

DEVICE PERFORMANCE SPECIFICATION

KODAK KAC-9638 CMOS IMAGE SENSOR

1288 (H) X 1032 (V) SXGA 18 fps Monochrome CIS

September 2004 Revision 1.9

KAC-9638 Monochrome CMOS Image Sensor SXGA 18 FPS

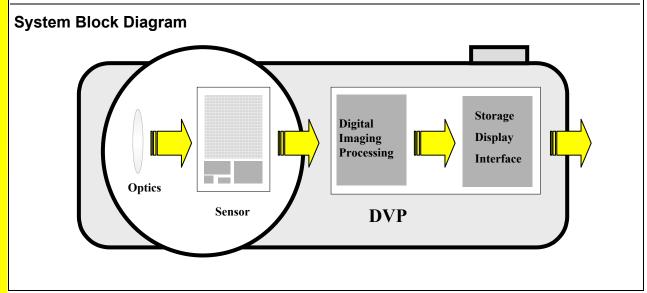
General Description

The KAC-9638 is a high performance, low power, 1/2" SXGA CMOS Active Pixel Sensor capable of capturing still, or motion images and converting them to a digital data stream.

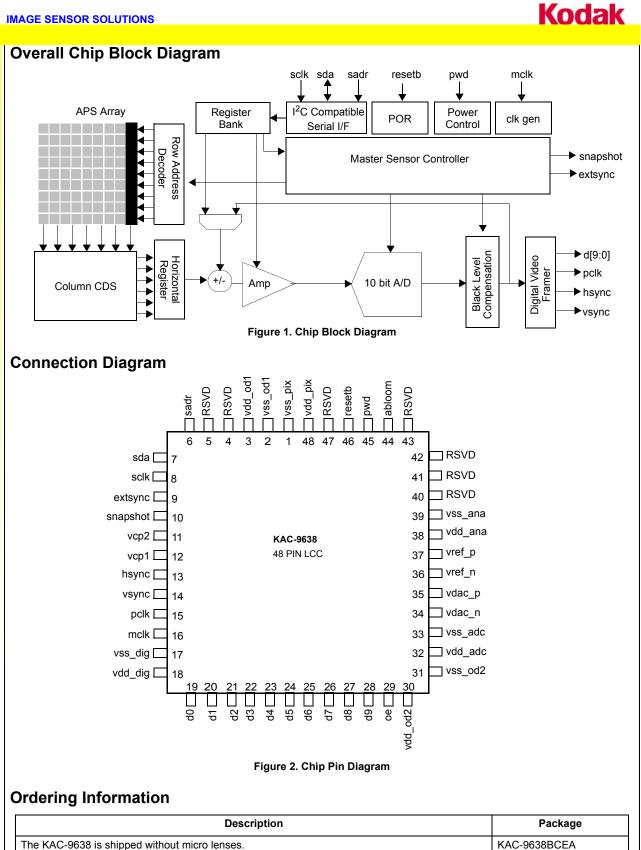
Mega-pixel class image quality is achieved by integrating a high performance analog signal processor comprising of a high speed 10 bit A/D converter, fixed pattern noise elimination circuits and a programmable gain amplifier. The offset and black level can be automatically adjusted on chip using a full loop black level compensation circuit.

Furthermore, a programmable smart timing and control circuit allows the user maximum flexibility in adjusting integration time, active window size, gain, frame rate. Various control, timing and power modes are also provided.

Features

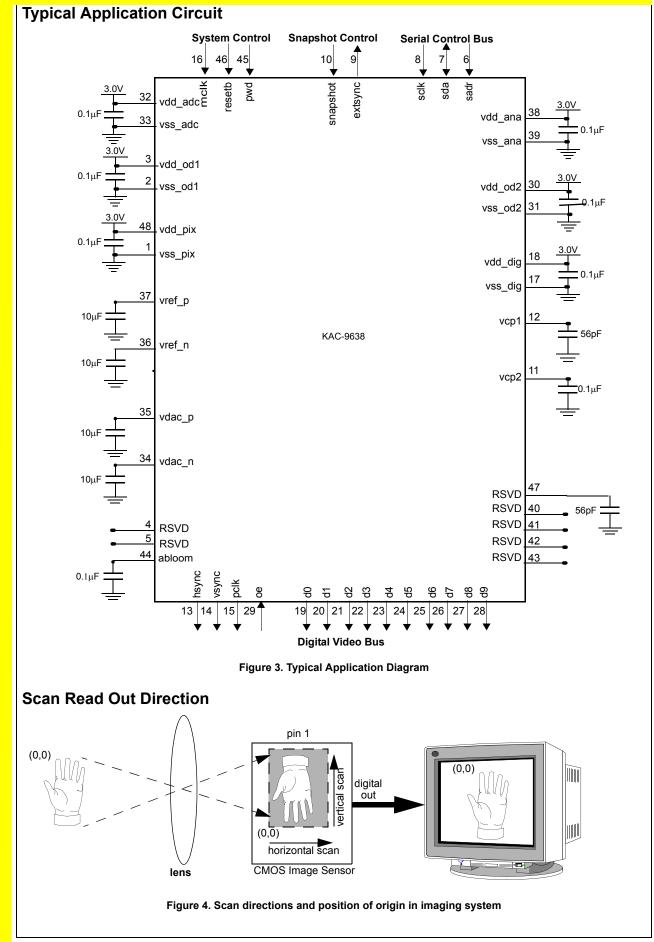

- · Video and snapshot operation
- · Progressive scan read out with horizontal and vertical flip
- · Programmable exposure:
 - Master clock divider
 - Inter row delay
 - Inter frame delay
 - Partial frame integration
- Programmable gain amplifier
- Full automatic servo loop for black level & offset adjustment on each gain channel
- Horizontal & vertical sub-sampling (2:1 & 4:2) with averaging
- Windowing
- Programmable pixel clock, inter-frame and inter-line delays
- I²C compatible serial control interface
- Power on reset & power down mode

Applications


- Security Camera
- Machine Vision
- Barcode Scanners
- Biometrics

Key Specifications

Array Format	Total: 1032 x 1312 Active: 1032 (V) x 1288 (H)
Effective Image Area	Total: 6.192mm x 7.872mm Active: 6.192mm x 7.728mm
Optical Format	1/2"
Pixel Size	6.0μm x 6.0μm
Video Outputs	8 & 10 Bit Digital
Frame Rate	18 frames per second
Dynamic Range	55 dB
Shutter	Rolling reset
FPN	0.2%
PRNU	1.7%
Sensitivity	2.40 V/lux*s
Fill Factor	49%
Micro Lens	none
Package	48 LCC
Single Supply	3.0V ± 10%
Power Consumption	150mW
Operating Temp	-10 ^o C to 50 ^o C


KAC-9638

KAC-9638HEADBOARD

A small PCB that houses the KAC-9638 sensor together with all necessary discrete components.

Pin	Name	I/O	Тур	Description	
1	vss_pix	I	Р	0 volt supply for the pixel array	
2	vss_od1	I	Р	0 volt supply for the digital IO buffers	
3	vdd_od1	I	Р	3.0 volt supply for the digital IO buffers.	
4	RSVD			This pin is reserved and should not be connected.	
5	RSVD			This pin is reserved and should not be connected.	
6	sadr	I	D	Input pin with pull down resistor. This pin is used to program different slave addresses for the sensor in an I ² C compatible system.	
7	sda	ю	D	I ² C compatible serial interface data bus.	
8	sclk	I	D	compatible serial interface clock.	
9	extsync	0	D	The external event synchronization signal is used to synchronize external events in snapshot mode.	
10	snapshot	I	D	Input pin with pull down resistor used to activate (trigger) a snapshot sequence.	
11	vcp2	0	А	nalog charge pump output, connect to $\textbf{vss}_\textbf{ana}$ via a $0.1\mu f$ capacitor. Voltage on this in should be 4.2 volt.	
12	vcp1	ο	А	Analog charge output, connect to vss_ana via a 56pf capacitor. Voltage on this pin should be vdd_ana +0.3 volt.	
13	hsync	Ю	D	This is a dual mode pin. When the sensor's digital video port is configured to be a mas- er, this pin is an output and is used as the horizontal synchronization pulse. When the ensor's digital video port is configured to be a slave, (the default), this pin is an input and is used as the row trigger.	
14	vsync	ю	D	This is a dual mode pin. When the sensor's digital video port is configured to be a mas ter, this pin is an output and is used as the vertical synchronization pulse. When the se sor's digital video port is configured to be a slave, (the default), this pin is an input and i used as the frame trigger.	
15	pclk	ю	D	Pixel clock.	
16	mclk	I	D	Sensor's master clock input.	
17	vss_dig	I	Р	0 volt power supply for the digital circuits.	
18	vdd_dig	I	Р	3.0 volt power supply for the digital circuits.	
19	d0	0	D	Bit 0 of the digital video output bus. This output can be put into tri-stated.	
20	d1	0	D	Bit 1 of the digital video output bus. This output can be put into tri-stated.	
21	d2	0	D	Bit 2 of the digital video output bus. This output can be put into tri-stated.	
22	d3	0	D	Bit 3 of the digital video output bus. This output can be put into tri-stated.	
23	d4	0	D	Bit 4 of the digital video output bus. This output can be put into tri-stated.	
24	d5	0	D	Bit 5 of the digital video output bus. This output can be put into tri-stated.	
25	d6	0	D	Bit 6 of the digital video output bus. This output can be put into tri-stated.	

KAC-9638

Pi	n Des	scription	S (continued)
----	-------	-----------	---------------

	1		, 	
Pin	Name	I/O	Тур	Description
26	d7	0	D	Bit 7 of the digital video output bus. This output can be put into tri-stated.
27	d8	0	D	Bit 8 of the digital video output bus. This output can be put into tri-stated.
28	d9	0	D	Bit 9 of the digital video output bus. This output can be put into tri-stated.
29	oe	I	D	Digital video port output enable with pull up resistor. When this input is driven to a logic zero the digital video port (d[9:0] , pclk , hsync & vsync) is tri-stated.
30	vdd_od2	I	Р	3.0 volt supply for the digital IO buffers.
31	vss_od2	I	Р	0 volt supply for the digital IO buffers.
32	vdd_adc	I	Р	3.0 volt supply for the 10 bit A/D converter.
33	vss_adc	I	Р	0 volt supply for the 10 bit A/D converter.
34	vdac_n	0	А	Analog reference output. This pin should be by-passed with a 10 μF capacitor.
35	vdac_p	0	А	Analog reference output. This pin should be by-passed with a 10 μF capacitor.
36	vref_n	0	А	Analog reference output. This pin should be by-passed with a 10 μF capacitor.
37	vref_p	0	А	Analog reference output. This pin should be by-passed with a 10 μF capacitor.
38	vdd_ana	I	Р	3.0 volt supply for analog circuits.
39	vss_ana	I	Р	0 volt supply for analog circuits.
40	RSVD			This pin is reserved and should not be connected.
41	RSVD			This pin is reserved and should not be connected.
42	RSVD			This pin is reserved and should not be connected.
43	RSVD			This pin is reserved and should not be connected.
44	abloom	I	А	Anti blooming pin. This pin must be connected to ground.
45	pdw	I	D	Input with pull down resistor. When set to a logic 1 the sensor is put into power down mode.
46	resetb	I	D	Input with pull up resistor. When set to a logic 0 the sensor is reset to its default power up state.
47	RSVD			This pin is reserved and should be connected to vss_ana via a 56pf capacitorr
48	vdd_pix	I	Р	3.0 volt supply for the pixel array.

Legend: (I=Input), (O=Output), (IO=Bi-directional), (P=Power), (D=Digital), (A=Analog).

6

KAC-9638

Absolute Maximum Ratings (Notes 1 & 2)

•	
Any Positive Supply Voltage	4.2V
Voltage On Any Input or Output Pin	-0.3V to 4.2V
Input Current at any pin (Note 3)	±35mA
Package Input Current (Note 3	±50mA
Package Dissipation at $T_A = 25^{\circ}C$	see Note 4
ESD Susceptibility (Note 5)	
Human Body Model	2000V
Machine Model	200V
Peak Soldering Temperature (Note 6)	235°C
Storage Temperature	-40°C to 125°C

Operating Ratings (Notes 1 & 2)

Operating Temperature Range All VDD Supply Voltages

-10°C≤T≤+50°C +2.7V to +3.3V

DC and logic level specifications

Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Units
sclk, sda,	sadr, Digital Input/Output Chara	cteristics	1			
VIH	Logical "1" Input Voltage		0.7*vdd_od		vdd_od+0.5	V
VIL	Logical "0" Input Voltage		-0.5		0.3*vdd_od	V
VOL	Logical "0" Output Voltage	vdd_od = +2.7V, lout=3.0mA			0.4	V
V _{hys}	Hysteresis (SCLK pin only)	vdd_od > +2.0V	0.05*vdd_od			V
I _{leak}	Input Leakage Current	Vin=vdd_od		1		μA
mclk, sna	pshot, pwd, resetb, hsync, vsyn	c Digital Input Characteristics	1			
VIH	Logical "1" Input Voltage	vdd_dig = +3.3V	2.0			V
VIL	Logical "0" Input Voltage	vdd_dig = +2.7V			0.8	V
IIH	Logical "1" Input Current	VIH = vdd_dig		1		nA
IIL	Logical "0" Input Current	VIL = vss_dig		-1		nA
d0 - d9, po	clk, hsync, vsync, sync, extsync	, Digital Output Characteristics	4			
VOH	Logical "1" Output Voltage	vdd_od=2.7V, lout=-1.6mA	2.2			V
VOL	Logical "0" Output Voltage	vdd_od=2.7V, lout =-1.6mA			0.5	V
IOZ	TRI-STATE Output Current	VOUT = vss_od VOUT = vdd_od		-0.1 0.1		μΑ μΑ
IOS	Output Short Circuit Current			+/-17		mA
Power Su	pply Characteristics		4			
IA	Analog Supply Current	Power down mode, no clock Operational mode, @27MHz		500 60		μA mA
ID	Digital Supply Current	Power down mode, no clock Operational mode, @27MHz		0 10		μA mA

Power Dissipation Specifications

The following specifications apply for all VDD pins= +3.0V. Boldface limits apply for TA = T_{MIN} to T_{MAX} : all other limits $T_A = 25^{\circ}C$.							
Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Units	
P _{dwn}	Power Down			2.0		mW	
PWR	Average Power Dissipation	@27 MHz @12MHz		210 150		mW mW	

Video Amplifier Specifications

The following specifications apply for all VDD pins= +3.0V. Boldface limits apply for	TA = T_{MIN} to T_{MAX}: all other limits $T_A = 25^{\circ}C$
---	--

Symbol	Parameter	Conditions	Min (note 9)	Typical (note 8)	Max (note 9)	Units
	Gain Resolution			7		Bits
	Step Size	(Gain / Resolution)		0.125		dB
	Maximum Gain	Low light bit off		16		dB
	Minimum Gain	Low Light bit off		0.0		dB

AC Electrical Characteristics

The following specifications apply for All VDD pins = +3.0V. Boldface limits apply for $T_A = T_N$	IIN to T_{MAX}: all other limits $T_A = 25^{\circ}C$.
--	---

• •						
Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Units
F _{mclk}	Input Clock Frequency		12		27	MHz
T _{ch}	Clock High Time	@ CLK _{max}	16.0			ns
T _{cl}	Clock Low Time	@ CLK _{max}	16.0			ns
	Clock Duty Cycle	@ CLK _{max}	45/55	50/50	55/45	min/max
T _{rc} , T _{fc}	Clock Input Rise and Fall Time			3		ns
F _{hclk}	Internal System Clock Fre- quency		12		27	MHz
T _{reset}	Reset pulse width		1.0			μS

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to vss_dig = vss_ana = vss_adc = vss_od1 = vss_od2 = 0V, unless otherwise specified.

Note 3: When the voltage at any pin exceeds the power supplies (VIN < [vss_dig or vss_ana or vss_adc or vss_od1 or vss_od2] or VIN > [vdd_dig or vdd_ana or vdd_adc or vdd_od1 or vdd_od2]), the current at that pin should be limited to 25mA. The 50mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 25mA to two.

Note 4: The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (Θ_{JA}), and the ambient temperature (TA), and can be cal-

culated using the formula PDMAX = (TJmax - TA)/ Θ_{JA} . In the 48-pin LCC, Θ_{JA} is 69°C/W, so PDMAX = 1,811mW at 25°C

and 1,449 mW at the maximum operating ambient temperature of 50° C. Note that the power dissipation of this device under normal operation will typically be about 215 mW. The values for maximum power dissipation listed above will be reached only when the KAC-9638 is operated in a severe fault condition.

Note 5: Human body model is 100pF capacitor discharged through a 1.5kΩ resistor. Machine model is 220pF discharged through ZERO Ohms.

 Note 6:
 See AN450, "Surface Mounting Methods and Their Effect on Product Reliability", or the section entitled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book, for other methods of soldering surface mount devices.

 Note 7:
 The analog inputs are protected as shown below. Input voltage magnitude up to 500mV beyond the supply rails will not the supply rails will not the supply rails will not the supply rails.

damage this device. However, input errors will be generated If the input goes above AV+ and below AGND.

Note 8: Typical figures are at $TJ = 25^{\circ}C$, and represent most likely parametric norms

Note 9: Test limits are guaranteed to AOQL (Average Outgoing Quality Level).

KAC-9638

Kodak

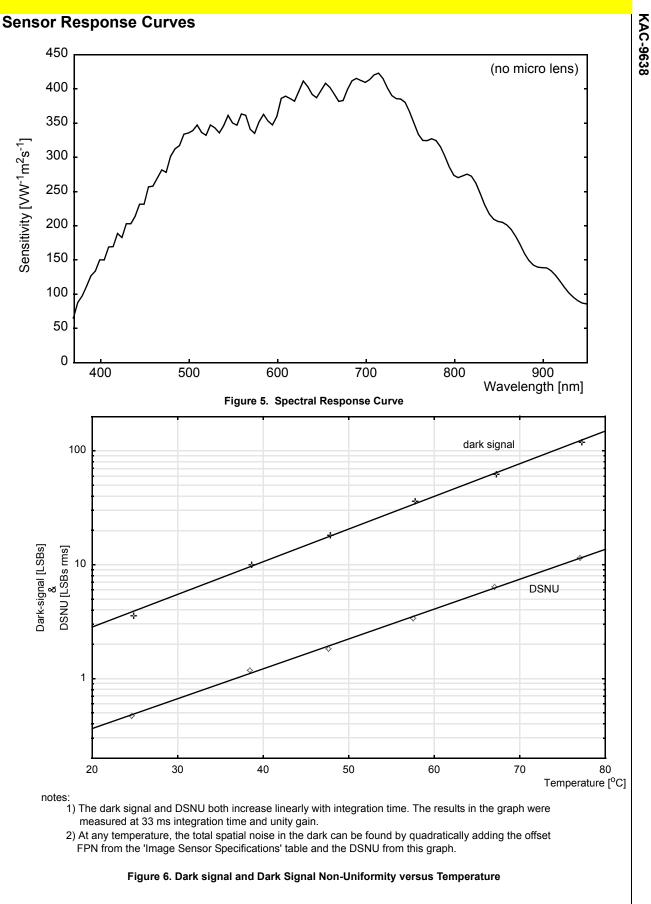
CMOS Active Pixel Array Specifications

Parameter	Value	Units
Number of pixels (row, column) Total Active	1032 x 1312 1032 x 1288	pixels pixels
Array size (x,y Dimensions) Total Active	6.192mm x 7.872mm 6.192mm x 7.728mm	mm mm
Pixel Pitch	6.0	μ
Fill Factor without micro-lens	49	%

Image Sensor Specifications

The following specifications apply for All VDD pins = +3.3V, $T_A = 25^{\circ}C$, Illumination Color Temperature = 2500°K, IR cutoff filter at 700nm, **mclk** = 27MHz, frame rate = 15Hz, unity video gain.

Parameter	Description	Min note 9	Typical note 8	Max note 9	Units
Optical Sensitivity ¹	Measured at the input of the A/D		2.40		V/lux*s
Dark Signal	The pixel output signal due to dark current.		0.15		V/s
Read Noise	The RMS temporal noise of the pixel out- put signal in the dark averaged over all pixels in the array.		1.5		LSBs
Dynamic Range	The ratio of the saturation pixel output signal and the read noise expressed in dB.		55		dB
FPN	Fixed Pattern Noise: the RMS spatial noise in the dark excluding the effect of read noise.		0.2		%
PRNU	Photo Response Non Uniformity: the RMS variation of pixel sensitivities as a percentage of the average optical sensi- tivity.		1.5		%


1 The optical sensitivity at the A/D output, in units of LSBs/lux*s, can be calculated using: $\frac{1024}{vrefp-vrefn}$ · Optical Sensitivity

Blemish Specifications

Due to random process deviations, not all pixels in an image sensor array will react in the same way to a given light condition. These variations are known as blemishes.

National Semiconductor tests the KAC-9638 CMOS image sensor under both dark and illuminated conditions. These two tests are referred to as "Dark Tests" and "Standard Light Tests" respectively.

For full documentation of the KAC-9638 blemish specification and test conditions please refer to the "KAC-9638 Blemish Specification" document.

KAC-9638

1.0 OVERVIEW

1.1 Light Capture and Conversion

Functional Description

The KAC-9638 contains a CMOS active pixel array consisting of 1032 rows by 1288 columns. 24 columns of optically shielded (black) pixels are provided to the right of the array as shown in Figure 7.

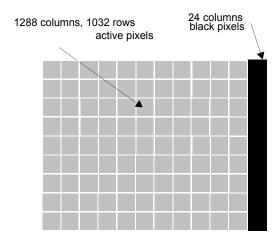


Figure 7. CMOS APS region of the KAC-9638

At the beginning of a given integration time the on-board timing and control circuit will reset every pixel in the array one row at a time as shown in Figure 8. Note that all pixels in the same row are simultaneously reset, but not all pixels in the array.

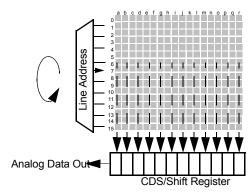


Figure 8. CMOS APS Row and Column addressing scheme

At the end of the integration time, the timing and control circuit will address each row and simultaneously transfer the integrated value of the pixel to a correlated double sampling circuit and then to a shift register as shown in Figure 8.

Once the correlated double sampled signals have been loaded into the shift register, the timing and control circuit will shift them out one pixel at a time.

The analog pixel signal is then fed into an analog gain channel as shown in figure 9. The gain channel can be digitally programmed allowing the signal level of pixel to be adjusted.

After gain adjustment the analog value of each pixel is converted to a 10 bit digital data as shown in figure 9.

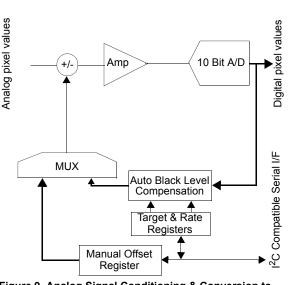


Figure 9. Analog Signal Conditioning & Conversion to Digital

The black level together with the full analog signal path offset is automatically compensated as shown in figure 9. This can be manually overridden.

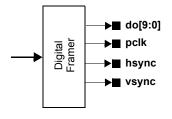


Figure 10. Digital Pixel Processing.

Finally the pixel data is framed and output on the digital video bus as shown in figure 10.

1.2 Program and Control Interfaces

The programming, control and status monitoring of the KAC-9638 is achieved through a two wire l^2C compatible serial bus. A device address pin is provided allowing two different device addresses to be selected for the serial interface as shown in Figure 11.

Figure 11. Control Interface to the KAC-9638.

Snapshot control and status pins are provided to facilitate single frame capture (see Figure 12).

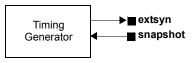


Figure 12. Snapshot & External Event Trigger Signals

KAC-9638

Functional Description (continued)

2.0 DOUBLE BUFFERED REGISTERS

All programmable registers that effect the frame rate and integration timing are double buffered; such that the new values only take effect at the start of the new frame. When writing to all split double buffered registers, e.g. ITIMEH and ITIMEL, the following procedure must be followed:

- to change both the MSB and LSB, first write to the MSB register and then write to the LSB register,
- to change only the MSB, first write to the MSB register and then write the unchanged value of the LSB to the LSB register,
- to only change the LSB write to the LSB register.

3.0 WINDOWING

The integrated timing and control circuit allows any size window in any position within the active region of the array to be read out with a 4x4 pixel resolution. The window read out is called the *"Active Window"*.

Four coordinates (start row and column addresses, end row and column addresses) need to be programmed to define the size and location of the "*Active Window*" to be read out (*see Figure 13*).

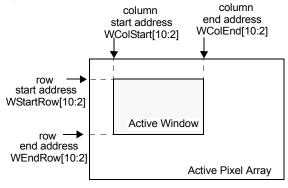
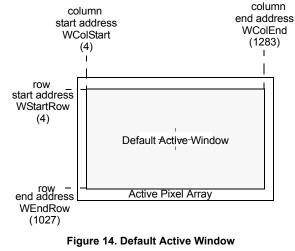



Figure 13. Windowing

Notes:

- By default the "Active Window" is an optically centered with a size of 1280 columns by 1024 rows as shown in figure 14.
- The "Active Window" registers are double buffered.

4.0 ARRAY READOUT

The pixels in the array are read out in progressive scan. In progressive scan, every pixel in every row in the defined *"Active Window"* is consecutively read out, one pixel at a time. The first 8 pixels of every row are black unless masked out by setting the *BlkPixelEn* bit of the DVBUSCONFIG2 register to a logic 0.

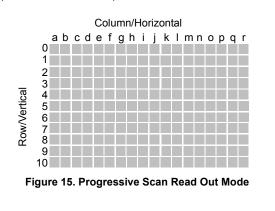
The scan direction can be programmed as follows:

Scan Direction	VScanDir	HScanDir
Default Scan Direction	1	1
Reverse Vertical Scan Direction	0	1
Reverse Horizontal Scan Direction	1	0
Reverse Vertical and Hori- zontal Scan Direction	0	0

4.1 Default Scan Direction

The default scan direction is to consecutively read out, one pixel at a time, starting with the left most pixel in the top most row. Hence, for the example shown in Figure 15, the read out order will be a0,b0,...,r0 then a1,b1,...,r1 and so on until pixel r10 is read out. See figure 15.

4.2 Reverse Vertical Scan Direction


The vertical scan direction can be reversed by setting the "VScanDir" bit in the VSCAN register to a logic 0, while setting the HScanDir bit in the HSCAN register to a logic 1. In this case for the example shown in Figure 15, the read out order will be *a10,b10,...,r10* then *a9,b9,...,r9* and so on until pixel *r0* is read out.

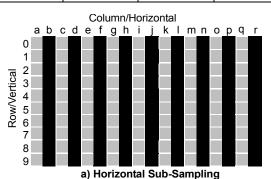
4.3 Reverse Horizontal Scan Direction

The horizontal scan direction can be reversed by setting the "HScanDir" bit in the HSCAN register to a logic 0, while setting the "VScanDir" bit in the VSCAN register to a logic 1. In this case for the example shown in Figure 15, the read out order will be r0,q0,...,a0 then r1,q1,...,a1 and so on until pixel a10 is read out.

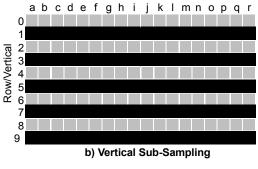
4.4 Reversing The Horizontal & Vertical Scan Direction

The horizontal scan direction can be reversed by setting both the "HScanDir" bit in the HSCAN and the "VScanDir" bit in the VSCAN register to a logic 0. In this case for the example shown in Figure 15, the read out order will be r10,q10,...,a10 then r9,q9,...,a9 and so on until pixel a0 is read out.

Functional Description (continued)


SUB-SAMPLING MODES 5.0

5.1 2:1 Sub-Sampling


KAC-9638

The timing and control circuit can be programmed to sub-sample pixels in the "Active Window" vertically, horizontally or both, with an aspect ratio of 2:1 as illustrated in figure 16.

Register Bit	VIDCONFIG Color	VSCAN VSub	HSCAN HSub
Vertical	0	1	0
Horizontal	0	0	1
Both	0	1	1

Column/Horizontal

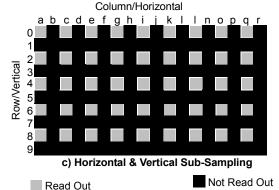


Figure 16. Example of 2:1 Sub-sampling

- The pixel read out will depend on the programmed Note a: scan order as described in section 4.0.
- Note b: For max FPN performance it is recommended to always switch on the averaging feature when subsampling (see next section).

2:1 Sub-Sampling with Averaging 5.2

The timing and control circuit can be programmed to average neighboring pixels in the analog domain before sub-sampling. This can be done in the horizontal and vertical direction shown in the table below

Register Bit	VIDCONFIG Color	VSCAN VAvr	HSCAN HAvr
Vertical	0	1	0
Horizontal	0	0	1
Both	0	1	1

When vertical 2:1 sub-sampling with averaging is selected, neighboring pixels in the vertical direction are combined as shown in figure 17. The value of the combined pixel is given by:

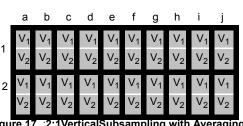


Figure 17. 2:1VerticalSubsampling with Averaging

When horizontal 2:1 subsampling with averaging is selected, neighboring pixels in the horizontal direction are combined as shown in figure 17. The value of the combined pixel is given by

 $H_1 + H_2$

_	а	b	с	d	е	f	g	h	i	j
1	H_1	H_2	H ₁	H_2	H_1	H ₂	H ₁	H ₂	H ₁	H ₂
	H_1	H ₂	H ₁	H_2	H ₁	H ₂	H ₁	H ₂	H ₁	H ₂
2	H ₁	H ₂								
	H ₁	H ₂	H ₁	H_2						
	1.5									

Figure 18. 2:1Horizontal Subsampling with Averaging

When both, horizontal & vertical 2:1 subsampling with averaging is selected, neighboring pixels in both directions are combined as shown in figure 17. The value of the combined pixel is given by

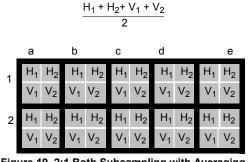
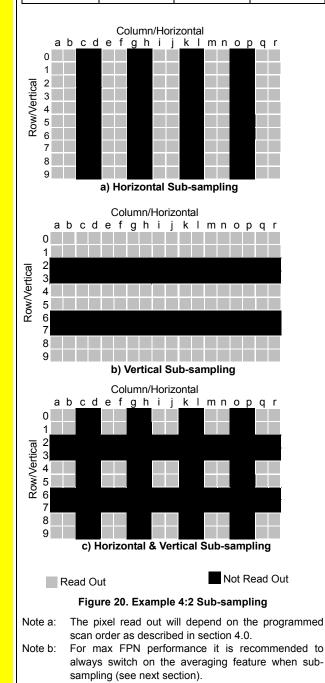


Figure 19. 2:1 Both Subsampling with Averaging

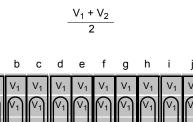

Note that the pixel read out will depend on the programmed scan order as described in section 4.0.

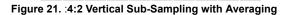
Functional Description (continued)

5.3 4:2 Sub-Sampling

The timing and control circuit can be programmed to sub-sample pixels in the display window vertically, horizontally or both, with an aspect ratio of 4:2 as illustrated in figure 20

Register Bit	VIDCONFIG Color	VSCAN VSub	HSCAN HSub
Vertical	1	1	0
Horizontal	1	0	1
Both	1	1	1


5.4 4:2 Sub-Sampling with Averaging


а

The timing and control circuit can be programmed to average neighboring pixels in the analog domain before subsampling. This can be done in the horizontal and vertical direction as shown in the table below:

Register Bit	VIDCONFIG Color	VSCAN VAvr	HSCAN HAvr
Vertical	1	1	0
Horizontal	1	0	1
Both	1	1	1

When **vertical** 2:1 subsampling with averaging is selected, neighboring pixels in the vertical direction are combined as shown in figure 21. The value of the combined pixel is given by:

When **horizontal** 2:1 subsampling with averaging is selected, neighboring pixels in the horizontal direction are combined as shown in figure 17. The value of the combined pixel is given by

 $H_1 + H_2$

	а	b	с	d	е	f	g	h
1				H ₂				
				H ₂				
2	H ₁	H_1	H ₂	H_2	H ₁	(H_1)	H ₂	H ₂
	H ₁	(H_1)	H ₂	H_2	H ₁	\mathbb{H}_1	H ₂	H ₂

Figure 22. 4:2Horizontal Subsampling with Averaging

When **both**, horizontal & vertical 2:1 subsampling with averaging is selected, neighboring pixels in both directions are combined as shown in figure 17. The value of the combined pixel is given by

$$\frac{H_1 + H_2 + V_1 + V_2}{2}$$

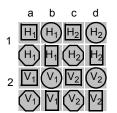
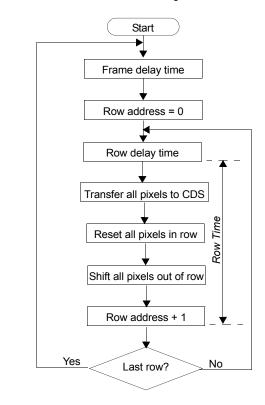


Figure 23. 4:2 Both Subsampling with Averaging

Note that the pixel read out will depend on the programmed scan order as described in section 4.0.


KAC-9638

Functional Description (continued)

6.0 FRAME RATE & EXPOSURE CONTROL

6.1 Introduction

The frame time is defined as the time it takes to reset every pixel in the array, integrate the incident light, convert it to digital data and present it on the digital video port. This is not a concurrent process and is characterized in a series of events each requiring a certain amount of time as shown in Figure 24.

Figure 24. Frame Readout Flow Diagram

The following factors effect frame rate, exposure & signal level, the:

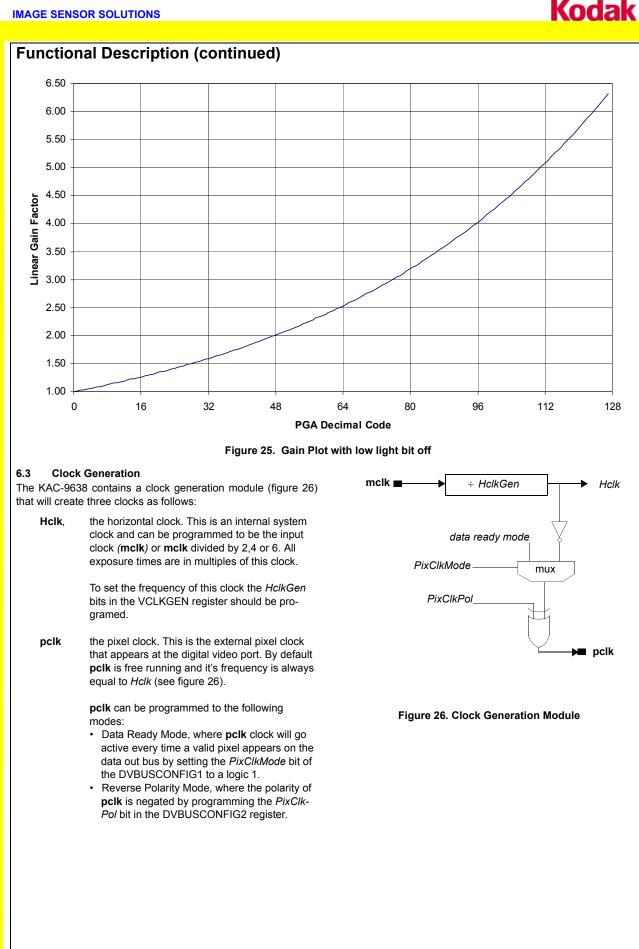
- frequency of Hclk
- size of the "Active Window"
- subsampling mode
- · programmed row delay
- · programmed frame delay.

The following factor effects signal level only.

· analog gain

The following factor effects exposure & signal level:

integration time


This section describes how to program the frame rate and exposure time.

6.2 Analog Gain

A programmable analog gain amplifier is provided, allowing the gain level of the in-coming pixels to be adjusted before the analog to digital conversion.

16dB of gain programmable in 128 steps of 0.125dB, (see the PGA register). Note: Set register 0x4Ah to 0x00h when using monochrome sensor.

A further of 5.6dB of gain can be added by setting the *LowLight* bit in the OPCTL register to a logic 1.

Functional Description (continued)

6.4 Full Frame Integration

Full frame integration is when each pixel in the array integrates light incident on it for the duration of a frame (see Figure 27).

The number of pixels processed per row is given by:

Where:

WEndCol

is the "Active Window" column start address as programmed in registers WCOLE and WCOLLSB.

WStartCol

is the "Active Window" column end address as programmed in registers WCOLS and WCOLLSB.

 $\label{eq:MH_factor} \begin{array}{l} \mbox{MH}_{factor} & \mbox{Is 1 when horizontal subsampling is disabled and 0.5} \\ & \mbox{when horizontal subsampling is enabled.} \end{array}$

The number of *Hclk* clock cycles required to process & shift out one row of pixels is given by:

$RN_{Hclk} = R_{opcycle} + R_{ltime} + N_{pix} + R_{delay}$

Where:

R _{opcycle}	is a fixed integer value of 140 representing the <i>Row</i> <i>Operation Cycle Time</i> in multiples of <i>Hclk</i> clock cycles. It is the time required to carry out all fixed row
_	operations outlined in Figure 24.
R _{Itime}	When partial frame integration is enabled, (PrtFrmEn
	bit in the ITIMECONFIG register is set to a logic 1),
	R _{Itime} is a fixed integer of 34. When Partial frame inte-
	gration is disabled, (PrtFrmEn bit in the ITIMECON-
	FIG register is set to a logic 0), R _{Itime} is 0.
N _{pix}	Is the number of pixels processed in a row.
R _{delay}	a programmable value between 0 & 8191 represent-
	ing the Row Delay Time in multiples of Hclk. This
	parameter allows the Row Operation Cycle time to be
	extended. The Rdelay value is programmed in the
	RDELAYH and RDELAYL registers.
	RDEEATH and RDEEATE registers.

The number of rows in the active window is given by:

N_{rows} = (WEndRow - WStartRow + 1)*MV_{factor}

Where:

WEndRow

is the "Active Window" row start address as programmed in registers WROWE and WROWLSB. *WStartRow*

is the "Active Window" row end address as programmed in registers WROWS and WROWLSB.

MV_{factor} Is 1 when vertical subsampling is disabled and 0.5 when vertical subsampling is enabled.

The number of *Hclk* clocks required to process a full frame is given by:

FN_{Hclk} = [N_{rows} + Fdelay] * RN_{Hclk}

Where:

N_{rows} is the number of rows in the "Active Window".

F_{delay} a programmable value between 0 & 32766 representing the Inter Frame Delay in multiples of RN_{Hclk}. This parameter allows the frame time to be extended. (See the Frame Delay High and Frame Delay Low registers). The Fdelay value is programmed in the FDE-LAYH and FDELAYL registers.

The frame rate is given by:

6.5 Partial Frame Integration

In some cases it is desirable to reduce the time during which the pixels in the array are allowed to integrate incident light without changing the frame rate.

This is known as *Partial Frame Integration* and can be achieved by resetting pixels in a given row ahead of the row being selected for readout as shown in Figure 27. The number of *Hclk* clocks required to process a partial frame is given by:

FP_{Hclk} = RN_{Hclk} * Itime

Where:

- *RN_{Hclk}* is the number of *Hclk* clock cycles required to process & shift out one row of pixels.
- Itime a programmable value between 0 & 32767 representing the number of rows ahead of the current row to be reset. The Itime value is programmed in the ITIMEH and ITIMEL registers.

Note:

Upon system reset the partial frame integration is automatically enabled. It can be disabled by setting the *PrtFrmEn* bit in the ITIMECONFIG register to a logic 0 or by programming 0.

rame					Part	ial Integra Time	tion			
Delay	Row 0	Row 1	Row 2		Row x		Row $x+\Delta$	Row n	Frame Delay	Row 0
ļ	(Programmable Row Delay Row CDS, Reset Row x & Shift					í I			
		Full Frame integration				l				
		Programmable Row Delay Row CDS, Reset Row x+ ∆ & Shift								
	(Partial Frame Integration						l.		
			Program	Programmable R	Programmable Row Delay	Full Frame integ Programmable Row Delay Row CD Partial Frame Int	Full Frame integration Programmable Row Delay Row CDS, Reset Partial Frame Integration	Full Frame integration Programmable Row Delay Row CDS, Reset Row x+∆ 8 Partial Frame Integration	Full Frame integration Programmable Row Delay Row CDS, Reset Row x+∆ & Shift Partial Frame Integration	Full Frame integration Programmable Row Delay Row CDS, Reset Row x+∆ & Shift Partial Frame Integration

Functional Description (continued)

7.0 SNAPSHOT MODE

7.1 Introduction

Two dedicated pins are provided on the KAC-9638, **snapshot**, and **extsync** allowing the sensor to be externally controlled to capture a single image. The **snapshot** input pin is used to trigger a snapshot, while the **extsync** output pin is used to synchronize a light source, strobe or mechanical shutter. Note that partial frame integration is not possible in snapshot mode.

7.2 Taking a Snapshot

By default the sensor will operate in the **VIDEO** state (see figure 28). To take a snapshot, the snapshot mode must be enabled by setting the *SnapEnable* bit in the SNAPMODE register to a logic 1. This will cause the sensor to enter the **FREEZE** state at the end of the current frame. In the **FREEZE** state the sensor is idle. The sensor will leave the **FREEZE** state and return to **VIDEO** state when the snapshot mode is disabled (*SnapEnable* bit in the SNAPMODE register set to a logic 0).

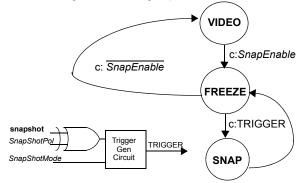


Figure 28. Snapshot Mode

Alternatively when an active snapshot signal is applied to the snapshot input pin an internal trigger signal, *TRIGGER*, is generated as shown in figure 28. The signal applied to the snapshot pin must be longer then 1 frame. The trigger generation circuit will create two types of TRIGGER as follows:

- **Pulse Trigger** (*SnapshotMode* bit of the SNAPMODE register is cleared). In this mode (the default) a single TRIGGER pulse will be generated.
- Level Trigger (*SnapshotMode* bit of the SNAPMODE register is set). In this mode the TRIGGER will remain high as long as the an active level is held on the **snapshot** pin.

When a TRIGGER is generated the sensor will enter the SNAP state as shown in figure 28.

7.3 The SNAP State in External Shutter Mode

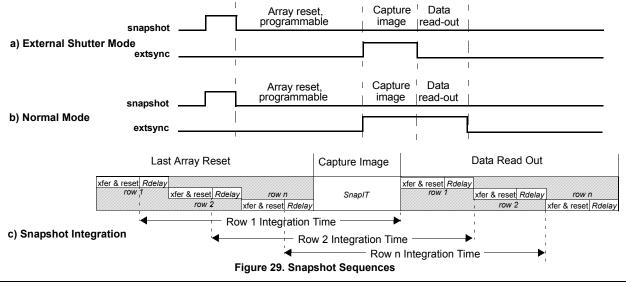
To take a snapshot in external shutter mode, the *ShutterMode* bt of the SNAPMODE register must be set.

In this mode three consecutive operations will be carried out in the SNAP state as follows (see figure 29a and figure 29):

- Array Reset, during which the extsync pin is kept in-active and the array is reset one row at a time. The number of times the array is reset is programmable from 1-8 frames, (see the SsFrames bits in the SNAPMODE register).
- Image Capture, the extsync pin will activate. The width of the extsync signal can be programed from 0 to 32768 lines by programming the snapshot integration time registers, SNAPITH and SNAPITL.
- Array Read Out, the third and final operation reads the image data out one row at a time.

7.4 The SNAP State in Normal Mode (default)

To take a snapshot in normal mode, the *ShutterMode* bit of the SNAPMODE register must be cleared. In this case the following consecutive operations will be carried out in the **SNAP** state (see figure 29b and figure 29c):


- Array Reset, during which the extsync pin is kept in-active and the array is reset one row at a time. The number of times the array is reset is programmable from 0-8 frames, (see the SsFrames bits in the SNAPMODE register).
- Image Capture, the extsync pin will activate and remain active for the duration of the capture time. The length of the capture time can be programed from 0 to 32768 lines by programming the snapshot integration time registers, SNAPITH and SNAPITL.
- Array Read Out, the image data is read out one row at a time. During this operation the extsync pin remains active.

7.5 Return to the FREEZE State

When read out is complete the sensor will return to the **FREEZE** state.

7.6 Return to the VIDEO state

If the snapshot mode is disabled before readout is complete (*SnapEnable* bit in the SNAPMODE register is set to a logic 0), then the sensor will return to the **VIDEO** state at the end of readout.

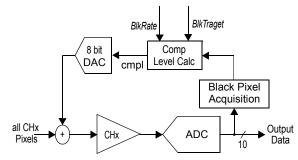
KAC-9638

Functional Description (continued)

8.0 BLACK LEVEL & OFFSET ADJUSTMENT

The KAC-9638 allows for both fine and coarse black level adjustment. Coarse adjustment is made using the PIXELOFF-SET register and only needs to be done once at power up. Fine offset adjustment is done on a row basis and can be accomplished either automatically using the on chip black level compensation circuit or manually by disabling the on chip black level compensation circuit.

8.1 Coarse Black Level and Offset Adjustment


To ensure maximum performance of the CMOS image sensor, the natural offset of the pixel array needs to be minimized. Coarse adjustment is made using the PIXELOFFSET register and only needs to be done once at power up. This procedure is explained in detail in LM9648 Application Note 4.

8.2 Manual Black Level and Offset Adjustment

The offset channel can provide up to 255 levels of black level and offset adjustment. To manually adjust the black level and offset the *BlkLevEn* bit in the BLKLEVCONFIG register should be set to a logic 1. Eight bit offset values can then be programmed to register OFFSET.

8.3 Auto Black Level and Offset Adjustment

Automatic black level and offset adjustment mode is enabled by setting the *BlkLevEn* bit in the BLKLEVCONFIG register to a logic 0.

Figure 30: Digital Black Level & Offset Adjustment Loop

Figure 30 illustrates the automatic black level and offset compensation circuit contained within the sensor. For every row, the digitized values of the middle 8 black pixels are acquired and fed to the compensation level calculator circuit. This circuit is a digital first order exponential averaging filter. It calculates the compensation level (cmpl) that is required to ensure that for pixels that are optically black, the black level at the output of the ADC is equal to the desired black level. The desired black level (Clk-Target) can be programmed in the BLKTARGET register.

The black level control loop not only controls the black level of the pixels in the sensor array, but also controls the offset of the PGA and A/D in the system. The convergence rate of the cancellation loop can be set by programming the *BlkRate* parameter located in the BLKLEVCONFIG register. Small values of the *BlkRate* parameter ensure a fast convergence. High values of the *BlkRate* parameter reduce the noise in the calculated compensation level. The optimal setting of the *BlkRate* parameter is the result of a compromise between convergence speed after power up and image quality.

9.0 SYSTEM MANAGMENT

9.1 System Reset

Upon power up an on-chip power on reset block will ensure that the sensor is initialized to its reset state. After power up the sensor can be reset by asserting a logic 0 on the **resetb** pin or by writing to the *SenReset* bin in the PWD&RST register.

Furthermore, all state machines contained in the sensors integrated timing and control block can be reset by writing to the *RstzSoft* bit in the OPCTRL register.

9.2 Power Up and Down

The KAC-9638 is equipped with an on-board power management system allowing the analog and digital circuitry to be switched off (power down) and on (power up) at any time.

The sensor can be put into power down mode by asserting a logic one on the **pdwn** pin or by writing to the *PwDn* bit in the PWD&RST register.

To power up the sensor a logic zero can be asserted on the **pdwn** pin or by writing to the *PwDn* bit in the PWD&RST register.

It will take a few milliseconds for all the circuits to power up. The power management register contains a bit indicating when the sensor is ready for use. During this time the sensor cannot be used for capturing images. A status bit in the power management register will indicate when the sensor is ready for use.

To ensure minimum power down currents, the internal bang gap circuit should be turned off before powering down the sensor.

To switch off the sensor's internal bandgap, the following sequence of codes should be written to the sensor via the I^2C compatible interface before power down

Address (Hex)	Data (Hex)
INTREG2	01
POWCTRL	82

Before the sensor can be powered up the its internal bandgap needs to be switched back on.

To switch the sensor's internal bandgap circuit on, the following sequence needs to be applied to the l^2C compatible interface after power up to ensure correct operation.

Address (Hex)	Data (Hex)
POWCTRL	86
OPCTRL	07
INTREG2	00

Functional Description (continued)

10.0 SERIAL BUS

The serial bus interface consists of the sda (serial data), scik (serial clock) and sadr (device address select) pins. The KAC-9638 can operate only as a slave.

The scik pin is an input, it only controls the serial interface, all other clock functions within KAC-9638 use the master clock pin, mclk.

Start/Stop Conditions 10.1

The serial bus will recognize a logic 1 to logic 0 transition on the sda pin while the sclk pin is at logic 1 as the start condition. A logic 0 to logic 1 transition on the sda pin while the sclk pin is at logic 1 is interrupted as the stop condition as shown in Figure 31

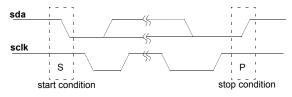
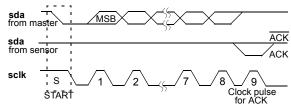
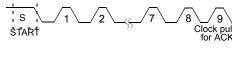
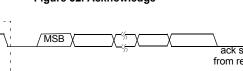


Figure 31, Start/Stop Conditions


10.2 **Device Address**


The serial bus Device Address of the KAC-9638 is set to 1010101 when sadr is tied low and 0110011 when sadr is tied high. The value for sadr is set at power up.


The Device Address can be changed by writing to the I2cDevAddr parameter in the I2CMODE Register.

10.3 Acknowledgment

The KAC-9638 will hold the value of the sda pin to a logic 0 during the logic 1 state of the Acknowledge clock pulse on scik as shown in Figure 32.

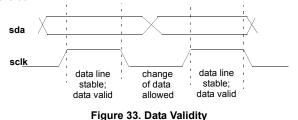


Figure 32. Acknowledge

10.4 Data Valid

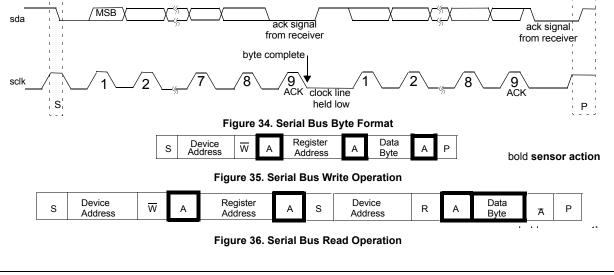
The master must ensure that data is stable during the logic 1 state of the sclk pin. All transitions on the sda pin can only occur when the logic level on the sclk pin is "0" as shown in Figure 33

10.5 Byte Format

Every byte consists of 8 bits. Each byte transferred on the bus must be followed by an Acknowledge. The most significant bit of the byte is should always be transmitted first. See Figure 34.

Write Operation 10.6

A write operation is initiated by the master with a Start Condition followed by the sensor's Device Address and Write bit. When the master receives an Acknowledge from the sensor it can transmit an 8-bit internal register address. The sensor will respond with a second Acknowledge signaling the master to transmit 8 write data bits. A third Acknowledge is issued by the sensor when the data has been successfully received. The write operation is completed when the master asserts a Stop Condition or a second Start Condition. See Figure 35.


10.7 **Read Operation**

A read operation is initiated by the master with a Start Condition followed by the sensor's Device Address and Write bit. When the master receives an Acknowledge from the sensor it can transmit the internal Register Address byte. The sensor will respond with a second Acknowledge. The master must then issue a new Start Condition followed by the sensor's Device Address and read bit. The sensor will respond with an Acknowledged followed by the Read Data byte.

The read operation is completed when the master asserts a Not Acknowledge followed by Stop Condition or a second Start Condition. See Figure 36.

Advanced Write Mode 10.8

Several addresses can be written to without the need to re-start by setting the AdvWr bit in the I2CMODE register to a logic 1.

odak

11.0 DIGITAL VIDEO PORT

Functional Description (continued)

The captured image is placed onto a flexible 10-bit digital port as shown in Figure 10. The digital video port consists of a programmable 10-bit digital Data Out Bus (**d[9:0]**) and three programmable synchronisation signals (**hsync**, **vsync**, **pclk**).

By default the synchronisation signals are configured to operate in *"slave"* mode. They can be programmed to operate in *"master"* mode.

The following sections are a detailed description of the timing and programming modes of digital video port.

The 10-bit digital video out bus can be tri-stated by asserting a logic 0 on the **oe** pin or by writing a logic 1 to the *TriState* bit in the DVBUSCONFIG3 register..

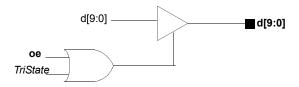


Figure 37. Digital Pixel Data Out Bus Circuit Diagram

11.1 Digital Video Data Out Bus (d[9:0])

A programmable barrel shifter is provided to map the output of the internal pixel data framer to the pins of the digital video bus as illustrated in Figure 38.

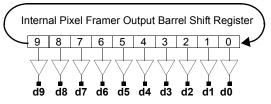
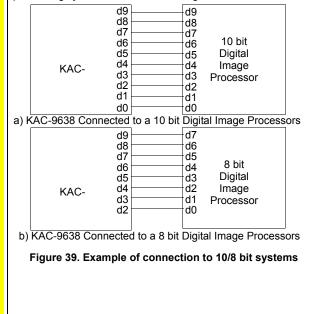
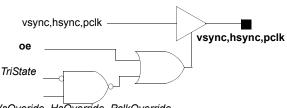



Figure 38. Digital Video Bus Switching Modes

The *Bshift* parameter in the DVBUSCONFIG2 register can be used to program the number of bits that the digital pixel data is shifted by.

This feature allows a programmable digital gain to be implemented when connecting the sensor to 8 or 10 bit digital video processing systems as illustrated in Figure 39.



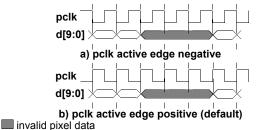
Synchronisation Signals in Master Mode

In master mode the integrated timing and control block controls the flow of data onto the 10-bit digital port, three synchronisation outputs are provided:

- pclk is the pixel clock output pin.
- hsync is the horizontal synchronisation output signal. vsync is the vertical synchronisation output signal.

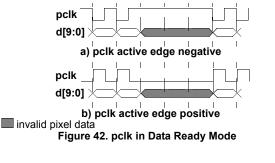
The **vsync**, **hsync** and **pclk** signals can be tri-stated by asserting a logic 0 on the **oe** pin or by writing a logic 0 to the *TriState* bit in the DVBUSCONFIG3 register. (see figure 40) The tristating of Vsync, Hsync, and Pclk can be overriden by setting the appropriate bit in the DVBUSCONFIG3 register.

VsOveride, HsOverride, PclkOverride


Figure 40. hsync,vsync and pclk output circuit diagram

11.2 Pixel Clock Output Pin (pclk) (Master Mode)

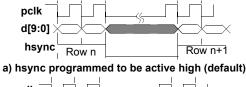
The pixel clock output pin, **pclk**, is provided to act as a synchronisation reference for the pixel data appearing at the digital video out bus pins **d[9:0]**. This pin can be programmed to operate in two modes:


In free running mode, (the PixClkMode bit of

DVBUSCONFIG1 register is set to a logic 0), the pixel clock output pin, **pclk**, is always running with a fixed period. Pixel data appearing on the digital video bus **d[9:0]** are synchronized to a specified active edge of the clock as shown in Figure 41.

Figure 41. pclk in Free Running Mode

 In data ready mode, (the PixClkMode bit of DVBUSCONFIG1 register is set to a logic 1), the pixel clock output pin pclk will produce a pulse with a specified level every time valid pixel data appears on the digital video bus d[9:0] as shown in Figure 42.


Functional Description (continued)

By default the pixel clock is a free running active high (pixel data changes on the positive edge of the clock) with a period equal to the internal *hclk*. See section 6.3 for more **pclk** programming modes.

11.3 Horizontal Synchronisation Output Pin (hsync)

The horizontal synchronisation output pin, **hsync**, is used as an indicator for row data. The **hsync** output pin can be programmed to operate in two modes as follows:

• Level mode should be used when the pixel clock, pclk, is programmed to operate in *free running mode*. In level mode the hsync output pin will go to the specified level (high or low) at the start of each row and remain at that level until the last pixel of that row is read out on d[9:0] as shown in Figure 43. The hsync level is always synchronized to the active edge of pclk. The hsync pin is put into level mode by setting the *HsyncMode* bit of the DVBUSCONFIG1 register to a logic 0. The active level of the hsync pulse is programmed using the *HsyncPol* bit of the DVBUSCONFIG1 register.

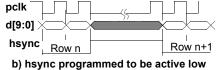
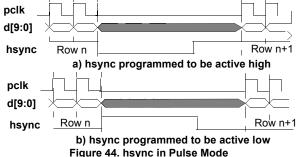
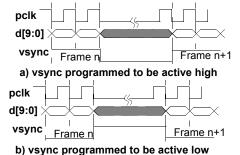



Figure 43. hsync in Level Mode

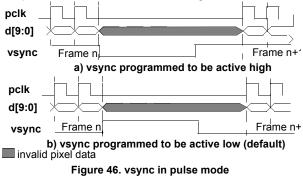
Pulse mode should be used when the pixel clock, pclk, is programmed to operate in *data ready mode*. In pulse mode the hsync output pin will produce a pulse at the end of each row. The width of the pulse will be a minimum of four pclk cycles and its polarity can be programmed as shown in Figure 44. The hsync level is always synchronized to the active edge of pclk. The hsync pin is put into pulse mode by setting the *HsyncMode* bit of the DVBUSCONFIG1 register to a logic 1. The active level of the DVBUSCONFIG1 register.



By default the first pixel data at the beginning of each row is placed on the digital video bus as soon as **hsync** is activated. Furthermore, **hsync** is de-activated upon the placement of the last pixel of the current row on the digital video bus the digital video bus. It is possible to shift the start and end edges of the **hsync** signal by programming the *HsyncStart* parameter of the DVBUSCONFIG0 register and the *HsyncEnd* parameter of the HSYNCADJUST register.

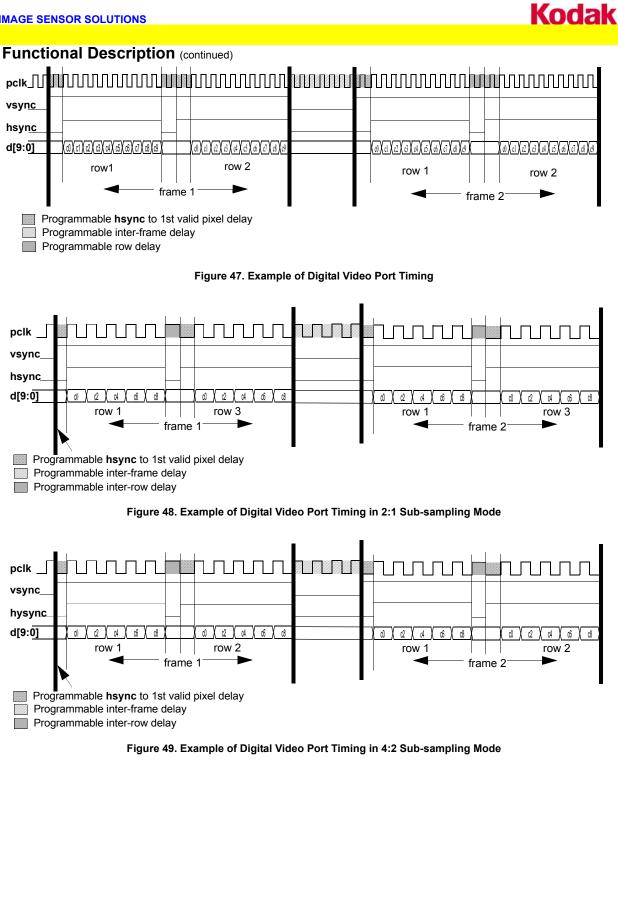
11.4 Vertical Synchronisation Pin (vsync)

The vertical synchronisation output pin, **vsync**, is used as an indicator for pixel data within a frame. The **vsync** output pin can be programmed to operate in two modes as follows:


• Level mode should be used when the pixel clock, pclk, is programmed to operate in *free running mode*. In level mode the vsync output pin will go to the specified level (high or low) at the start of each frame and remain at that level until the last pixel of the last row in the frame is placed on d[9:0] as shown in Figure 45. The hsync level is always synchronized to the active edge of pclk. The vsync pin is put into level mode by setting the *VsyncMode* bit of the DVBUSCONFIG1 register to a logic 0. The active level of the vsync is programmed using the *VsyncPol* bit of the DVBUSCONFIG1 register.

b) vsync programmed to be active low invalid pixel data

Figure 45. vsync in Level Mode


Pulse mode should be used when the pixel clock, pclk, is programmed to operate in *data ready mode*. In pulse mode the vsync output pin will produce a pulse at the end of each frame. The width of the pulse will be a minimum of four hclk cycles and its polarity can be programmed as shown in Figure 46. The vsync level is always synchronized to the active edge of pclk. The vsync pin is put into pulse mode by setting the *VsyncMode* bit of the DVBUSCONFIG1 register to a logic 1. The active level of the vsync pulse is programmed using the *VsyncPol* bit of the DVBUSCONFIG1 register.

By default the first pixel data at the beginning of each frame is placed on the digital video bus as soon as **vsync** is activated. Furthermore, **vsync** is de-activated upon the placement of the last pixel of the current frame on the digital video bus. It is possible to shift the start and end edges of the **vsync** signal by programming the *VsyncStart* parameter of the DVBUSCONFIG0 register and the *VsyncEnd* parameter of the VSYNCADJUST register.

IMAGE SENSOR SOLUTIONS

KAC-9638

Functional Description (continued)

Synchronisation Signals in Slave Mode

By default the sensor's digital video port's synchronisation signals are configured to operate in slave mode. In slave mode the integrated timing and control block will only start frame and row processing upon the receipt of triggers from an external source. Partial Frame integration is disabled in this mode.Only two synchronization signals are used in slave mode as follows:

hsync is the row trigger input signal. vsync is the frame trigger input signal.

Figure 50 shows the KAC-9638's digital video port in slave mode connected to a digital video processor master DVP.

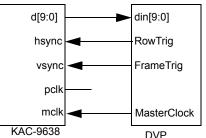


Figure 50. KAC-9638 in slave mode

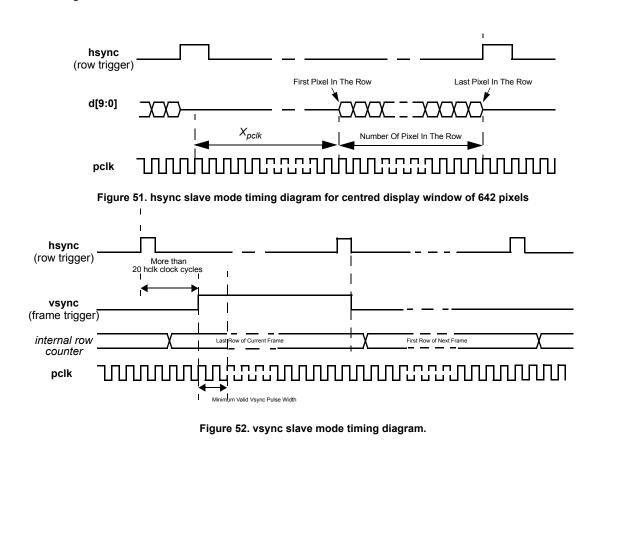
11.5 Row Trigger Input Pin (hsync)

The row trigger input pin, **hsync**, is used to trigger the processing of a given row. It must be activated for at least two **mclk** cycles. The first pixel data will appear at **d[9:0]** " X_{pclk} "periods after the assertion of the row trigger, were X_{pclk} is given by:

X_{pclk} = 147 + 100*HAvrg - 8*BlkPixelEn

Where:

HAvrg is the HAvrg bit setting in the VSCAN register. BlkPixelEn


is the BlkPixelEn bit setting in the DVBUSCONFIG2 register

The polarity of the active level of the row trigger can be programmed using the HsynPol bit of the DVBUSCONFIG1 register. By default it is active high.

11.6 Frame Trigger Input Pin (vsync)

The frame trigger input pin, **vsync**, is used to reset the row address counter and prepare the array for row processing. It must be activated for at least two **mclk** cycles and at least for more than 20 **pclk** cycles after the activation of the last **hsync** of the previous frame as illustrated in Figure 52.

The polarity of the active level of the row trigger is programmable. By default it is active high.

oda

MEMORY MAP

KAC-9638

ADDR	Register	Reset Value	Description
)0h	DEVID	48h	Device ID Register.
)1h	REV	Latest Silicon	Revision Register
02h - 04h			Reserved
05h	VCLKGEN	00h	Clock Generation Register
06h	PWD&RST	00h	Power Down & Reset Register
07h	I2CMODE	AAh	I ² C compatible Serial Interface Configuration Register
)8h			Reserved
09h	OPCTRL	02h	Operation Control Register
0Ah - 0Fh		00h	Reserved
10h	VIDCONFIG	01h	Video Color Configuration Register
11h	VSCAN	04h	Vertical Scan Configuration Register
12			Reserved
1 3h	HSCAN	04h	Horizontal Scan Configuration Register
14h			Reserved
15h	ITIMECONFIG	08h	Integration Time Configuration Register
16h-18h			Reserved
19h	WROWS	00h	Active Window Row Start Register
1Ah	WROWE	80h	Active Window Row End Register
1Bh	WROWLSB	23h	Active Window Row LSB Register
1Ch	WCOLS	00h	Active Window Column End Register
1Dh	WCOLE	A0h	Active Window Column Start Register
1Eh	WCOLLSB	23h	Active Window Column LSB Register
20h	FDELAYH	00h	Frame Delay High Register
21h	FDELAYL	08h	Frame Delay Low Register
22h	RDELAYH	00h	Row Delay High Register
23h	RDELAYL	08h	Row Delay Low Register
24h	ITIMEH	00h	Integration Time High Register
25h	ITIMEL	00h	Integration Time Low Register
26h - 2Fh			Reserved
30h	SNAPMODE	07h	Snapshot Mode Configuration Register
31h	SNAPITH	1Fh	Snapshot High Integration Time Register
32h	SNAPITL	7Fh	Snapshot Low Integration Time Register
33h - 3Fh			Reserved
40h	BLKLEVCONFIG	07h	Black Level Compensation Register
41h	BLKTARGET	10h	Black Level Target Register
42h	PGA	00h	Programmable Gain Amplifier
43h - 45fh			Reserved For The LM9648. Must be set to 00 Hex
46h	OFFSET	00h	Gain Offset Register
47h - 4Ah			Reserved For the LM9648. Must be set to 00 Hex.
4Bh- 4Fh			Reserved

MEMORY MAP (continued)

ADDR	Register	Reset Value	Description
50h	VSYNCADUST	08h	Vsync Adjust Register
51h	HSYNCADUST	08h	Hsync Adjust Register
52h	DVBUSCONFIG0	00h	Digital Video Bus Configuration Register 0
53h	DVBUSCONFIG1	0Ch	Digtal Video Bus Configuration Register 1
54h	DVBUSCONFIG2	F0h	Digtal Video Bus Configuration Register 2
55h	DVBUSCONFIG3	00h	Digtal Video Bus Configuration Register 3
56h - 7Fh			Reserved
80h	INTREG1	00h	Sensor Initialization Register 1
81h - 82h			Reserved
83h	PIXELOFFSET	1Eh	Sensor's Pixel Offset Register
84h			Reserved
85h	POWCTRL	81h	Sensor's Power Down Control Register
86h - 87h			Reserved
88h	INTREG2	00h	Sensor Initialization Register 2

Register Set

KAC-9638

The following section describes all available registers in the KAC-9638 register bank and their function.

	Name c	Device ID 00 Hex DEVID Read Only 48 Hex	their function.
Bit	Bi	t Symbol	Description
7:0	Devl	d	The sensor's device ID.
Register I Address Mnemoni Type Reset Val	C	Silicon Rev 01 Hex REV Read Only 09 Hex	vision
Bit	Bi	t Symbol	Description
7:0	SiRe	v	The sensor's silicon revision.
Register I Address Mnemoni Type Reset Val	C	Clock Gen 05 Hex VCLKGEN Read/Write 00 Hex.	eration Register
Bit	Bit	Symbol	Description
7			Reserved.
2:1	Hclk	Gen	Use to divide the frequency of the sensors master clock input, mclk, and generate the sen- sor's internal clock, <i>hclk</i> . $\begin{array}{c cccc} 00 & \div 1(default) \\ \hline 01 & \div 2 \\ 10 & \div 4 \\ \hline 11 & \div 6 \\ \end{array}$
0			Reserved.
Register Name Power Down/Reset Register Address 06 Hex Mnemonic PWD&RST Type Read/Write Reset Value 00 Hex.			
Bit	Bit	Symbol	Description
7:2			Reserved.
1	SenF	Reset	Set this self clearing bit to a logic 1 to reset the sensor.
0	PwD	n	Set to a logic 1 to power down the chip. All internal clocks will be turned off in this mode. Set to a logic 0, (the default) to put the chip in power up mode.
			Refer to section 9.2 for informa- tion on the low power down sequence.

Register I Address Mnemoni Type Reset Val	Read/Writ	
Bit	Bit Symbol	Description
7:1	I2cDevAddr	Use to program the I ² C compat- ible device address. By default, the value is 55 hex.
0	AdvWr	Set to a logic 1 to activate the I^2C compatible serial interface's advance write option. In advance write mode, several addresses can be written to without the need to restart.
		Set to a logic 0, the default, to operate the I ² C compatible interface in standard write mode.
Register I Address Mnemoni Type Reset Val	09 Hex c OPCTRL Read/Writ	Control Register e
Bit	Bit Symbol	Description
7:3		Reserved.
3	LowLight	Set to a logic 1 to configure the analog gain amplifiers to high gain mode for low light condi- tions.
		Set to a logic 0 (the default) to configure the analog gain ampli- fiers for normal light conditions.
2	MasterMode	Set to a logic 1 to configure the digital video port's synchronisa- tion's signal to operate in master mode.
		Set to a logic 0 (the default) to configure the digital video port's synchronisation signals to oper- ate in slave mode.
1		This bit is reserved for factory testing and must be set to a logic 1 at all times.
0	RstzSoft	Set this self clearing register to a logic 1 to reset all state machines contained in the inte- grated smart timing and control circuitry.

Address Mnemon Type Reset Va	nonic VIDCONFIG Read/Write	
Bit	Bit Symbol	Description
7:1		Reserved.
0	Color	Set to a logic 1, (the default), to configure the sensor's smart timing and control circuit to operate in color mode. This bit always be set for color sensor.
		Set to a logic 0 to configure the sensor's smart timing and con- trol circuit to operate in mono- chrome mode.
Register NameVertical Scan RegisterAddress11 HexMnemonicVSCANTypeRead/Write (Double Buffered)Reset Value04 Hex.		
Bit	Bit Symbol	Description
Bit 7:3	Bit Symbol	Description Reserved.
	Bit Symbol VscanDir	
7:3	-	Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to
7:3	-	Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sen- sor's vertical scan direction to
7:3	VscanDir	Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sen- sor's vertical scan direction to operate from bottom to top. Set to a logic 1 to enable vertical
7:3	VscanDir	Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sen- sor's vertical scan direction to operate from bottom to top. Set to a logic 1 to enable vertical sub sampling. Set to a logic 0, (the default), to
7:3 2 1	VscanDir	Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sensor's vertical scan direction to operate from bottom to top. Set to a logic 1 to enable vertical sub sampling. Set to a logic 0, (the default), to disable vertical sub sampling. Set to a logic 1 to enable vertical sub sampling.

Register NameHorizontal Scan RegisterAddress13 HexMnemonicHSCANTypeRead/Write (Double Buffered)Reset Value04 Hex.			
Bit	Bit Symbol	Description	
7:3		Reserved.	
2	HscanDir	Set to a logic 1, (the default) to set the sensor's horizontal scan direction to operate from left to right. Set to a logic 0, to set the sen-	
		sor's horizontal scan direction to operate from right to left.	
1	HSub	Set to a logic 1 to enable hori- zontal sub sampling.	
		Set to a logic 0, (the default), to disable horizontal sub sampling.	
0	HAvrg	Set to a logic 1 to enable hori- zontal averaging.	
		Set to a logic 0, (the default) to disable horizontal averaging.	
		Note setting this bit to a logic 1 overrides the logic level of the <i>Hsub</i> bit, automatically enabling horizontal sub-sampling.	
Register Name Integration Time Configuration Register Address 15 Hex Mnemonic ITIMECONFIG Type Read/Write (Double Buffered) Reset Value 08 Hex.			
Bit	Bit Symbol	Description	
7:4		Reserved.	
3	PrtFrmEn	Set to a logic 1, (the default), to turn on the Partial Frame Inte- gration.	
		Set to a logic 0, to turn off the partial Partial Frame Integration.	
2:0		Reserved, should always be set to a logic 0.	

∞
~
52
G
ā
60
()
~
Ч.
\checkmark
<u> </u>

Register Set (continued)Register NameActive Window Row Start RegisterAddress19 HexMnemonicWROWSTypeRead/Write (Double Buffered)

Reset Val	ue 00 Hex.	
Bit	Bit Symbol	Description
7:0	WStartRow [10:3]	Use to program the display win- dow's start row address' MSBs. The LSBs can be programmed using the WROWLSB register.

Address 1A Hex Mnemonic WROWE		ndow Row End Register te (Double Buffered)
Bit	Bit Symbol	Description
7:0	WEndRow [10:3]	Use to program the scan win- dow's end row address' MSBs. The LSBs can be programmed using the WROWLSB register.

Register Address Mnemoni Type Reset Val	1B Hex c WROWLS Read/Writ	1B Hex WROWLSB Read/Write (Double Buffered)	
Bit	Bit Symbol	Description	
7:6		Reserved	
5:3	WStartRow [2:0]	Use to program the display win- dow's start row address LSBs. The MSBs can be programmed using the WROWS register.	
2:0	WEndRow [2:0]	Use to program the scan win- dow's end row address's LSBs. The MSBs can be programmed using the WROWE register	

Register Name Active Window Column Start Register Address 1C Hex WCOLS Mnemonic Read/Write (Double Buffered) Туре **Reset Value** 00 Hex. Bit **Bit Symbol** Description 7:0 WStartCol Use to program the display window's start column address' [10:3] MSBs. The LSBs can be programmed using the WCOLLSB register. Register Name Active Window Column End Register Address 1D Hex WCOLE Mnemonic Read/Write (Double Buffered) Туре **Reset Value** A0 Hex. **Bit Symbol** Bit Description 7:0 WEndCol Use to program the scan win-[10:3] dow's end column address' MSBs. The LSBs can be programmed using the WCOLLSB register. Register Name Active Window Column LSB Register Address 1E Hex Mnemonic WCOLLSB Туре Read/Write (Double Buffered) 23 Hex. **Reset Value** Bit **Bit Symbol** Description 7.6 Reserved 5 WStartCol[2] Use to program the display window's start column address' LSBs. The MSBs can be programmed using the WCOLS register.

 register.

 The two LSBs of the windows column start address WStart-Col[1:0] are internally hard wired to 0Hex.

 4:3
 Reserved

 2:0
 WEndCol[2:0]
 Use to program the scan window's end column address' LSBs. The MSBs can be programmed using the WCOLE register.

Register Set (continued) Register Name Frame Delay High Register Address 20 Hex Mnemonic FDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Fdelay[14:7] Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7				
Address 20 Hex Mnemonic FDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Fdelay[14:7] Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL <t< th=""><th>Regist</th><th>er Set (continu</th><th>ied)</th></t<>	Regist	er Set (continu	ied)	
Mnemonic Type Reset ValueFDELAYH Read/Write (Double Buffered) Reset ValueDescription8itBit SymbolDescription7:0Fdelay[14:7]Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767.Register Name Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value8itBit SymbolDescription7Reserved.6:0Fdelay[6:0]Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767Register Name Reset Value8itBit SymbolDescription7Reserved.6:0Fdelay[6:0]Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Reset Value8itBit SymbolDescription7:0Rdelay[12:5]Use to program the MSBs of the row delay.7:0Rdelay[12:5]Use to program the MSBs of the row delay.7:0Rdelay[12:5]Use to program the MSBs of the row delay.8itBit SymbolDescription7:0Rdelay[12:5]Use to program the MSBs of the row delay.Register NameRow Delay Low Register Address 23 Hex Mnemonic RDELAYL TypeRead/Write (Double Buffered)			lay High Register	
Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Fdelay[14:7] Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) Reset Value 00 Hex.				
Bit Bit Symbol Description 7:0 Fdelay[14:7] Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) Reset Value 00 Hex.		• • • • • • • • • • • • • • • • • • • •		
BitBit SymbolDescription7:0Fdelay[14:7]Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767.Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex.BitBit SymbolDescription7Reserved.6:0Fdelay[6:0]Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex.BitBit SymbolDescription7:0Rdelay[12:5]Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex.BitBit SymbolDescription7:0Rdelay[12:5]Use to program the MSBs of the row delay.Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)			e (Double Buffered)	
7:0 Fdelay[14:7] Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) <th></th> <th></th> <th></th>				
frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Bit	Bit Symbol	Description	
frame delay. Note the max allowed frame delay is 32767. Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered) Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	7:0	Fdelay[14:7]	Use to program the MSBs of the	
Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)			frame delay. Note the max	
Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)			allowed frame delay is 32767.	
Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Register l	Name Frame Del	lav Low Register	
Type Read/Write (Double Buffered) Reset Value 08 Hex. Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	•			
Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Mnemoni	c FDELAYL		
Bit Bit Symbol Description 7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	•••		e (Double Buffered)	
7 Reserved. 6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Reset Val	ue 08 Hex.		
6:0 Fdelay[6:0] Use to program the LSBs of the frame delay. Note the max allowed frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Bit	Bit Symbol	Description	
frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	7		Reserved.	
frame delay. Note the max allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	6:0	Edolov(6:01	Lise to program the LSRs of the	
allowed frame delay is 32767 Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	0.0	i delay[0.0]		
Register Name Row Delay High Register Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)			-	
T:0 Rdelay[12:5] Use to program the MSBs of the row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Address Mnemoni Type	Address 22 Hex Mnemonic RDELAYH Type Read/Write (Double Buffered)		
row delay. Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	Bit	Bit Symbol	Description	
Register Name Row Delay Low Register Address 23 Hex Mnemonic RDELAYL Type Read/Write (Double Buffered)	7:0	Rdelay[12:5]	Use to program the MSBs of the	
Address23 HexMnemonicRDELAYLTypeRead/Write (Double Buffered)				
Address23 HexMnemonicRDELAYLTypeRead/Write (Double Buffered)	Register Name Row Delay Low Register			
Type Read/Write (Double Buffered)	•			
	Mnemoni			
Reset Value 08 Hex.			e (Double Buffered)	
	Reset Val	ue 08 Hex.		
Bit Bit Symbol Description	Bit	Bit Symbol	Description	
7:5 Reserved.	7:5		Reserved.	
4:0 Rdelay[4:0] Use to program the LSBs of the	4:0	Rdelay[4:0]		

row delay.

	Register I Address Mnemoni Type Reset Val	24 Hex c ITIMEH Read/Writ	n Time High Register e (Double Buffered)
	Bit	Bit Symbol	Description
of the max	7:4		Reserved
767.	3:0	Itime[10:7]	Program to set the integration time of the array. The value pro- grammed in the register is the number of rows ahead of the selected row to be reset. The maximum ITIME value is 1031.
		Name Integratio	n Time Low Register
	Register I Address Mnemoni Type Reset Val	25 Hex c ITIMEL Read/Writ	e (Double Buffered)
max	Address Mnemoni Type	25 Hex c ITIMEL Read/Writ	-
e max	Address Mnemoni Type Reset Val	25 Hex c ITIMEL Read/Writ ue 00 Hex.	e (Double Buffered)
of the max 767	Address Mnemonie Type Reset Val Bit	25 Hex c ITIMEL Read/Writ ue 00 Hex.	e (Double Buffered) Description

		-	
C	t	0	
	0	Ξ.	
G	ľ	7	
¢	(D	
0	3	þ	
()	
	2	2	
	1	E	
	J	2	

Register Set (continued)

Register NameSnapshot Mode Configuration RegisterAddress30 HexMnemonicSNAPMODETypeRead/Write (Double Buffered)Reset Value07 Hex

Reset Value 07 Hex.			
Bit	Bit Symbol		Description
7:6		Reserv	ved.
5	SnapEnable	sensor mode.	a logic 1 to configure the to operate in snapshot Set to a logic zero (the to operate the sensor in mode.
4	Snapshot- Mode	Set to a logic 1 (the default) to operate the snapshot signal in pulse mode. In pulse mode the sensor will only carry out one snapshot sequence per pulse applied to the snapshot pin. Set to a logic 0 to operate the snapshot pin to level mode. In level mode the sensor will con- tinually run snapshot sequences as long as the snapshot pin is held to the active.	
3	ShutterMode	Set to a logic 1 indicate that an external shutter will be used during snapshot mode. Set to a logic 0, (the default) to indicate that snapshot mode will be carried out without the aid of an external shutter.	
2:0	SsFrames	an external shutter.Program to set the number of frames required before readoud during a snapshot with no external shutter, (see Figure 29). By default these three bits are set to 111 resulting in eight frames before readout:000one frames001two frames001two frames010three frames011four frames100five frames101six frames111eight frames	

Register I Address Mnemoni Type Reset Val	31 Hex c SNAPITH Read/Writ	SNAPITH Read/Write (Double Buffered)		
Bit	Bit Symbol	Description		
7:0	SnapIT[14:7]	Use to program the MSBs of the image capture time in snapshot mode, (see figure 29).		
		Note: when <i>SnapIT[14:0]</i> is set to 0000Hex, although no extsync pulse will result, image data will be output.		
Register I Address Mnemoni Type Reset Val	32 Hex c SNAPITL Read/Writ	Integration Time LSB Register e (Double Buffered)		
Bit	Bit Symbol	Description		
7		Reserved.		
6:0	SnapIT[6:0]	Use to program the LSBs of the image capture time in snapshot mode, (see figure 29).		
		Note if <i>SnapIT</i> [14:0] is set to 0000Hex, no extsync pulse will result, image data will be output.		
Register I Address Mnemoni Type Reset Val	40 Hex c BLKLEVC Read/Writ			
Bit	Bit Symbol	Description		
7		Reserved.		
3	BlkLevEn	Set to a logic 1 to disable the internal black level compensa- tion circuit. Set to a logic 0, (the default) to enable the internal black level compensation circuit.		
2:0	BlkRate	Use to adjust the rate at which the auto black level circuit con- verges to the programmed tar- get, <i>BlkTarget</i> . See section 8.3 for more information.		
Register I Address Mnemonie Type Reset Val	41 Hex c BLKTARG Read/Writ			
Bit	Bit Symbol	Description		
7:0	BlkRef	Use to program the target black		

Register Set (continued)

Register NamePGA RegisAddress42 HexMnemonicPGATypeRead/WriteReset Value00 Hex.		42 Hex PGA Read/Writ	
Bit	Bit Symbol		Description
7			Reserved
6:0	PGA		Use to program the analog gain. Max gain is 16dB of gain pro- grammable in 128 steps of 0.125dB.

Kodak

Register Address Mnemoni Type Reset Val	Read/Writ	-
Bit	Bit Symbol	Description
7:0	Offset	Use to manually set the black level. See section 8.3 for more information.
Register NameGain ColoAddress4A HexMnemonicCFAMAPTypeRead/WritReset Value1B Hex.		
Bit	Bit Symbol	Description
7:6	ColorMap0	Use to program the color map for gain channel 0. See section 6.2 for more information. NOTE: For monochrome sensor set all register bits[7:0] to 0.
5:4	ColorMap1	Use to program the color map for gain channel 1. See section 6.2 for more information.
3:2	ColorMap2	Use to program the color map for gain channel 2. See section 6.2 for more information.
1:0	ColorMap3	Use to program the color map for gain channel 3. See section 6.2 for more information.

IMAGE SENSOR SOLUTIONS

~
ω
က
9
ດ
C
~
0

Register Set (continued)

-	
Register Name	VSYNC Latency Register
Address	50 Hex
Mnemonic	VSYNCADJUST
Туре	Read/Write
Reset Value	08 Hex.

Reset Val	ue 08 Hex.	1	
Bit	Bit Symbol		Description
7:6		Reserve	d.
4:0	VsyncEnd	vsync si for four p frame. In remain a	ult, in pulse mode the ignal will remain active oclk periods after end of a level mode vsync will active for the duration of e delay time.
		vsync s	adjust the time that the signal goes inactive in s of pclk as follows:
		00000 00001	Reserved
		to 00111	
		01000	no adjustment, the default
		01001	+1 pclk clock
		to 11111	to +24 pclk clocks
Address Mnemoni		JUST	y stor
Address Mnemoni Type Reset Val	51 Hex c HSYNCAD Read/Writ ue 08 Hex.	JUST	-
Address Mnemoni Type Reset Val Bit	51 Hex c HSYNCAD Read/Writ	ojust e	Description
Address Mnemoni Type Reset Val	51 Hex c HSYNCAD Read/Writ ue 08 Hex.	e Reserved	Description
Address Mnemoni Type Reset Val Bit	51 Hex c HSYNCAD Read/Writ ue 08 Hex.	By defau hsync s for four p each row will rema	Description
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	By defau hsync s for four p each rov will rema tion of th Use to a hsync s	Description d. ult, in pulse mode the ignal will remain active oclk periods after end of v. In level mode hsync ain active for the dura-
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	Reserved By defau hsync s for four p each row will rema tion of th Use to a hsync s multiples 0000 0001	Description d. ult, in pulse mode the ignal will remain active oclk periods after end of v. In level mode hsync ain active for the dura- e row delay time. adjust the time that the signal goes inactive in
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	Reserved By defau hsync s for four p each row will rema tion of th Use to a hsync s multiples 0000	Description d. ult, in pulse mode the ignal will remain active oclk periods after end of v. In level mode hsync ain active for the dura- e row delay time. adjust the time that the signal goes inactive in a of pclk as follows:
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	Reserved By defau hsync s for four p each row will rema tion of th Use to a hsync s multiples 0000 0001 to	Description d. ult, in pulse mode the ignal will remain active oclk periods after end of v. In level mode hsync ain active for the dura- e row delay time. adjust the time that the signal goes inactive in a of pclk as follows:
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	Reserver By defau hsync s for four p each row will rema tion of th Use to a hsync s multiples 0000 0001 to 0111 01000	Description d. ult, in pulse mode the ignal will remain active cclk periods after end of v. In level mode hsync ain active for the dura- e row delay time. adjust the time that the signal goes inactive in a of pclk as follows: Reserved no adjustment, the default +1 pclk clock
Address Mnemoni Type Reset Val Bit 7:4	51 Hex c HSYNCAD Read/Writ ue 08 Hex. Bit Symbol	Reserver By defau hsync s for four p each row will rema tion of th Use to a hsync s multiples 0000 0001 to 0111 01000	Description d. ult, in pulse mode the ignal will remain active oclk periods after end of v. In level mode hsync ain active for the dura- e row delay time. adjust the time that the signal goes inactive in o of pclk as follows: Reserved no adjustment, the default

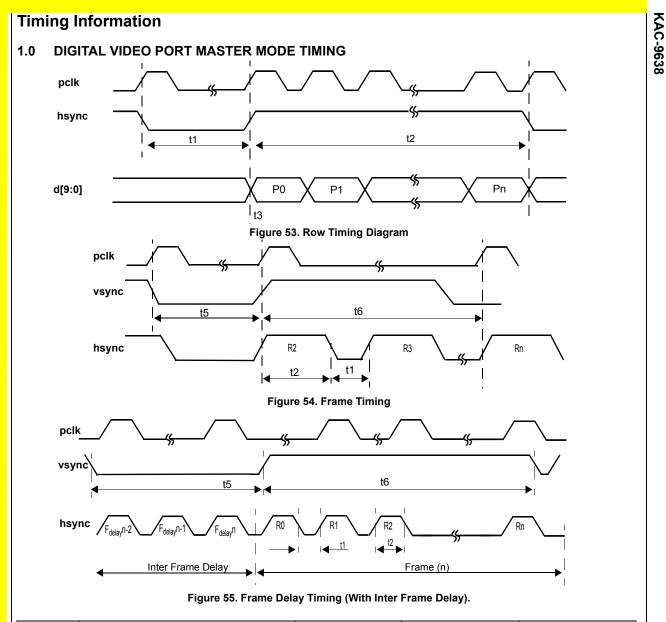
Register Address Mnemoni Type Reset Val	52 Hex c DVBUSCO Read/Writ	ONFIG0	ustment Register
Bit	Bit Symbol		Description
7:4	VsyncStart	for four pe for four pe frame. In remain ac	It, in pulse mode the gnal will remain active clk periods after end of level mode vsync will ctive for the duration of e delay time.
		vsync sig	djust the time that the gnal goes active in mul- oclk as follows:
		0000 to 1111	0 pclk clocks to -15 pclk clock
3:0	HsyncStart	hsync sign for four po row. In lo remain ac	It, in pulse mode the gnal will remain active clk periods after end of evel mode hsync will ctive for the duration of elay time.
		hsync sig	djust the time that the gnal goes active in mul- oclk as follows:
		0000 to 1111	0 pclk clocks to -15 pclk clock

Register Set (continued)

Register Address Mnemoni Type Reset Val	53 Hex c DVBUSCO Read/Writ			
Bit	Bit Symbol	Description		
7		Reserved		
6	PixClkMode	Set the to a logic 1 to operate pclk to "data ready mode". Set to a logic 0, the default, to set pclk to " <i>free running mode</i> ".		
5	VsyncMode	Set to a logic 1 to operate the vsync pin to "pulse mode". Set to a logic 0, (the default) to operate the vsync signal to "level mode".		
4	HsyncMode	Set to a logic 1 to operate the hsync signal to pulse for a mini- mum of four pixel clocks at the end of each row. Set to a logic 0, (the default) to force the hsync signal to a level indicat- ing valid data within a row.		
3	ExtSyncPol	Set to a logic 1, (the default), to set the active level of the <i>extsync</i> signal high. Set to a logic 0 to set the active level of the <i>extsync</i> signal low.		
2	SnapShotPol	Set to a logic 1 to set the snap- shot pin to be active on the pos- itive edge. Set to a logic 0, (the default) to set the snapshot pin to be active on the negative edge.		
1	VsyncPol	Assert to force the vsync signal to generate a logic 1 during a frame readout (<i>Level Mode</i>), or a negative pulse at the end of a frame readout (<i>Pulse Mode</i>). Clear (the default) to force the vsync signal to generate a logic 0 during a frame readout (<i>Level Mode</i>), or a positive pulse at the end of a frame readout (<i>Pulse Mode</i>).		
0	HsyncPol	Assert to force the hsync signal to generate a logic 1 during a row readout (<i>Level Mode</i>), or a negative pulse at the end of a row readout (<i>Pulse Mode</i>). Clear (the default) to force the hsync signal to generate a logic 0 during a row readout (<i>Level Mode</i>), or a positive pulse at the end of a readout (<i>Pulse Mode</i>).		

Kodak

Address Mnemoni Type Reset Val	54 Hex c DVBUSCO Read/Writ		
Bit	Bit Symbol	Description	
7	OutputEn	Set to a logic 0 to tri-state all output signals (data and control) on the digital video port. set to a logic 1, (the default) to enable all signals (data and control) on the digital video port.	
6	BlkPixelEn	Set to a logic 1, (the default) to read out the middle 8 black pix- els at the start of every row. Set to a logic 0 to mask out the black pixel readout.	
5	PixClkPol	Set to a logic 1 to set the active edge of the pixel clock to nega- tive. Set to a logic 0, (the default), to set the active edge of the clock to positive.	
4		Reserved	
3:0	Bshift[3:0]	Use to program the routing of the MSB output of the internal video A/D to a bit on the digital video bus.	
		0000 A/D[9:0] -> d[9:0]	
		0001 A/D[9:0] -> d[8:0],d[9]	
		0010 A/D [9:0] ->d[7:0],d[9:8]	
		0011 A/D [9:0] -> d[6:0],d[9:7]	
		0100 A/D [9:0] -> d[5:0],d[9:6]	
		0101 A/D[9:0] -> d[4:0],d[9:5]	
		0110 A/D [9:0] -> d[3:0],d[9:4]	
		0111 A/D [9:0] -> d[2:0],d[9:3]	
		1000 A/D [9:0] ->d[1:0],d[9:2] 1001 A/D [9:0] -> d[0],d[9:1]	
		1001 A/D [9:0] -> d[0],d[9:1] 1010 A/D [9:0] -> d[9:0]	


Register Name Video Output Adjustment Register

KAC-9638

Register Set (continued) Register Name Video Output Tristate Adjustment Register Address 55 Hex Mnemonic DVBUSCONFIG3 Type Read/Write Reset Value 00 Hex.				
Bit	Bit Symbol	Description	Bit	
7:5		Reserved	7:0	
4	Tristate	Digital output tristate. Set this bit to 1 to tristate all digital outputs. (vsync , hsync , pclk , data, external sync). Use can override this setting with independent override bits.		
3	VsOverride	Overrides tri-stating of Vsync port in master timing mode. To enable override, set bit to 1.		
2	HsOverride	Overrides tri-stating of Hsync port in master timing mode. To enable override, set bit to 1.		
1	PclkOveride	Overrides tri-stating of Pclk port in master timing mode. To enable override, set bit to 1.	Register Address	
0	ExtSyncOver- ride	Overrides tri-stating of external sync port in master timing mode. To enable override, set bit to 1.	Mnemoni Type Reset Val	
Register Address		on Register 1	Bit	
Address Mnemon Type Reset Va	80 Hex ic INTREG1 Read/Writ ilue 00 Hex.	ie	Bit 7:0	
Address Mnemon Type Reset Va Bit	80 Hex ic INTREG1 Read/Writ ilue 00 Hex. Bit Symbol	Description		
Address Mnemon Type Reset Va	80 Hex ic INTREG1 Read/Writ ilue 00 Hex.	ie		
Address Mnemon Type Reset Va Bit	80 Hex ic INTREG1 Read/Writ ilue 00 Hex. Bit Symbol	Description Write 5 Hex to enable the pixel		
Address Mnemon Type Reset Va Bit	80 Hex ic INTREG1 Read/Writ ilue 00 Hex. Bit Symbol	Description Write 5 Hex to enable the pixel offset calibration circuits.		
Address Mnemon Type Reset Va Bit	80 Hex ic INTREG1 Read/Writ ilue 00 Hex. Bit Symbol	Description Write 5 Hex to enable the pixel offset calibration circuits. Notes: This register can only be accessed when the Int2 param- eter in the INTREG2 register is		
Address Mnemon Type Reset Va Bit	Name Pixel Offs 83 Hex Name Pixel Offs 83 Hex PixCal	The Description Write 5 Hex to enable the pixel offset calibration circuits. Notes: This register can only be accessed when the Int2 param- eter in the INTREG2 register is set to 01Hex. PixCal should be reset to 00Hex at the end of the pixel offset cal- ibration procedure (see section 8.1 for more details). et Register ESET		
Address Mnemon Type Reset Va Bit 7:0 Register Address Mnemon Type	Name Pixel Offs 83 Hex Name Pixel Offs 83 Hex PixCal	The Description Write 5 Hex to enable the pixel offset calibration circuits. Notes: This register can only be accessed when the Int2 param- eter in the INTREG2 register is set to 01Hex. PixCal should be reset to 00Hex at the end of the pixel offset cal- ibration procedure (see section 8.1 for more details). et Register ESET		

to minimize the sensor's power down current. Write 86Hex after power up from the power down mode to ensure correct operation of the sensor. This puts sensor in bandgap mode, where the references are generated by an internal bandgap. Write 81Hex after power up to set the part Register Name Initialization Register 2 Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers	Address83MnemonicPTypeR		Power Dov 85 Hex POWCTRL Read/Write 81 Hex.	
to minimize the sensor's power down current. Write 86Hex after power up from the power down mode to ensure correct operation of the sensor. This puts sensor in bandgap mode, where the references are generated by an internal bandgap. Write 81Hex after power up to set the part Register Name Initialization Register 2 Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Int2 Write 1 Hex to activate the sensor's initialization registers.	Bit	Bit	Symbol	Description
from the power down mode to ensure correct operation of the sensor. This puts sensor in bandgap mode, where the references are generated by an internal bandgap. Write 81Hex after power up to set the part Register Name Initialization Register 2 Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers.	7:0	Patro	I	Write 82Hex before power down to minimize the sensor's power down current.
set the part Refer to section 9.2 for more information. Register Name Initialization Register 2 Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol 7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers Write 0 Hex to disable the sen sor's initialization registers.				bandgap mode, where the refer- ences are generated by an
Initialization Register 2 Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol 7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers Write 0 Hex to disable the sen sor's initialization registers.				Write 81Hex after power up to set the part
Address 88 Hex Mnemonic INTREG2 Type Read/Write Reset Value 00 Hex. Bit Bit Symbol Description 7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers Write 0 Hex to disable the sen sor's initialization registers.				Refer to section 9.2 for more information.
7:0 Int2 Write 1 Hex to activate the sen sor's initialization registers Write 0 Hex to disable the sen sor's initialization registers.	Address Mnemoni Гуре	c	88 Hex INTREG2 Read/Write	-
sor's initialization registers Write 0 Hex to disable the sen sor's initialization registers.	Bit	Bit	Symbol	Description
sor's initialization registers.	7:0	Int2		Write 1 Hex to activate the sen- sor's initialization registers
Note this register is used for				Write 0 Hex to disable the sen-
				sor's initialization registers.
 the pixel array offset calibration (section 8.2) power/up and down of the array (section 9.2) 				ő

Label	Descriptions	Min	Тур	Мах
tO	pclk period	83.33ns	45.45ns	37.04ns

t1	hsync inactive ^{1,2}	level mode pulse mode	(RN _{Hclk} - N _{pix} + <i>HsyncStart - HsyncEnd</i>) * Hclk (RN _{Hclk} - 4) * Hclk
t2	hsync active ^{1,2}	level mode pulse mode	(<i>HsyncEnd - HsyncStart +</i> N _{pix}) * Hclk <i>4</i> * Hclk
t3	first valid pixel data after	hsync active ⁴	t _{hstart *} Hclk
t5	vsync inactive ^{1,3}	level mode pulse mode	(F _{delay} * RN _{Hclk} + R _{opcycle} + R _{itime} + <i>VsyncStart</i> - <i>VsyncEnd</i>) * Hclk (FN _{Hclk} - 4) * Hclk
t6	vsync active ^{1,3}	level mode pulse mode	((VsyncEnd - VsyncStart) + (RN _{Hclk} * N _{rows})) * Hclk 4 * Hclk

Note 1: 1. See section 6.4 for definitions of $\text{RN}_{\text{Hclk}},\,\text{N}_{\text{pix}}$ and FN_{Hclk}

Note 2: 2. The values of HsyncStart and HsyncEnd are stored in the DVBUSCONFIG0 and HSYNCADJUST registers respectively.

Note 3: 3. The values of *VsyncStart* and *VsyncEnd* are stored in the DVBUSCONFIG0 and VSYNCADJUST registers respectively.
Note 4: 4. See register DVBUSCONFIG0 to set *t_{hstart}* (HsyncStart). These bits can move the start of Hsync up to 15 Pclk's before valid data is available.

KAC-9638

2.0

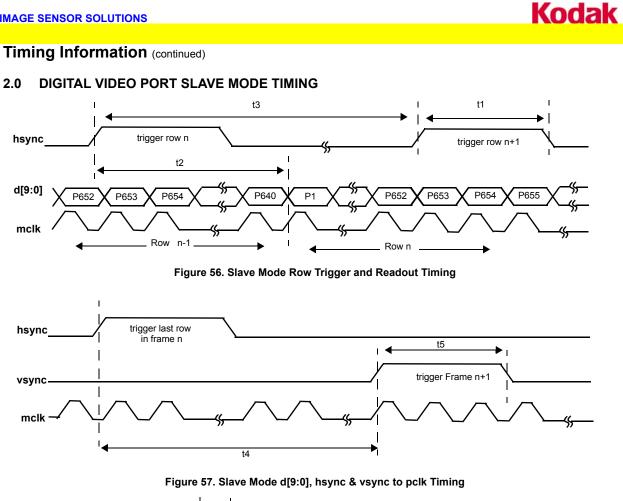
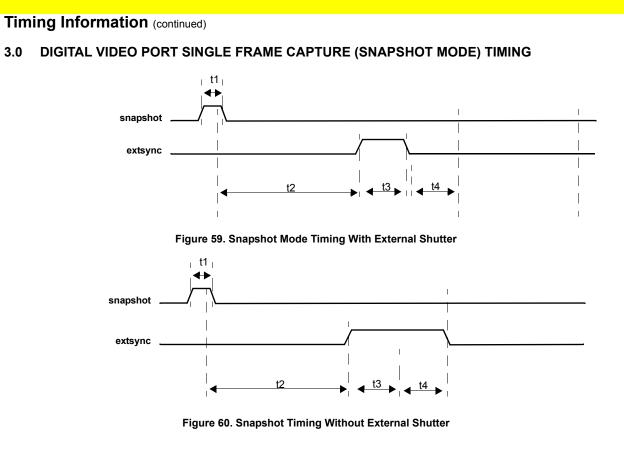


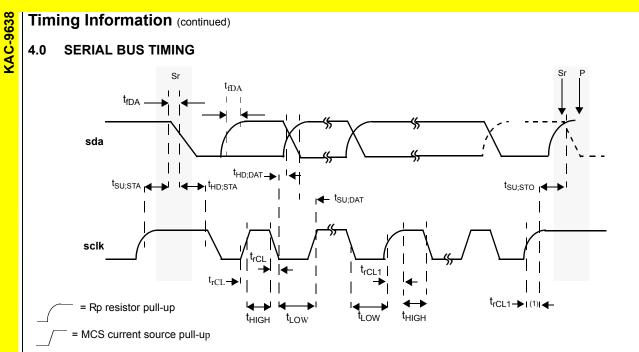
Figure 58. Rising Edge of mclk to Valid Pixel Data


The following specifications apply for all supply pins = +3.0V & C_L = 10pF unless otherwise noted.

Label	Descriptions	Min	Тур	Мах
t1	Pulse width of row trigger	2 ∗ mclk		
t2	First pixel out after rising edge of row trigger ¹		X _{pclk}	
t3	Minimum time between row triggers ²	RN _{Hclk} _* Hclk		
t4	Time to assert next frame trigger after last row trigger in current frame.	20 * Hclk		
t5	Pulse width of Frame trigger	2 ∗ mclk		
t6	Time to valid pixel data after rising edge of mclk		44ns	

1. See section 11.5 for definition of $X_{\mbox{pclk}}$

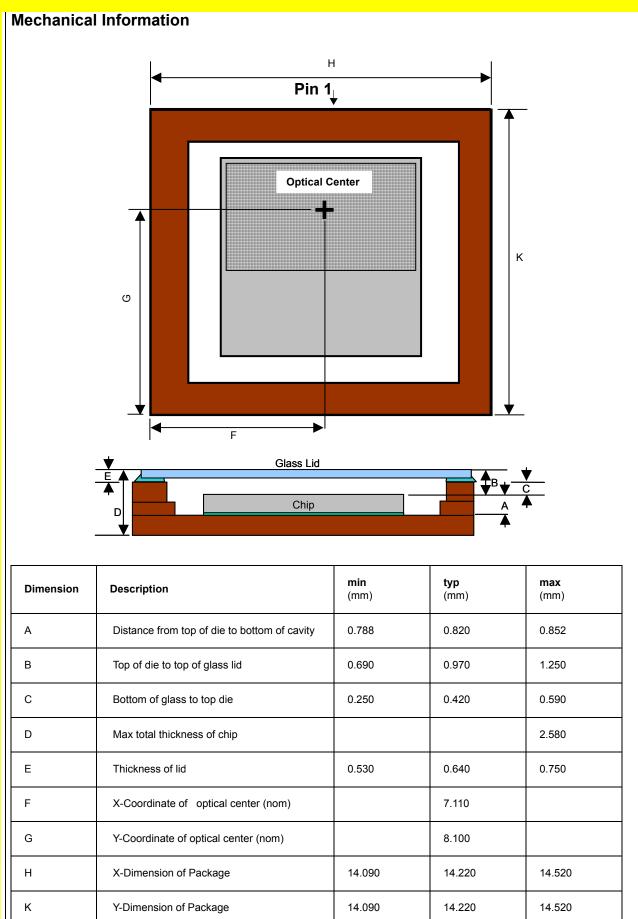
2. See section 6.4 for definition of RN_{Hclk}

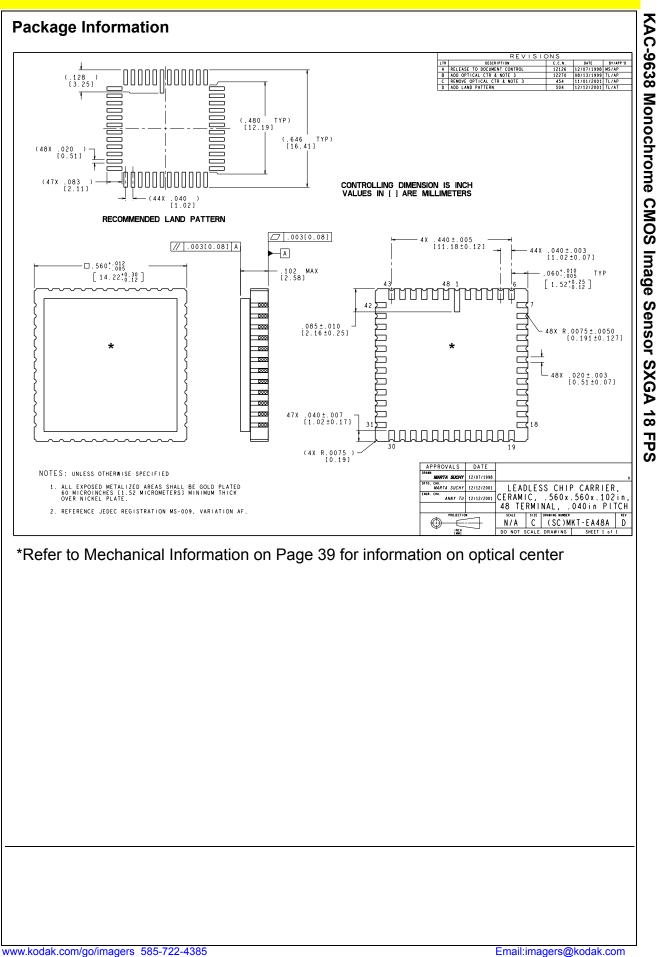


Label	Descriptions	Equation	
t1	Minimum Snapshot Trigger Pulse Width	2 * mclk	(see notes a & b)
t2	Minimum time from Snapshot Pulse to extsync	FN _{Hclk}	(see notes a & b)
t3	Array Integration Time	FN _{Hclk}	(see notes a & b)
t4	Pixel Read Out	FN _{Hclk}	(see notes a & b)

Note a: See Frame Rate Programming section for more details

Note b: See Snapshot Mode for more details


(1) Rising edge of the first **sclk** pulse after an acknowledge bit.


Figure 61. I²C Compatible Serial Bus Timing.

The following specifications apply for all supply pins = +3.3V, C_L = 10pF, and *sclk* = 400KHz unless otherwise noted. Boldface limits apply for TA = T_{MIN} to T_{MAX}: all other limits T_A = 25^oC (Note 7)

PARAMETER	SYMBOL	MIN	МАХ	UNIT
scik clock frequency	f _{SCLH}	0	400	KHz
Set-up time (repeated) START condition	t _{SU;STA}	0.6	-	μS
Hold time (repeated) START condition	t _{HD;STA}	0.6	-	μS
LOW period of the sclk clock	t _{LOW}	1.3	-	μS
HIGH period of the sclk clock	t _{HIGH}	0.6	-	μS
Data set-up time	t _{SU;DAT}	180	-	nS
Data hold time	t _{HD;DAT}	0	0.9	μS
Set-up time for STOP condition	t _{su;sто}	0.6		μS
Capacitive load for and sclk lines	Cb		400	pF

KAC-9638

