C<10pF: Q≧	200+10C	
	Temperature			10≦C<30pF:	Q≧275+2.5C	
				C≧30pF: Q≧	350 (C:Nominal capa	citance)
	Compensating(Class1)		Insulation resistance	: 1000 MΩ min.		
			Appearance			
Specified		High Frequency Typ			\pm 0.3pF, whichever is	larger.
Value			Insulation resistance	: 1000 MΩ min.		
			Appearance	: No abnormality		
			Capacitance change			
	High Permittivity(Class2) Note 1			Within ±30%		
			Dissipation factor	•		
				11.0% max.(F)		
			Insulation resistance		000 M Ω , whichever	
			Note: ※LD Low dist	tortion high value mul	tilayer ceramic capac	itor
		C	ass 1		Class 2	
		Standard	High Frequency Type	BJ, LD(※), F	C6	B7, C7
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for		
	Treconditioning	None		1 hour at 85°C, 105°C or 125°C)Note 3, 4		
Test	Temperature	Maximum operating temperature		Maximum operating temperature		
Methods and	Duration	1000+	48/—0 hrs	1000+48/-0 hrs		
Remarks	Applied voltage	Rated	voltage × 2	Rated voltage × 2 Note 4		
Remarks	Charge/discharge current	50mA max.		50mA max.		
		6 to 21 hr (Stand	ard condition)Note 5	24±2 hrs(Standard condition)Note 5		
	Recovery	0 to 24rr (Starida	ard condition/ Note 5			

24±2hours.
Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

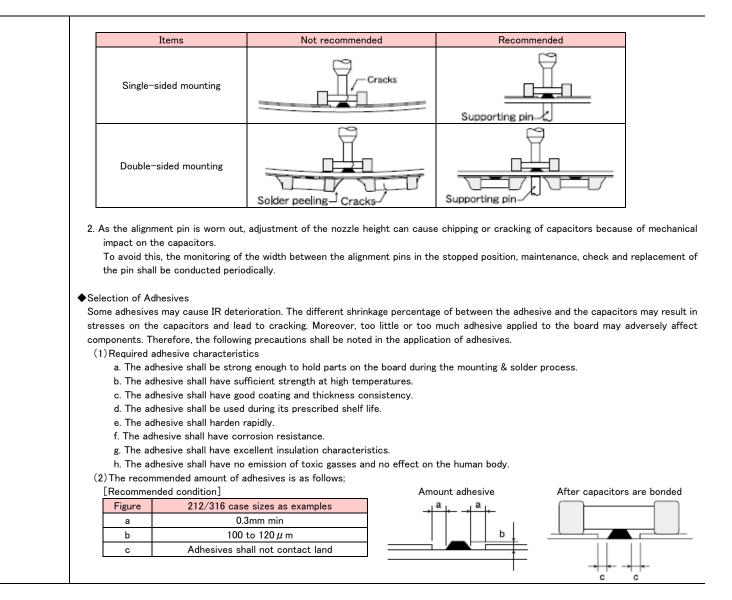
Note 5 Standard condition: Temperature: 5 to 35^oC, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

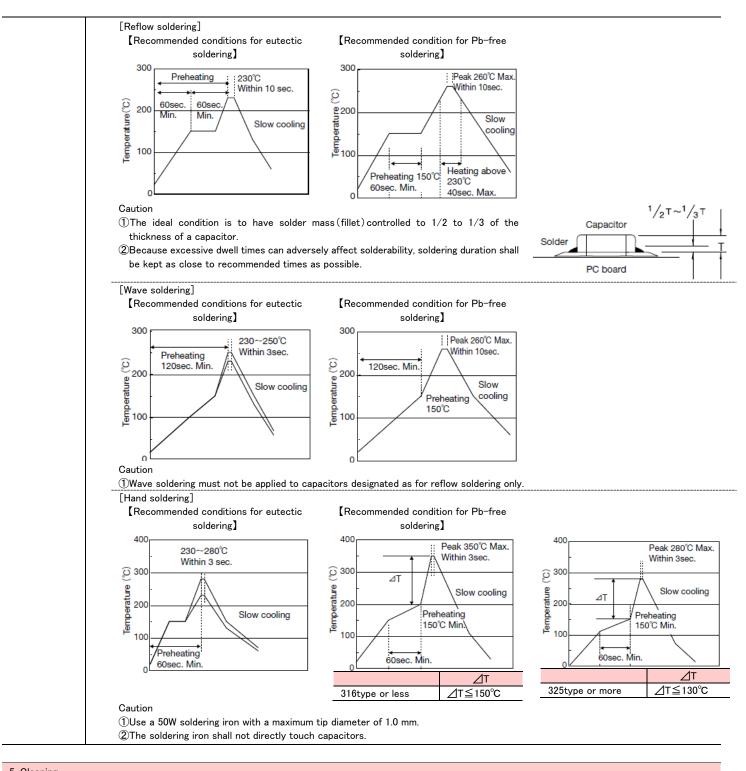


Precautions on the use of Multilayer Ceramic Capacitors

PRECAUTIONS


	♦ Verification of operating environment, electrical rating and performance
	1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC
	voltage or a pulse voltage having rapid rise time is used in a circuit.

2. PCB Design									
Precautions	1. When ca Therefo (1)Exca (2)Whe \$0 ◆Pattern cor After capac cutting, boa	figurations (Desig pacitors are mour re, the following it essive solder appl propriate land-pain n more than one co older-resist. figurations (Capa citors are mounted rd inspection, mou figurations and po	ited on PCBs, ems must be ca ied can cause tterns for prope component are j citor layout on d on boards, the inting of addition	the amount of refully conside mechanical str r amount of so iointly soldered PCBs) ey can be subjunal parts, asser	red in the desig resses which l Ider. I onto the same ected to mecha nbly into the ch	gn of land pattern ead to chip brea e land, each com anical stresses in nassis, wave sold	ns: aking or cracki ponent's solder n subsequent n ering of the boa	ng. Therefore, j ing point shall t nanufacturing pi	olease consider be separated by rocesses (PCB
	The followir (1)Recom ●Multila (unit: mr	figurations (Desi ng diagrams and ta mended land dime yer Ceramic Capa n) soldering	bles show some nsions for typic	e examples of r al chip capacit	ors	and patterns to p		ve solder amour and patterns fo	r PCBs
	Type	107	212	316	325		c↑ >	╎┝┎╗╁╌╕╇	
	- ypc		2.0	3.2	3.2		<u> </u>	<u>└</u> ┣─ ╘╼ _{┨───} ╞━┙──	
	Size	V 0.8	1.25	1.6	2.5				
	A	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5				
	В	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7			Chip capacitor	
	С	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5				1 _w
	Reflow	-soldering						I I I I I I I I I I I I I I I I I I I	<u> </u>
	Туре	042	063	105	107	212	316	325	432
Technical	Size	_ 0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
considerations	Size	V 0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	C 0.15 to 0.30 0.25 to 0.40 0.45 to 0.55 0.6 to 0.8 0.9 to 1.6 1.2 to 2.0 1.8 to 3.2 2.3						2.3 to 3.5		
	●LWDC (unit: m Type		-		lering	ance of the size	of the product		
	Size	W 1.0	1.6	2.0					
	A	0.18 to 0.22	0.25 to 0.	3 0.5 to	0.7				
	В	0.2 to 0.25	0.3 to 0.4	4 0.4 to	0.5			<>	
	C	0.9 to 1.1	1.5 to 1.	7 1.9 to	2.1			ILI	


3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.
Technical considerations	 Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

4. Soldering	
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shan not be applied. (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.
	 ◆Soldering Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability. Please contact us prior to usage of Sn-Zn solder.
Technical considerations	 Selection of Flux 1-1. When too much halogenated substance(Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.
	 Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive therm shock. Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be with 100 to 130°C. Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 				
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/L or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less 				

	1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period o while left under normal storage conditions resulting in the deterioration of the capacitor's performance.					
Precautions	2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.					
	The use of such resins, molding materials etc. is not recommended.					

	 Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	♦Mechanical considerations
	Be careful not to subject capacitors to excessive mechanical shocks.
	 (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

Precautions	 Storage To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions
Technical considerations	150°C for 1hour. If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

