CSD01060-Silicon Carbide Schottky Diode Zero Recovery® Rectifier

$$
\begin{aligned}
\mathbf{V}_{\mathbf{R R M}} & =600 \mathrm{~V} \\
\mathbf{I}_{\mathrm{F}(\mathrm{AVG})} & =1 \mathrm{~A} \\
\mathbf{Q}_{\mathbf{c}} & =3.3 \mathrm{nC}
\end{aligned}
$$

Features

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Rectifier Heat Sink
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC $\mathrm{P}_{\text {out }}$: 100W-200W
- Motor Drives
- Typical Power : 0.25HP-0.5HP

Package

TO-252-2

TO-220-2

Part Number	Package	Marking
CSD01060A	TO-220-2	CSD01060
CSD01060E	TO-252-2	CSD01060

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V		
$\mathrm{V}_{\text {RSM }}$	Surge Peak Reverse Voltage	600	V		
$V_{\text {DC }}$	DC Blocking Voltage	600	V		
$\mathrm{I}_{\text {(AVG) }}$	Average Forward Current	$\begin{aligned} & 1.4 \\ & 2.2 \end{aligned}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I}_{\text {F(PEAK) }}$	Peak Forward Current	2.5	A	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{T}_{\text {REP }}<1 \mathrm{mS}$, Duty $=0.5$	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{gathered} 7 \\ 5.5 \\ \hline \end{gathered}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	9	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=1.5 \mathrm{~ms}$, Half Sine Wave	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	32	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{gathered} 21.4 \\ 7.1 \end{gathered}$	W	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{T}_{3}, \mathrm{~T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\begin{gathered} \mathrm{Nm} \\ \text { Ibf-in } \end{gathered}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.6 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \vee \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=600 \vee \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	
Q_{C}	Total Capacitive Charge	3.3		nC	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ & \mathrm{~d} / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
C	Total Capacitance	$\begin{aligned} & 80 \\ & 11 \\ & 8.5 \end{aligned}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$R_{\theta J C}$	Thermal Resistance from Junction to Case	7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{\theta} \mathrm{~A}}$	Thermal Resistance from Junction to Ambient	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

CREE

Typical Performance

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Typical Performance

Figure 6. Power Derating

Package Dimensions

Package TO-252-2

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	. 255	. 265	6.477	6.731
B	. 197	. 205	5.004	5.207
C	. 027	. 033	. 686	. 838
D*	. 270	. 322	6.858	8.179
E	. 178	. 182	4.521	4.623
F	. 025	. 035	. 635	. 889
G	44°	46°	44°	46°
H	. 382	. 397	9.703	10.084
J	. 090 TYP		2.286 TYP	
K	6°	8°	6°	8°
L	. 086	. 094	2.184	2.388
M	. 030	. 034	. 762	. 864
N	. 040	. 044	1.016	1.118
P	. 235	. 245	5.969	6.223
Q	0.00	. 004	0.00	. 102
R	R0.01 TYP		R0.31 TYP	
S	. 017	. 023	. 428	. 588
T	. 040	. 044	1.016	1.118
U	. 021	. 027	. 534	1.118

Note:

* Tab "D" may not be present

Recommended Solder Pad Layout

TO-252-2

TO-220-2

Part Number	Package	Marking
CSD01060A	TO-220-2	CSD01060
CSD01060E	TO-252-2	CSD01060

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{T}} & \mathrm{R}_{\mathrm{T}}
\end{array}
$$

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006. This part number was released previously with $\mathrm{Sn} / \mathrm{Pb}$ solder plating as a standard industry finish. For more information please contact power_sales@cree.com "

